Multiple distinct objects: Difference between revisions

m
(add FreeBASIC)
imported>Arakov
 
(7 intermediate revisions by 7 users not shown)
Line 17:
{{trans|Python}}
 
<langsyntaxhighlight lang="11l">(1..n).map(i -> Foo())</langsyntaxhighlight>
 
=={{header|Action!}}==
<syntaxhighlight lang="action!">DEFINE PTR="CARD"
DEFINE OBJSIZE="4"
TYPE Record=[BYTE b CHAR c INT i]
 
PROC PrintObjects(PTR ARRAY items BYTE count)
Record POINTER r
BYTE n
 
FOR n=0 TO count-1
DO
r=items(n)
PrintF("(%B ""%C"" %I) ",r.b,r.c,r.i)
IF n MOD 3=2 THEN PutE() FI
OD
PutE()
RETURN
 
PROC Main()
DEFINE MIN="1"
DEFINE MAX="20"
DEFINE BUFSIZE="80"
BYTE ARRAY buffer(BUFSIZE)
PTR ARRAY items(MAX)
BYTE count=[0],n,LMARGIN=$52,oldLMARGIN
Record POINTER r
 
oldLMARGIN=LMARGIN
LMARGIN=0 ;remove left margin on the screen
Put(125) PutE() ;clear the screen
 
WHILE count<min OR count>max
DO
PrintF("How many objects (%I-%I)?",MIN,MAX)
count=InputB()
OD
 
FOR n=0 TO count-1
DO
items(n)=buffer+n*OBJSIZE
OD
 
PutE()
PrintE("Uninitialized objects:")
PrintObjects(items,count)
 
FOR n=0 TO count-1
DO
r=items(n)
r.b=n r.c=n+'A r.i=-n
OD
 
PutE()
PrintE("Initialized objects:")
PrintObjects(items,count)
 
LMARGIN=oldLMARGIN ;restore left margin on the screen
RETURN</syntaxhighlight>
{{out}}
[https://gitlab.com/amarok8bit/action-rosetta-code/-/raw/master/images/Multiple_distinct_objects.png Screenshot from Atari 8-bit computer]
<pre>
How many objects (1-20)?20
 
Uninitialized objects:
(0 "♥" 80) (0 "♥" 0) (0 "♥" 0) (0 "♥" 0) (0 "♥" 0) (0 "♥" 0)
(0 "♥" 0) (0 "♥" 0) (0 "♥" 0) (0 "♥" 0) (0 "♥" 0) (0 "♥" 0)
(0 "♥" 0) (0 "♥" 0) (0 "♥" 0) (0 "♥" 0) (0 "♥" 0) (0 "♥" 0)
(0 "♥" 0) (0 "♥" 0)
 
Initialized objects:
(0 "A" 0) (1 "B" -1) (2 "C" -2) (3 "D" -3) (4 "E" -4) (5 "F" -5)
(6 "G" -6) (7 "H" -7) (8 "I" -8) (9 "J" -9) (10 "K" -10) (11 "L" -11)
(12 "M" -12) (13 "N" -13) (14 "O" -14) (15 "P" -15) (16 "Q" -16) (17 "R" -17)
(18 "S" -18) (19 "T" -19)
</pre>
 
=={{header|Ada}}==
<langsyntaxhighlight lang="ada">A : array (1..N) of T;</langsyntaxhighlight>
Here N can be unknown until run-time. T is any constrained type. In [[Ada]] all objects are always initialized, though some types may have null initialization. When T requires a non-null initialization, it is done for each array element. For example, when T is a [[task]] type, N tasks start upon initialization of A. Note that T can be a ''limited'' type like task. Limited types do not have predefined copy operation. Arrays of non-limited types can also be initialized by aggregates of:
<langsyntaxhighlight lang="ada">A : array (1..N) of T := (others => V);</langsyntaxhighlight>
Here V is some value or expression of the type T. As an expression V may have side effects, in that case it is evaluated exactly N times, though the order of evaluation is not defined. Also an aggregate itself can be considered as a solution of the task:
<langsyntaxhighlight lang="ada">(1..N => V)</langsyntaxhighlight>
 
=={{header|Aime}}==
<langsyntaxhighlight lang="aime">void
show_sublist(list l)
{
Line 84 ⟶ 160:
 
return 0;
}</langsyntaxhighlight>
{{out}}
<pre> [4] [4] [4] [7] [4] [4] [4] [4]</pre>
Line 94 ⟶ 170:
{{works with|ALGOL 68G|Any - tested with release mk15-0.8b.fc9.i386}}
{{works with|ELLA ALGOL 68|Any (with appropriate job cards) - tested with release 1.8.8d.fc9.i386}}
<langsyntaxhighlight lang="algol68">MODE FOO = STRUCT(CHAR u,l);
INT n := 26;
[n]FOO f;
Line 101 ⟶ 177:
FOR i TO UPB f DO f[i] := (REPR(ABS("A")-1+i), REPR(ABS("a")-1+i)) OD;
 
print((f, new line))</langsyntaxhighlight>
Output:
<pre>
Line 108 ⟶ 184:
 
=={{header|ALGOL W}}==
<langsyntaxhighlight lang="algolw">begin
record T ( integer n, m );
reference(T) singleT;
Line 131 ⟶ 207:
for i := 1 until numberOfElements do writeon( i_w := 1, s_w := 0, n(tArray( i )), ", ", m(tArray( i )), "; " )
end
end.</langsyntaxhighlight>
{{out}}
<pre>
Line 139 ⟶ 215:
 
=={{header|AppleScript}}==
<langsyntaxhighlight AppleScriptlang="applescript">-- MULTIPLE DISTINCT OBJECTS -------------------------------------------------
 
-- nObjects Constructor -> Int -> [Object]
Line 198 ⟶ 274:
end script
end if
end mReturn</langsyntaxhighlight>
{{Out}}
<langsyntaxhighlight AppleScriptlang="applescript">{{index:1}, {index:2}, {index:3}, {index:4}, {index:5}, {index:6}}</langsyntaxhighlight>
 
=={{header|AutoHotkey}}==
{{works with|AutoHotkey_L}}
<langsyntaxhighlight AutoHotkeylang="autohotkey">a := []
Loop, %n%
a[A_Index] := new Foo()</langsyntaxhighlight>
 
=={{header|BBC BASIC}}==
{{works with|BBC BASIC for Windows}}
<langsyntaxhighlight lang="bbcbasic"> REM Determine object count at runtime:
n% = RND(1000)
Line 226 ⟶ 302:
FOR i% = 0 TO DIM(objects%(),1)
objects%(i%) = object{}
NEXT</langsyntaxhighlight>
 
=={{header|Brat}}==
The wrong way, which creates an array of ''n'' references to the same new ''foo'':
 
<syntaxhighlight lang ="brat">n.of foo.new</langsyntaxhighlight>
 
The right way, which calls the block ''n'' times and creates an array of new ''foo''s:
 
<langsyntaxhighlight lang="brat">n.of { foo.new }</langsyntaxhighlight>
 
=={{header|C}}==
<langsyntaxhighlight lang="c">foo *foos = malloc(n * sizeof(*foos));
for (int i = 0; i < n; i++)
init_foo(&foos[i]);</langsyntaxhighlight>
 
(Or if no particular initialization is needed, skip that part, or use <tt>calloc</tt>.)
Line 246 ⟶ 322:
=={{header|C sharp|C#}}==
 
<langsyntaxhighlight lang="csharp">using System;
using System.Linq;
using System.Collections.Generic;
 
List<Foo> foos = Enumerable.Range(1, n).Select(x => new Foo()).ToList();</langsyntaxhighlight>
 
=={{header|C++}}==
Line 256 ⟶ 332:
 
Using only language primitives:
<langsyntaxhighlight lang="cpp">// this assumes T is a default-constructible type (all built-in types are)
T* p = new T[n]; // if T is POD, the objects are uninitialized, otherwise they are default-initialized
 
Line 264 ⟶ 340:
 
// when you don't need the objects any more, get rid of them
delete[] p;</langsyntaxhighlight>
 
Using the standard library
<langsyntaxhighlight lang="cpp">#include <vector>
#include <algorithm>
#include <iterator>
Line 279 ⟶ 355:
// To initialise each value differently
std::generate_n(std::back_inserter(vec), n, makeT); //makeT is a function of type T(void)
</syntaxhighlight>
</lang>
 
In C++ reference semantics are achieved by holding objects by pointer. Here is an example of the error, and a correct way of achieving distinctness.
Line 285 ⟶ 361:
These examples assume T has a public copy constructor, and that p is a pointer to T;
 
<langsyntaxhighlight lang="cpp">#include <vector>
#include <tr1/memory>
using namespace std;
Line 308 ⟶ 384:
bvec2.push_back(TPtr_t(new T(*p));
 
</syntaxhighlight>
</lang>
Of course, also in this case one can use the other sequence containers or plain new/delete instead of <tt>vector</tt>.
 
=={{header|Clojure}}==
An example using pseudo-random numbers:
<langsyntaxhighlight lang="clojure">user> (take 3 (repeat (rand))) ; repeating the same random number three times
(0.2787011365537204 0.2787011365537204 0.2787011365537204)
user> (take 3 (repeatedly rand)) ; creating three different random number
(0.8334795669220695 0.08405601245793926 0.5795448744634744)
user></langsyntaxhighlight>
 
=={{header|Common Lisp}}==
The mistake is often written as one of these:
<langsyntaxhighlight lang="lisp">(make-list n :initial-element (make-the-distinct-thing))
(make-array n :initial-element (make-the-distinct-thing))</langsyntaxhighlight>
which are incorrect since the form <code>(make-the-distinct-thing)</code> is only evaluated once and the single object is put in every position of the sequence. A commonly used correct version is:
<langsyntaxhighlight lang="lisp">(loop repeat n collect (make-the-distinct-thing))</langsyntaxhighlight>
which evaluates <code>(make-the-distinct-thing)</code> <var>n</var> times and collects each result in a list.
 
It is also possible to use <code>[http://www.lispworks.com/documentation/HyperSpec/Body/f_map_in.htm map-into]</code>, the destructive map operation, to do this since it may take zero input sequences; this method can produce any sequence type, such as a vector (array) rather than a list, and takes a function rather than a form to specify the thing created:
 
<langsyntaxhighlight lang="lisp">(map-into (make-list n) #'make-the-distinct-thing)
(map-into (make-array n) #'make-the-distinct-thing)</langsyntaxhighlight>
 
=={{header|D}}==
For reference types (classes):
<langsyntaxhighlight lang="d">auto fooArray = new Foo[n];
foreach (ref item; fooArray)
item = new Foo();
</syntaxhighlight>
</lang>
 
For value types:
<langsyntaxhighlight lang="d">auto barArray = new Bar[n];
barArray[] = initializerValue;</langsyntaxhighlight>
 
=={{header|Delphi}}==
 
Same object accessed multiple times (bad)
<syntaxhighlight lang="delphi">var
<lang Delphi>var
i: Integer;
lObject: TMyObject;
Line 355 ⟶ 431:
for i := 1 to 10 do
lList.Add(lObject);
// ...</langsyntaxhighlight>
 
Distinct objects (good)
<syntaxhighlight lang="delphi">var
<lang Delphi>var
i: Integer;
lList: TObjectList<TMyObject>;
Line 365 ⟶ 441:
for i := 1 to 10 do
lList.Add(TMyObject.Create);
// ...</langsyntaxhighlight>
 
=={{header|E}}==
Line 371 ⟶ 447:
[[Category:E examples needing attention]] E needs development of better map/filter/stream facilities. The easiest way to do this so far is with the accumulator syntax, which is officially experimental because we're not satisfied with it as yet.
 
<langsyntaxhighlight lang="e">pragma.enable("accumulator")
...
 
accum [] for _ in 1..n { _.with(makeWhatever()) }</langsyntaxhighlight>
 
=={{header|EchoLisp}}==
<langsyntaxhighlight lang="scheme">
;; wrong - make-vector is evaluated one time - same vector
 
Line 393 ⟶ 469:
 
L → (#(0 🔵 0 0) #(0 0 0 0) #(0 0 0 0)) ;; OK
</syntaxhighlight>
</lang>
=={{header|Elena}}==
<langsyntaxhighlight lang="elena">import system'routines;
import extensions;
 
Line 402 ⟶ 478:
// create a list of disting object
fill(n)
= RangeEnumerator.new(1,n).selectBy::(x => new Foo()).toArray();
 
// testing
Line 408 ⟶ 484:
{
var foos := fill(10);
}</langsyntaxhighlight>
 
=={{header|Elixir}}==
<langsyntaxhighlight lang="elixir">randoms = for _ <- 1..10, do: :rand.uniform(1000)</langsyntaxhighlight>
 
=={{header|Erlang}}==
Line 421 ⟶ 497:
=={{header|F_Sharp|F#}}==
The wrong way:
<langsyntaxhighlight lang="fsharp">>List.replicate 3 (System.Guid.NewGuid());;
 
val it : Guid list =
[485632d7-1fd6-4d9e-8910-7949d7b2b485; 485632d7-1fd6-4d9e-8910-7949d7b2b485;
485632d7-1fd6-4d9e-8910-7949d7b2b485]</langsyntaxhighlight>
 
The right way:
<langsyntaxhighlight lang="fsharp">> List.init 3 (fun _ -> System.Guid.NewGuid());;
 
val it : Guid list =
[447acb0c-092e-4f85-9c3a-d369e4539dae; 5f41c04d-9bc0-4e96-8165-76b41fe8cd93;
1086400c-72ff-4763-9bb9-27e17bd4c7d2]</langsyntaxhighlight>
 
=={{header|Factor}}==
clone is the important word here to have distinct objects. This creates an array of arrays.
<langsyntaxhighlight lang="factor">1000 [ { 1 } clone ] replicate</langsyntaxhighlight>
 
=={{header|FreeBASIC}}==
The value of n can be determined at runtime, and the array is automatically initialized to zeroes.
<langsyntaxhighlight lang="freebasic">dim as foo array(1 to n)</langsyntaxhighlight>
 
=={{header|Forth}}==
Line 448 ⟶ 524:
Needs the FMS-SI (single inheritance) library code located here:
http://soton.mpeforth.com/flag/fms/index.html
<langsyntaxhighlight lang="forth">include FMS-SI.f
include FMS-SILib.f
 
Line 471 ⟶ 547:
list each: drop . 1301600
list each: drop . 1301600
</syntaxhighlight>
</lang>
 
=={{header|Fortran}}==
 
<langsyntaxhighlight lang="fortran">
program multiple
! Define a simple type
Line 518 ⟶ 594:
 
end program multiple
</syntaxhighlight>
</lang>
 
=={{header|Go}}==
Useful:
<langsyntaxhighlight lang="go">func nxm(n, m int) [][]int {
d2 := make([][]int, n)
for i := range d2 {
Line 528 ⟶ 604:
}
return d2
}</langsyntaxhighlight>
Probably not what the programmer wanted:
<langsyntaxhighlight lang="go">func nxm(n, m int) [][]int {
d1 := make([]int, m)
d2 := make([][]int, n)
Line 537 ⟶ 613:
}
return d2
}</langsyntaxhighlight>
 
=={{header|Groovy}}==
 
Correct Solution:
<langsyntaxhighlight lang="groovy">def createFoos1 = { n -> (0..<n).collect { new Foo() } }</langsyntaxhighlight>
 
Incorrect Solution:
<langsyntaxhighlight lang="groovy">// Following fails, creates n references to same object
def createFoos2 = {n -> [new Foo()] * n }</langsyntaxhighlight>
 
Test:
<langsyntaxhighlight lang="groovy">[createFoos1, createFoos2].each { createFoos ->
print "Objects distinct for n = "
(2..<20).each { n ->
Line 561 ⟶ 637:
}
println()
}</langsyntaxhighlight>
 
Output:
Line 578 ⟶ 654:
 
Below, we are assuming that <tt>makeTheDistinctThing</tt> is a monadic expression (i.e. it has type <code>m a</code> where <code>m</code> is some monad, like <code>IO</code> or <code>ST</code>), and we are talking about distinctness in the context of the monad. Otherwise, this task is pretty meaningless in Haskell, because Haskell is referentially transparent (so two values that are equal to the same expression are necessarily not distinct) and all values are immutable.
<syntaxhighlight lang ="haskell">replicateM n makeTheDistinctThing</langsyntaxhighlight>
in an appropriate do block. If it is distinguished by, say, a numeric label, one could write
<syntaxhighlight lang ="haskell">mapM makeTheDistinctThing [1..n]</langsyntaxhighlight>
 
An incorrect version:
<langsyntaxhighlight lang="haskell">do x <- makeTheDistinctThing
return (replicate n x)</langsyntaxhighlight>
 
=={{header|Icon}} and {{header|Unicon}}==
Line 590 ⟶ 666:
An incorrect approach uses, e.g., the list constructor procedure with an initial value:
 
<syntaxhighlight lang="icon">
<lang Icon>
items_wrong := list (10, [])
# prints '0' for size of each item
Line 598 ⟶ 674:
# now prints '1' for size of each item
every item := !items_wrong do write (*item)
</syntaxhighlight>
</lang>
 
A correct approach initialises each element separately:
 
<syntaxhighlight lang="icon">
<lang Icon>
items := list(10)
every i := 1 to 10 do items[i] := []
</syntaxhighlight>
</lang>
 
=={{header|J}}==
<syntaxhighlight lang J="j">i.</langsyntaxhighlight>
 
Example use:
 
<langsyntaxhighlight Jlang="j"> i. 4
0 1 2 3</langsyntaxhighlight>
 
J almost always uses pass-by-value, so this topic is not very relevant to J.
Line 622 ⟶ 698:
{{works with|Java|1.5+}}
simple array:
<langsyntaxhighlight lang="java">Foo[] foos = new Foo[n]; // all elements initialized to null
for (int i = 0; i < foos.length; i++)
foos[i] = new Foo();
Line 628 ⟶ 704:
// incorrect version:
Foo[] foos_WRONG = new Foo[n];
Arrays.fill(foos, new Foo()); // new Foo() only evaluated once</langsyntaxhighlight>
 
simple list:
<langsyntaxhighlight lang="java5">List<Foo> foos = new ArrayList<Foo>();
for (int i = 0; i < n; i++)
foos.add(new Foo());
 
// incorrect:
List<Foo> foos_WRONG = Collections.nCopies(n, new Foo()); // new Foo() only evaluated once</langsyntaxhighlight>
 
Generic version for class given at runtime:
 
It's not pretty but it gets the job done. The first method here is the one that does the work. The second method is a convenience method so that you can pass in a <tt>String</tt> of the class name. When using the second method, be sure to use the full class name (ex: "java.lang.String" for "String"). <tt>InstantiationException</tt>s will be thrown when instantiating classes that you would not normally be able to call <tt>new</tt> on (abstract classes, interfaces, etc.). Also, this only works on classes that have a no-argument constructor, since we are using <code>newInstance()</code>.
<langsyntaxhighlight lang="java5">public static <E> List<E> getNNewObjects(int n, Class<? extends E> c){
List<E> ans = new LinkedList<E>();
try {
Line 657 ⟶ 733:
throws ClassNotFoundException{
return getNNewObjects(n, Class.forName(className));
}</langsyntaxhighlight>
 
=={{header|JavaScript}}==
Line 663 ⟶ 739:
===ES5===
 
<langsyntaxhighlight lang="javascript">var a = new Array(n);
for (var i = 0; i < n; i++)
a[i] = new Foo();</langsyntaxhighlight>
 
 
===ES6===
 
<langsyntaxhighlight JavaScriptlang="javascript">(n => {
 
let nObjects = n => Array.from({
Line 683 ⟶ 759:
return nObjects(6);
 
})(6);</langsyntaxhighlight>
 
 
{{Out}}
<langsyntaxhighlight JavaScriptlang="javascript">[{"index":0}, {"index":1}, {"index":2}, {"index":3},
{"index":4}, {"index":5}, {"index":6}]</langsyntaxhighlight>
 
=={{header|jq}}==
jq does not have mutable data types, and therefore in the context of jq, the given task is probably of little interest. However, it is possible to fulfill the task requirements for jq types other than "null" and "boolean":<langsyntaxhighlight lang="jq">
def Array(atype; n):
if atype == "number" then [ range(0;n) ]
Line 710 ⟶ 786:
# Example:
 
Array("object"; 4)</langsyntaxhighlight>
 
=={{header|Julia}}==
A potential mistake would be writing:
<syntaxhighlight lang="julia">
<lang Julia>
foo() = rand() # repeated calls change the result with each call
repeat([foo()], outer=5) # but this only calls foo() once, clones that first value
</syntaxhighlight>
</lang>
If the effect of calling foo() with every iteration is desired, better to use:
<syntaxhighlight lang="julia">
<lang Julia>
[foo() for i in 1:5] # Code this to call the function within each iteration
</syntaxhighlight>
</lang>
 
=={{header|Kotlin}}==
<langsyntaxhighlight lang="scala">// version 1.1.2
 
class Foo {
Line 749 ⟶ 825:
val fooList2 = List(n) { f }
for (foo in fooList2) println(foo.id)
}</langsyntaxhighlight>
 
{{out}}
Line 765 ⟶ 841:
We construct an array of the appropriate length and then replace each element with a new object.
 
<langsyntaxhighlight lang="latitude">arr := n times to (Array) map { Object clone. }.</langsyntaxhighlight>
 
We can verify that these are in fact distinct objects by checking their ID.
 
<langsyntaxhighlight lang="latitude">;; Will print 10 distinct, arbitrary numbers.
arr visit {
Kernel id printObject.
}.</langsyntaxhighlight>
 
=={{header|Logtalk}}==
Using prototypes, we first dynamically create a protocol to declare a predicate and then create ten prototypes implementing that protocol, which one with a different definition for the predicate:
<langsyntaxhighlight lang="logtalk">
| ?- create_protocol(statep, [], [public(state/1)]),
findall(
Line 785 ⟶ 861:
).
Ids = [o1, o2, o3, o4, o5, o6, o7, o8, o9, o10].
</syntaxhighlight>
</lang>
Using classes, we first dynamically create a class (that is its own metaclass) to declare a predicate (and define a default value for it) and then create ten instances of the class, which one with a different definition for the predicate:
<langsyntaxhighlight lang="logtalk">
| ?- create_object(state, [instantiates(state)], [public(state/1)], [state(0)]),
findall(
Line 796 ⟶ 872:
).
Ids = [o1, o2, o3, o4, o5, o6, o7, o8, o9, o10].
</syntaxhighlight>
</lang>
 
=={{header|Lua}}==
<langsyntaxhighlight Lualang="lua">-- This concept is relevant to tables in Lua
local table1 = {1,2,3}
 
Line 815 ⟶ 891:
-- Now we can create a table of independent copies of table1
local copyTab = {}
for i = 1, 10 do copyTab[i] = copy(table1) end</langsyntaxhighlight>
 
=={{header|M2000 Interpreter}}==
<syntaxhighlight lang="m2000 interpreter">
<lang M2000 Interpreter>
Module CheckIt {
Form 60, 40
Line 860 ⟶ 936:
}
Checkit
</syntaxhighlight>
</lang>
 
=={{header|Mathematica}}/{{header|Wolfram Language}}==
The mistake is often written as:
<langsyntaxhighlight Mathematicalang="mathematica">{x, x, x, x} /. x -> Random[]</langsyntaxhighlight>
 
Here Random[] can be any expression that returns a new value which is incorrect since Random[] is only evaluated once. e.g.
Line 871 ⟶ 947:
A correct version is:
 
<langsyntaxhighlight Mathematicalang="mathematica">{x, x, x, x} /. x :> Random[]</langsyntaxhighlight>
which evaluates Random[] each time e.g.
Line 877 ⟶ 953:
 
=={{header|Maxima}}==
<langsyntaxhighlight lang="maxima">a: [1, 2]$
 
b: makelist(copy(a), 3);
Line 885 ⟶ 961:
 
b;
[[1,1000],[1,2],[1,2]]</langsyntaxhighlight>
 
=={{header|Modula-3}}==
Similar to the [[Ada]] version above:
<langsyntaxhighlight lang="modula3">VAR a: ARRAY[1..N] OF T</langsyntaxhighlight>
This creates an array of distinct elements of type <code>T</code>. A type may specify a default value for its fields, so long as the values are compile-time constants. Similarly, an array can initialize its entries to multiple different values, also compile-time constants. Naturally, a program may initialize this data at run-time using a <code>FOR</code> loop.
 
Line 895 ⟶ 971:
 
The example program below demonstrates each of these methods, including the mistaken way, so is a bit long.
<langsyntaxhighlight lang="modula3">MODULE DistinctObjects EXPORTS Main;
 
IMPORT IO, Random;
Line 950 ⟶ 1,026:
IO.PutChar('\n');
 
END DistinctObjects.</langsyntaxhighlight>
{{out}}
Each line interleaves the initial values of <code>a</code> and <code>b</code>. The first one has default values; the second replaces the values of <code>a</code> with random, "re-initialized" integers. Only <code>a[3]</code> starts with the default value for <code>T</code>; see the seventh number in the first line. On the other hand, the modification of "one" element of <code>c</code> actually modifies every element, precisely because it is a reference and not an object.
Line 961 ⟶ 1,037:
 
Incorrect, same object n times:
<langsyntaxhighlight NGSlang="ngs">{ [foo()] * n }</langsyntaxhighlight>
 
Correct:
<syntaxhighlight lang NGS="ngs">{ foo * n }</langsyntaxhighlight>
 
=={{header|Nim}}==
Line 971 ⟶ 1,047:
We give some examples with sequences of sequences and sequences of references:
 
<langsyntaxhighlight Nimlang="nim">import sequtils, strutils
 
# Creating a sequence containing sequences of integers.
Line 1,000 ⟶ 1,076:
echo "s4 contains references to ", s4.mapIt(it[]).join(", ") # 1, 1, 1, 1, 1
s4[0][] = 2
echo "s4 contains references to ", s4.mapIt(it[]).join(", ") # 2, 2, 2, 2, 2</langsyntaxhighlight>
 
=={{header|OCaml}}==
Line 1,006 ⟶ 1,082:
 
Incorrect:
<langsyntaxhighlight lang="ocaml">Array.make n (new foo);;
(* here (new foo) can be any expression that returns a new object,
record, array, or string *)</langsyntaxhighlight>
which is incorrect since <code>new foo</code> is only evaluated once. A correct version is:
<langsyntaxhighlight lang="ocaml">Array.init n (fun _ -> new foo);;</langsyntaxhighlight>
 
=={{header|Oforth}}==
Line 1,016 ⟶ 1,092:
The right way : the block sent as parameter is performed n times :
 
<langsyntaxhighlight Oforthlang="oforth">ListBuffer init(10, #[ Float rand ]) println</langsyntaxhighlight>
 
{{out}}
Line 1,027 ⟶ 1,103:
The "wrong" way : the same value is stored n times into the list buffer
 
<langsyntaxhighlight Oforthlang="oforth">ListBuffer initValue(10, Float rand) println</langsyntaxhighlight>
 
{{out}}
Line 1,037 ⟶ 1,113:
 
=={{header|ooRexx}}==
<langsyntaxhighlight ooRexxlang="oorexx">-- get an array of directory objects
array = fillArrayWith(3, .directory)
say "each object will have a different identityHash"
Line 1,055 ⟶ 1,131:
end
 
return array</langsyntaxhighlight>
{{out}}
<pre>each object will have a different identityHash
Line 1,065 ⟶ 1,141:
=={{header|Oz}}==
With lists, it is difficult to do wrong.
<langsyntaxhighlight lang="oz">declare
Xs = {MakeList 5} %% a list of 5 unbound variables
in
{ForAll Xs OS.rand} %% fill it with random numbers (CORRECT)
{Show Xs}</langsyntaxhighlight>
 
With arrays on the other hand, it is easy to get wrong:
<langsyntaxhighlight lang="oz">declare
Arr = {Array.new 0 10 {OS.rand}} %% WRONG: contains ten times the same number
in
Line 1,078 ⟶ 1,154:
for I in {Array.low Arr}..{Array.high Arr} do
Arr.I := {OS.rand}
end</langsyntaxhighlight>
 
=={{header|Pascal}}==
Line 1,085 ⟶ 1,161:
=={{header|Perl}}==
incorrect:
<langsyntaxhighlight lang="perl">(Foo->new) x $n
# here Foo->new can be any expression that returns a reference representing
# a new object</langsyntaxhighlight>
which is incorrect since <code>Foo->new</code> is only evaluated once.
 
A correct version is:
<langsyntaxhighlight lang="perl">map { Foo->new } 1 .. $n;</langsyntaxhighlight>
which evaluates <tt>Foo->new</tt> <var>$n</var> times and collects each result in a list.
 
=={{header|Phix}}==
Phix uses shared reference counts with copy-on-write semantics. Creating n references to the same mutable object is in fact the norm,
but does not cause any of the issues implicitly feared in the task description. In fact, apart from dictionaries and classes as noted below, it is not possible to create shared references such that when one is updated they all are, instead store an index to another table that stores the object, rather than the object itself. Also, apart from low-level trickery and interfacing to shared libraries, there are no pointers to normal hll objects. Sequences need not be homogeneous, they can contain any type-mix of elements.
 
such that when one is updated they all are, instead store an index to another table that stores the object, rather than the object itself. Also, apart from low-level trickery and interfacing to shared libraries, there are no pointers to normal hll objects. Sequences need not be homogeneous, they can contain any type-mix of elements.
However, JavaScript uses pass-by-sharing semantics, so if (and only if) we specify "with javascript_semantics" (or just "with js" for short) the last line triggers a "p2js violation" error on desktop/Phix, indicating it must be changed (as shown).
<lang Phix>sequence s = repeat("x",3*rand(3))
<!--<syntaxhighlight lang="phix">(phixonline)-->
?s
<span style="color: #008080;">with</span> <span style="color: #008080;">javascript_semantics</span>
s[rand(length(s))] = 5
<span style="color: #004080;">sequence</span> <span style="color: #000000;">s</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">repeat</span><span style="color: #0000FF;">(</span><span style="color: #008000;">"x"</span><span style="color: #0000FF;">,</span><span style="color: #000000;">6</span><span style="color: #0000FF;">)</span> <span style="color: #0000FF;">?</span><span style="color: #000000;">s</span>
?s
<span style="color: #000000;">s</span><span style="color: #0000FF;">[$]</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">5</span> <span style="color: #0000FF;">?</span><span style="color: #000000;">s</span>
s[rand(length(s))] &= 'y'
<span style="color: #000000;">s</span><span style="color: #0000FF;">[</span><span style="color: #000000;">1</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">&=</span> <span style="color: #008000;">'y'</span> <span style="color: #0000FF;">?</span><span style="color: #000000;">s</span>
?s
<span style="color: #000080;font-style:italic;">-- s[2] = s ?s</span>
s[rand(length(s))] = s
<span style="color: #000000;">s</span><span style="color: #0000FF;">[</span><span style="color: #000000;">2</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">deep_copy</span><span style="color: #0000FF;">(</span><span style="color: #000000;">s</span><span style="color: #0000FF;">)</span> <span style="color: #0000FF;">?</span><span style="color: #000000;">s</span>
?s</lang>
<!--</syntaxhighlight>-->
{{out}}
<pre>
Line 1,113 ⟶ 1,190:
{"xy",{"xy","x","x","x","x",5},"x","x","x",5}
</pre>
Note that the last statement did not create a circular structure, something that is not possible in Phix, except (perhaps) via index-emulation.<br>
I suppose it is possible that someone could write
<!--<syntaxhighlight lang="phix">(phixonline)-->
<lang Phix>sequence s = repeat(my_func(),5)</lang>
<span style="color: #004080;">sequence</span> <span style="color: #000000;">s</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">repeat</span><span style="color: #0000FF;">(</span><span style="color: #000000;">my_func</span><span style="color: #0000FF;">(),</span><span style="color: #000000;">5</span><span style="color: #0000FF;">)</span>
<!--</syntaxhighlight>-->
and expect my_func() to be invoked 5 times, but for that you need a loop
<!--<syntaxhighlight lang="phix">(phixonline)-->
<lang Phix>sequence s = repeat(0,5)
<span style="color: #004080;">sequence</span> <span style="color: #000000;">s</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">repeat</span><span style="color: #0000FF;">(</span><span style="color: #000000;">0</span><span style="color: #0000FF;">,</span><span style="color: #000000;">5</span><span style="color: #0000FF;">)</span>
for i=1 to length(s) do
<span style="color: #008080;">for</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span> <span style="color: #008080;">to</span> <span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">s</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">do</span>
s[i] = my_func()
<span style="color: #000000;">s</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">my_func</span><span style="color: #0000FF;">()</span>
end for</lang>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<!--</syntaxhighlight>-->
There are in fact two "reference" types in phix: dictionaries and classes, which are created using the function calls new_dict() and new() respectively.<br>
In the same manner as above if you want five distinct dictionaries or classes, you must invoke new_dict()/new() five times.
 
=={{header|PicoLisp}}==
Create 5 distinct (empty) objects:
<langsyntaxhighlight PicoLisplang="picolisp">: (make (do 5 (link (new))))
-> ($384717187 $384717189 $384717191 $384717193 $384717195)</langsyntaxhighlight>
Create 5 anonymous symbols with the values 1 .. 5:
<langsyntaxhighlight PicoLisplang="picolisp">: (mapcar box (range 1 5))
-> ($384721107 $384721109 $384721111 $384721113 $384721115)
: (val (car @))
-> 1
: (val (cadr @@))
-> 2</langsyntaxhighlight>
 
=={{header|PowerShell}}==
Do some randomization that could easily return three equal values (but each value is a separate value in the array):
<syntaxhighlight lang="powershell">
<lang PowerShell>
1..3 | ForEach-Object {((Get-Date -Hour ($_ + (1..4 | Get-Random))).AddDays($_ + (1..4 | Get-Random)))} |
Select-Object -Unique |
ForEach-Object {$_.ToString()}
</syntaxhighlight>
</lang>
{{Out}}
<pre>
Line 1,148 ⟶ 1,231:
</pre>
Run the same commands a few times and the <code>Select-Object -Unique</code> command filters equal (but separate values):
<syntaxhighlight lang="powershell">
<lang PowerShell>
1..3 | ForEach-Object {((Get-Date -Hour ($_ + (1..4 | Get-Random))).AddDays($_ + (1..4 | Get-Random)))} |
Select-Object -Unique |
ForEach-Object {$_.ToString()}
</syntaxhighlight>
</lang>
{{Out}}
<pre>
Line 1,160 ⟶ 1,243:
 
=={{header|PureBasic}}==
<langsyntaxhighlight PureBasiclang="purebasic">n=Random(50)+25
Dim A.i(n)
; Creates a Array of n [25-75] elements depending on the outcome of Random().
Line 1,184 ⟶ 1,267:
Next
; Verify by sending each value of A() via *PointersToA()
; to the debugger's output.</langsyntaxhighlight>
 
=={{header|Python}}==
The mistake is often written as:
<langsyntaxhighlight lang="python">[Foo()] * n # here Foo() can be any expression that returns a new object</langsyntaxhighlight>
which is incorrect since <tt>Foo()</tt> is only evaluated once. A common correct version is:
<langsyntaxhighlight lang="python">[Foo() for i in range(n)]</langsyntaxhighlight>
which evaluates <tt>Foo()</tt> <var>n</var> times and collects each result in a list. This last form is also discussed [[Two-dimensional array (runtime)#Python|here]], on the correct construction of a two dimensional array.
 
=={{header|R}}==
The mistake is often written as:
<langsyntaxhighlight lang="r">rep(foo(), n) # foo() is any code returning a value</langsyntaxhighlight>
A common correct version is:
<syntaxhighlight lang ="r">replicate(n, foo())</langsyntaxhighlight>
which evaluates foo() n times and collects each result in a list. (Using simplify=TRUE lets the function return an array, where possible.)
 
=={{header|Racket}}==
 
<langsyntaxhighlight lang="racket">
#lang racket
 
Line 1,210 ⟶ 1,293:
;; a list of 10 distinct vectors
(build-list 10 (λ (n) (make-vector 10 0)))
</syntaxhighlight>
</lang>
 
=={{header|Raku}}==
Line 1,217 ⟶ 1,300:
Unlike in Perl 5, the list repetition operator evaluates the left argument thunk each time, so
 
<syntaxhighlight lang="raku" perl6line>my @a = Foo.new xx $n;</langsyntaxhighlight>
 
produces <code>$n</code> distinct objects.
Line 1,224 ⟶ 1,307:
=={{header|REXX}}==
This entry is modeled after the '''Erlang''' entry.
<langsyntaxhighlight lang="rexx">/*REXX program does a list comprehension that will create N random integers, all unique.*/
parse arg n lim . /*obtain optional argument from the CL.*/
if n=='' | n=="," then n= 1000 /*Not specified? Then use the default.*/
Line 1,240 ⟶ 1,323:
end /*j*/
 
say words(randoms) ' unique numbers generated.' /*stick a fork in it, we're all done. */</langsyntaxhighlight>
<br><br>
 
=={{header|RPL}}==
{{works with|HP|49}}
To create a list of n references to the same object:
<span style="color:blue">FOO</span> n DUPN →LIST
To create a list of n distinct objects:
« <span style="color:blue">FOO</span> » 'X' 1 n 1 SEQ
The FOO function can access the rank at which the object will be stored by reading the X variable.
 
=={{header|Ruby}}==
The mistake is often written as one of these:
<langsyntaxhighlight lang="ruby">[Foo.new] * n # here Foo.new can be any expression that returns a new object
Array.new(n, Foo.new)</langsyntaxhighlight>
which are incorrect since <code>Foo.new</code> is only evaluated once, and thus you now have <var>n</var> references to the ''same'' object. A common correct version is:
<langsyntaxhighlight lang="ruby">Array.new(n) { Foo.new }</langsyntaxhighlight>
which evaluates <code>Foo.new</code> <var>n</var> times and collects each result in an Array. This last form is also discussed [[Two-dimensional array (runtime)#Ruby|here]], on the correct construction of a two dimensional array.
 
=={{header|Rust}}==
<langsyntaxhighlight Rustlang="rust">use std::rc::Rc;
use std::cell::RefCell;
 
Line 1,272 ⟶ 1,363:
v[0].borrow_mut().push('a');
println!("{:?}", v);
}</langsyntaxhighlight>
{{out}}
<pre>["a", "", ""]
Line 1,282 ⟶ 1,373:
if created with the same constructor arguments.
 
<langsyntaxhighlight lang="scala">for (i <- (0 until n)) yield new Foo()</langsyntaxhighlight>
 
=={{header|Scheme}}==
Line 1,313 ⟶ 1,404:
The [http://seed7.sourceforge.net/libraries/array.htm#%28in_integer%29times%28in_baseType%29 times] operator creates a new array value with a specified size.
Finally multiple distinct objects are assigned to the array elements.
<langsyntaxhighlight lang="seed7">$ include "seed7_05.s7i";
 
const func array file: openFiles (in array string: fileNames) is func
Line 1,332 ⟶ 1,423:
begin
files := openFiles([] ("abc.txt", "def.txt", "ghi.txt", "jkl.txt"));
end func;</langsyntaxhighlight>
 
=={{header|Sidef}}==
<langsyntaxhighlight lang="ruby">[Foo.new] * n; # incorrect (only one distinct object is created)</langsyntaxhighlight>
<langsyntaxhighlight lang="ruby">n.of {Foo.new}; # correct</langsyntaxhighlight>
 
=={{header|Smalltalk}}==
 
<langsyntaxhighlight lang="smalltalk">|c|
"Create an ordered collection that will grow while we add elements"
c := OrderedCollection new.
Line 1,352 ⟶ 1,443:
1 to: 9 do: [ :i | (c at: i) at: 4 put: i ].
"show it"
c do: [ :e | e printNl ].</langsyntaxhighlight>
 
=={{header|Swift}}==
<langsyntaxhighlight lang="swift">class Foo { }
 
var foos = [Foo]()
Line 1,363 ⟶ 1,454:
 
// incorrect version:
var foos_WRONG = [Foo](count: n, repeatedValue: Foo()) // Foo() only evaluated once</langsyntaxhighlight>
 
=={{header|Tcl}}==
Line 1,369 ⟶ 1,460:
 
{{works with|Tcl|8.6}} or {{libheader|TclOO}}
<langsyntaxhighlight Tcllang="tcl">package require TclOO
 
# The class that we want to make unique instances of
Line 1,381 ⟶ 1,472:
for {set i 0} {$i<$n} {incr i} {
lappend theList [$theClass new]
}</langsyntaxhighlight>
 
=={{header|Wren}}==
<langsyntaxhighlight ecmascriptlang="wren">class Foo {
static init() { __count = 0 } // set object counter to zero
 
Line 1,408 ⟶ 1,499:
// Show they're the same by printing out their object numbers
foos2.each { |f| System.write("%(f.number) ") }
System.print()</langsyntaxhighlight>
 
{{out}}
Line 1,418 ⟶ 1,509:
 
=={{header|XPL0}}==
<langsyntaxhighlight XPL0lang="xpl0">code Reserve=3, IntIn=10;
char A; int N, I;
[N:= IntIn(8); \get number of items from command line
Line 1,424 ⟶ 1,515:
for I:= 0 to N-1 do A(I):= I*3; \initialize items with different values
for I:= 0 to N-1 do A:= I*3; \error: "references to the same mutable object"
]</langsyntaxhighlight>
 
=={{header|Yabasic}}==
<langsyntaxhighlight Yabasiclang="yabasic">sub test()
print "Random number: " + str$(ran(100))
end sub
Line 1,446 ⟶ 1,537:
for i = 1 to n
execute(func$(i))
next i</langsyntaxhighlight>
 
 
=={{header|Z80 Assembly}}==
Variables in assembly languages don't work the same as they do in high-level languages, so the "n references to the same object mistake" isn't really a thing in your typical assembly language. This is as simple as creating an array of ascending values. Being an 8-bit computer, you're limited in how big <i>n</i> can be before the values repeat.
 
<syntaxhighlight lang="z80">ld hl,RamArea ;a label for an arbitrary section of RAM
ld a,(foo) ;load the value of some memory location. "foo" is the label of a 16-bit address.
ld b,a ;use this as a loop counter.
xor a ;set A to zero
 
loop: ;creates a list of ascending values starting at zero. Each is stored at a different memory location
ld (hl),a ;store A in ram
inc a ;ensures each value is different.
inc hl ;next element of list
djnz loop</syntaxhighlight>
 
=={{header|zkl}}==
The pump and partial application methods are useful tools for creating initialized lists.
<langsyntaxhighlight lang="zkl">n:=3;
n.pump(List) //-->L(0,1,2)
 
Line 1,467 ⟶ 1,573:
class C{ var n; fcn init(x){n=x} }
n.pump(List,C) //--> L(C,C,C)
n.pump(List,C).apply("n") //-->L(0,1,2) ie all classes distinct</langsyntaxhighlight>
 
 
Anonymous user