Lucas-Lehmer test: Difference between revisions

From Rosetta Code
Content added Content deleted
(→‎{{header|Perl}}: add Perl 6 entry)
Line 611: Line 611:
}
}
last if $count >= $upb_count;
last if $count >= $upb_count;
}</lang>
=={{header|Perl 6}}==
{{trans|Perl 5}}

{{works with|Rakudo Star|2010.08}}

Precision limited to 18 because rakudo does not yet implement arbitrary precision Int as specced.
<lang perl6>multi is_prime(Int $p where ($p <= 1)) { False }
multi is_prime(Int $p) { $p %% none(2,(3,5...sqrt($p))) }

multi is_mersenne_prime(2) { True }
multi is_mersenne_prime(Int $p) {
my $m_p = 2 ** $p - 1;
my $s = 4;
$s = ($s ** 2 - 2) % $m_p for 3 .. $p;
$s == 0;
}

my $precision = 18; # maximum requested number of decimal places of 2 ** MP-1
my $long_bits_width = $precision / log(2) * log(10);
my $max_prime = floor(($long_bits_width - 1)/2);
my $max_count = 45;

say " Finding Mersenne primes in M[2..$max_prime]:";

my $count = 0;
for 2 .. $max_prime -> $p {
if is_prime($p) && is_mersenne_prime($p) {
say "M$p";
last if ++$count >= $max_count;
}
}</lang>
}</lang>



Revision as of 01:34, 31 August 2010

Task
Lucas-Lehmer test
You are encouraged to solve this task according to the task description, using any language you may know.

Lucas-Lehmer Test: for a prime, the Mersenne number is prime if and only if divides where , and .

The following programs calculate all Mersenne primes up to the implementation's maximum precision, or the 47th Mersenne prime. (Which ever comes first).

Ada

<lang ada>with Ada.Text_Io; use Ada.Text_Io; with Ada.Integer_Text_Io; use Ada.Integer_Text_Io;

procedure Lucas_Lehmer_Test is

  type Ull is mod 2**64;
  function Mersenne(Item : Integer) return Boolean is
     S : Ull := 4;
     MP : Ull := 2**Item - 1;
  begin
     if Item = 2 then
        return True;
     else
        for I in 3..Item loop
           S := (S * S - 2) mod MP;
        end loop;
        return S = 0;
     end if;
  end Mersenne;
  Upper_Bound : constant Integer := 64;

begin

  Put_Line(" Mersenne primes:");
  for P in 2..Upper_Bound loop
     if Mersenne(P) then
        Put(" M");
        Put(Item => P, Width => 1);
     end if;
  end loop;

end Lucas_Lehmer_Test;</lang> Output:

Mersenne primes:
M2 M3 M5 M7 M13 M17 M19 M31

Agena

Because of the very large numbers computed, the mapm binding is used to calculate with arbitrary precision. <lang agena>readlib 'mapm';

mapm.xdigits(100);

mersenne := proc(p::number) is

  local s, m;
  s := 4;
  m := mapm.xnumber(2^p) - 1;
  if p = 2 then
     return true
  else
     for i from 3 to p do
        s := (mapm.xnumber(s)^2 - 2) % m
     od;
     return mapm.xtoNumber(s) = 0
  fi

end;

for i from 3 to 64 do

  if mersenne(i) then
     write('M' & i & ' ')
  fi

od;</lang> produces: <lang agena>M3 M5 M7 M13 M17 M19 M31</lang>

ALGOL 68

Works with: ALGOL 68 version Revision 1 - no extensions to language used
Works with: ALGOL 68G version Any - tested with release 1.18.0-9h.tiny

<lang algol68>PRAGMAT stack=1M precision=20000 PRAGMAT

PROC is prime = ( INT p )BOOL:

 IF p = 2 THEN TRUE
 ELIF p <= 1 OR p MOD 2 = 0 THEN FALSE
 ELSE
   BOOL prime := TRUE;
   FOR i FROM 3 BY 2 TO ENTIER sqrt(p)
     WHILE prime := p MOD i /= 0 DO SKIP OD;
   prime
 FI;

PROC is mersenne prime = ( INT p )BOOL:

 IF p = 2 THEN TRUE
 ELSE
   LONG LONG INT m p :=  LONG LONG 2 ** p - 1, s := 4;
   FROM 3 TO p DO
     s := (s ** 2 - 2) MOD m p
   OD;
   s = 0
 FI;

test:(

 INT upb prime = ( long long bits width - 1 ) OVER 2; # no unsigned #
 INT upb count = 45; # find 45 mprimes if INT has enough bits #
 printf(($" Finding Mersenne primes in M[2.."g(0)"]: "l$,upb prime));
 INT count:=0;
 FOR p FROM 2 TO upb prime WHILE
   IF is prime(p) THEN
     IF is mersenne prime(p) THEN
       printf (($" M"g(0)$,p));
       count +:= 1
     FI
   FI;
   count <= upb count
 DO SKIP OD

)</lang> Output:

Finding Mersenne primes in M[2..33252]: 
M2 M3 M5 M7 M13 M17 M19 M31 M61 M89 M107 M127 M521 M607 M1279 M2203 M2281 M3217 M4253 M4423 M9689 M9941 M11213 M19937 M21701 M23209

See also: http://www.xs4all.nl/~jmvdveer/mersenne.a68.html

C

Works with: gcc version 4.1.2 20070925 (Red Hat 4.1.2-27)
Works with: C99

Compiler options: gcc -std=c99 -lm Lucas-Lehmer_test.c -o Lucas-Lehmer_test
<lang c>#include <math.h>

  1. include <stdio.h>
  2. include <limits.h>
  3. pragma precision=log10l(ULLONG_MAX)/2

typedef enum { FALSE=0, TRUE=1 } BOOL;

BOOL is_prime( int p ){

 if( p == 2 ) return TRUE;
 else if( p <= 1 || p % 2 == 0 ) return FALSE;
 else {
   BOOL prime = TRUE;
   const int to = sqrt(p);
   int i;
   for(i = 3; i <= to; i+=2)  
     if (!(prime = p % i))break;
   return prime;
 }

}

BOOL is_mersenne_prime( int p ){

 if( p == 2 ) return TRUE;
 else {
   const long long unsigned m_p = ( 1LLU << p ) - 1;
   long long unsigned s = 4;
   int i;
   for (i = 3; i <= p; i++){
     s = (s * s - 2) % m_p;
   }
   return s == 0;
 }

}

int main(int argc, char **argv){

 const int upb = log2l(ULLONG_MAX)/2; 
 int p;
 printf(" Mersenne primes:\n");
 for( p = 2; p <= upb; p += 1 ){
   if( is_prime(p) && is_mersenne_prime(p) ){
     printf (" M%u",p);
   }
 }
 printf("\n");

}</lang>

Output:

Mersenne primes:
M2 M3 M5 M7 M13 M17 M19 M31

C++

Library: GMP

<lang cpp>#include <iostream>

  1. include <gmpxx.h>

mpz_class pow2(mpz_class exp); bool is_mersenne_prime(mpz_class p);

int main() {

       mpz_class maxcount(45);
       mpz_class found(0);
       mpz_class check(0);
       for( mpz_nextprime(check.get_mpz_t(), check.get_mpz_t());
            found < maxcount;
            mpz_nextprime(check.get_mpz_t(), check.get_mpz_t()))
       {
               //std::cout << "P" << check << " " << std::flush;
               if( is_mersenne_prime(check) )
               {
                       ++found;
                       std::cout << "M" << check << " " << std::flush;
               }
       }

}

bool is_mersenne_prime(mpz_class p) {

       if( 2 == p )
               return true;
       else
       {
               mpz_class div = pow2(p) - mpz_class(1);
               mpz_class s(4);
               mpz_class s(4);
               for( mpz_class i(3);
                        i <= p;
                        ++i )
               {
                       s =  (s * s - mpz_class(2)) % div ;
               }
               return ( s == mpz_class(0) );
       }

}

mpz_class pow2(mpz_class exp) {

       // Unfortunately, GMP doesn't have a left-shift method.
       // It also doesn't have a pow() equivalent that takes arbitrary-precision exponents.
       // So we have to do it the hard (and presumably slow) way.
       mpz_class ret(2);
       mpz_class ret(2);
       for(mpz_class i(1); i < exp; ++i)
               ret *= mpz_class(2);
               ret *= mpz_class(2);
       //std::cout << "pow2( " << exp << " ) = " << ret << std::endl;
       return ret; 

}</lang>

Output: (Incomplete; It takes a long time.)

M2 M3 M5 M7 M13 M17 M19 M31 M61 M89 M107 M127 M521 M607 M1279 M2203 M2281 M3217 M4253 M4423 M9689 M9941 M11213 M19937 M21701 M23209 M44497

Clojure

<lang lisp>(defn prime? [i]

 (cond (< i 4)           (>= i 2)
       (zero? (rem i 2)) false
 :else (not-any? #(zero? (rem i %)) (range 3 (inc (Math/sqrt i))))))))

(defn mersenne? [p] (or (= p 2)

 (let [mp   (dec (bit-shift-left 1 p))]
   (loop [n 3 s 4]
     (if (> n p)
       (zero? s)
       (recur (inc n) (rem (- (* s s) 2) mp)))))))

(filter mersenne? (filter prime? (iterate inc 1)))</lang> Output:

Infinite list of Mersenne primes:
(2 3 5 7 13 17 19 31 61 89 107 127 521 607 1279 2203 2281 3217 4253...

Erlang

<lang erlang>-module(mp). -export([main/0]).

main() -> [ io:format("M~p ", [P]) || P <- lists:seq(2,700), (P == 2) orelse (s((1 bsl P) - 1, P-1) == 0) ].

s(MP,1) -> 4 rem MP; s(MP,N) -> X=s(MP,N-1), (X*X - 2) rem MP.</lang>

In 3 seconds will print

M2 M3 M5 M7 M13 M17 M19 M31 M61 M89 M107 M127 M521 M607

Testing larger numbers (i.e. 5000) is possible but will take few minutes.

F#

Simple arbitrary-precision version: <lang fsharp>let rec s mp n =

 if n = 1 then 4I % mp else ((s mp (n - 1)) ** 2 - 2I) % mp

[ for p in 2..47 do

   if p = 2 || s ((1I <<< p) - 1I) (p - 1) = 0I then
     yield p ]</lang>

Fortran

Works with: Fortran version 90 and later

Only Mersenne number with prime exponent can be themselves prime but for the small numbers used in this example it was not worth the effort to include this check. As the size of the exponent increases this becomes more important. <lang fortran>PROGRAM LUCAS_LEHMER

 IMPLICIT NONE
 INTEGER, PARAMETER :: i64 = SELECTED_INT_KIND(18)
 INTEGER(i64) :: s, n
 INTEGER :: i, exponent
 
 DO exponent = 2, 31
    IF (exponent == 2) THEN
       s = 0
    ELSE
       s = 4
    END IF
    n = 2_i64**exponent - 1
    DO i = 1, exponent-2
       s = MOD(s*s - 2, n)
    END DO
    IF (s==0) WRITE(*,"(A,I0,A)") "M", exponent, " is PRIME"
 END DO

END PROGRAM LUCAS_LEHMER</lang>

Haskell

Works with: GHCi version 6.8.2
Works with: GHC version 6.8.2

<lang haskell>module Main

 where

main = printMersennes $ take 45 $ filter lucasLehmer $ sieve [2..]

s mp 1 = 4 `mod` mp s mp n = ((s mp $ n-1)^2-2) `mod` mp

lucasLehmer 2 = True lucasLehmer p = s (2^p-1) (p-1) == 0

printMersennes = mapM_ (\x -> putStrLn $ "M" ++ show x)</lang> It is pointed out on the Sieve of Eratosthenes page that the following "sieve" is inefficient. Nonetheless it takes very little time compared to the Lucas-Lehmer test itself. <lang haskell>sieve (p:xs) = p : sieve [x | x <- xs, x `mod` p > 0]</lang> It takes about 30 minutes to get up to:

M2 M3 M5 M7 M13 M17 M19 M31 M61 M89 M107 M127 M521 M607 M1279 M2203 M2281 M3217 M4253 M4423 M9689 M9941 M11213

HicEst

<lang HicEst>s = 0 DO exponent = 2, 31

 IF(exponent > 2) s = 4
 n = 2^exponent - 1
 DO i = 1, exponent-2
   s = MOD(s*s - 2, n)
 ENDDO
 IF(s == 0) WRITE(Messagebox) 'M', exponent, ' is prime;', n

ENDDO

END</lang>

J

See Primality Tests essay on the J wiki.

Java

We use arbitrary-precision integers in order to be able to test any arbitrary prime.

<lang java>import java.math.BigInteger; public class Mersenne {

   public static boolean isPrime(int p) {
       if (p == 2)
           return true;
       else if (p <= 1 || p % 2 == 0)
           return false;
       else {
           int to = (int)Math.sqrt(p);
           for (int i = 3; i <= to; i += 2)
               if (p % i == 0)
                   return false;
           return true;
       }
   }
   public static boolean isMersennePrime(int p) {
       if (p == 2)
           return true;
       else {
           BigInteger m_p = BigInteger.ONE.shiftLeft(p).subtract(BigInteger.ONE);
           BigInteger s = BigInteger.valueOf(4);
           for (int i = 3; i <= p; i++)
               s = s.multiply(s).subtract(BigInteger.valueOf(2)).mod(m_p);
           return s.equals(BigInteger.ZERO);
       }
   }
   // an arbitrary upper bound can be given as an argument
   public static void main(String[] args) {
       int upb;
       if (args.length == 0)
           upb = 500;
       else
           upb = Integer.parseInt(args[0]);
       System.out.println(" Finding Mersenne primes in M[2.." + upb + "]: ");
       for (int p = 3; p <= upb; p += 2)
           if (isPrime(p) && isMersennePrime(p))
               System.out.print(" M" + p);
       System.out.println();
   }

}</lang> Output (after about eight hours):

Finding Mersenne primes in M[2..2147483647]: 
M2 M3 M5 M7 M13 M17 M19 M31 M61 M89 M107 M127 M521 M607 M1279 M2203 M2281 M3217 M4253 M4423 M9689 M9941 M11213

Mathematica

This version is very speedy and is bounded. <lang Mathematica>Select[Table[M = 2^p - 1;

 For[i = 1; s = 4, i <= p - 2, i++, s = Mod[s^2 - 2, M]]; 
 If[s == 0, "M" <> ToString@p, p], {p, 
  Prime /@ Range[300]}], StringQ]

=> {M3, M5, M7, M13, M17, M19, M31, M61, M89, M107, M127, M521, M607, M1279}</lang>

This version is unbounded (and timed): <lang Mathematica>t = SessionTime[]; For[p = 2, True, p = NextPrime[p], M = 2^p - 1;

For[i = 1; s = 4, i <= p - 2, i++, s = Mod[s^2 - 2, M]]; 
If[s == 0, Print["M" <> ToString@p]]]

(SessionTime[] - t) {Seconds, Minutes/60, Hours/3600, Days/86400}</lang>

I'll see what this gets.

MATLAB

MATLAB suffers from a lack of an arbitrary precision math (bignums) library. It also doesn't have great support for 64-bit integer arithmetic...or at least MATLAB 2007 doesn't. So, the best precision we have is doubles; therefore, this script can only find up to M19 and no greater. <lang MATLAB>function [mNumber,mersennesPrime] = mersennePrimes()

   function isPrime = lucasLehmerTest(thePrime)
       
       llResidue = 4;
       mersennesPrime = (2^thePrime)-1;
      
       for i = ( 1:thePrime-2 )
           llResidue = mod( ((llResidue^2) - 2),mersennesPrime );        
       end         
      
       isPrime = (llResidue == 0);
      
   end
   
   %Because IEEE764 Double is the highest precision number we can
   %represent in MATLAB, the highest Mersenne Number we can test is 2^52.
   %In addition, because we have this cap, we can only test up to the
   %number 30 for Mersenne Primeness. When we input 31 into the
   %Lucas-Lehmer test, during the computation of the residue, the
   %algorithm multiplies two numbers together the result of which is
   %greater than 2^53. Because we require every digit to be significant,
   %this leads to an error. The Lucas-Lehmer test should say that M31 is a
   %Mersenne Prime, but because of the rounding error in calculating the
   %residues caused by floating-point arithmetic, it does not. So M30 is
   %the largest number we test.
   
   mNumber = (3:30);
   
   [isPrime] = arrayfun(@lucasLehmerTest,mNumber);
   
   mNumber = [2 mNumber(isPrime)];
   mersennesPrime = (2.^mNumber) - 1;
       

end</lang>

Ouput: <lang MATLAB>[mNumber,mersennesPrime] = mersennePrimes

mNumber =

    2     3     5     7    13    17    19


mersennesPrime =

          3           7          31         127        8191      131071      524287</lang>

Modula-3

Modula-3 uses L as the literal for LONGINT. <lang modula3>MODULE LucasLehmer EXPORTS Main;

IMPORT IO, Fmt, Long;

PROCEDURE Mersenne(p: CARDINAL): BOOLEAN =

 VAR 
   s := 4L;
   m := Long.Shift(1L, p) - 1L; (* 2^p - 1 *)
 BEGIN
   IF p = 2 THEN
     RETURN TRUE;
   ELSE
     FOR i := 3 TO p DO
       s := (s * s - 2L) MOD m;
     END;
     RETURN s = 0L;
   END;
 END Mersenne;

BEGIN

 FOR i := 2 TO 63 DO
   IF Mersenne(i) THEN
     IO.Put("M" & Fmt.Int(i) & " ");
   END;
 END;
 IO.Put("\n");

END LucasLehmer.</lang> Output:

M2 M3 M5 M7 M13 M17 M19 M31 

Oz

Oz's multiple precision number system use GMP core. <lang oz>%% compile : ozc -x <file.oz> functor import

 Application
 System

define

 fun {Arg Idx Default}
   Cmd = {Application.getArgs plain}
   Len = {Length Cmd}
 in
   if Len < Idx then 
     Default
   else 
     {StringToInt {Nth Cmd Idx}}
   end
 end
   
 fun {LLtest N} 
   Mp = {Pow 2 N} - 1
   fun {S K} X T
   in
     if K == 1 then 4 
     else
       T = {S K-1}
       X = T * T - 2 
       X mod Mp
     end 
   end
 in
   if N == 2 then
     true
   else
     {S N-1} == 0
   end
 end
 
 proc {FindLL X}
   fun {Sieve Ls}
     case Ls of nil then nil
     [] X|Xs then 
       fun {DIV M} M mod X \= 0  end
     in
       X|{Sieve {Filter Xs DIV}}
     end
   end
 in
   if {IsList X} then
     case X of nil then skip
     [] M|Ms then
       {System.printInfo "M"#M#" "}
       {FindLL Ms}
     end
   else
     {FindLL {Filter {Sieve 2|{List.number 3 X 2}} LLtest}}
   end
 end
 
 Num = {Arg 1 607}
 {FindLL Num}
 
 {Application.exit 0}

end</lang>

Perl

Perl's Math::BigInt core module is a class that implements arbitrary-precision integers.

Here we use the bigint pragma to transparently have number constants and operations be bigints: <lang perl>sub is_prime {

   my $p = shift;
   if ($p == 2) {
       return 1;
   } elsif ($p <= 1 || $p % 2 == 0) {
       return 0;
   } else {
       my $limit = sqrt($p);
       for (my $i = 3; $i <= $limit; $i += 2) {
           return 0 if $p % $i == 0;
       }
       return 1;
   }

}

sub is_mersenne_prime {

   use bigint;
   my $p = shift;
   if ($p == 2) {
       return 1;
   } else {
       my $m_p = 2 ** $p - 1;
       my $s = 4;
       
       foreach my $i (3 .. $p) {
           $s = ($s ** 2 - 2) % $m_p;
       }
       return $s == 0;
   }

}

my $precision = 20000; # maximum requested number of decimal places of 2 ** MP-1 # my $long_bits_width = $precision / log(2) * log(10); my $upb_prime = int(($long_bits_width - 1)/2); # no unsigned # my $upb_count = 45; # find 45 mprimes if int was given enough bits #

print " Finding Mersenne primes in M[2..$upb_prime]:\n";

my $count = 0; foreach my $p (2 .. $upb_prime) {

   if (is_prime($p) && is_mersenne_prime($p)) {
       print "M$p\n";
       $count++;
   }
   last if $count >= $upb_count;

}</lang>

Perl 6

Translation of: Perl 5
Works with: Rakudo Star version 2010.08

Precision limited to 18 because rakudo does not yet implement arbitrary precision Int as specced. <lang perl6>multi is_prime(Int $p where ($p <= 1)) { False } multi is_prime(Int $p) { $p %% none(2,(3,5...sqrt($p))) }

multi is_mersenne_prime(2) { True } multi is_mersenne_prime(Int $p) {

   my $m_p = 2 ** $p - 1;
   my $s = 4;
   $s = ($s ** 2 - 2) % $m_p for 3 .. $p;
   $s == 0;

}

my $precision = 18; # maximum requested number of decimal places of 2 ** MP-1 my $long_bits_width = $precision / log(2) * log(10); my $max_prime = floor(($long_bits_width - 1)/2); my $max_count = 45;

say " Finding Mersenne primes in M[2..$max_prime]:";

my $count = 0; for 2 .. $max_prime -> $p {

   if is_prime($p) && is_mersenne_prime($p) {
       say "M$p";
       last if ++$count >= $max_count;
   }

}</lang>

PicoLisp

<lang PicoLisp>(de prime? (N)

  (or
     (= N 2)
     (and
        (> N 1)
        (bit? 1 N)
        (for (D 3  T  (+ D 2))
           (T (> D (sqrt N)) T)
           (T (=0 (% N D)) NIL) ) ) ) )

(de mersenne? (P)

  (or
     (= P 2)
     (let (MP (dec (>> (- P) 1))  S 4)
        (do (- P 2)
           (setq S (% (- (* S S) 2) MP)) )
        (=0 S) ) ) )</lang>

Output:

: (for N 10000
   (and (prime? N) (mersenne? N) (println N)) )
2
3
5
7
13
17
19
31
61
89
107
127
521
607
1279
2203
2281
3217
4253
4423
9689
9941

Pop11

Checking large numbers takes a lot of time so we limit p to be smaller than 1000.

<lang pop11>define Lucas_Lehmer_Test(p);

  lvars mp = 2**p - 1, sn = 4, i;
  for i from 2 to p - 1 do
      (sn*sn - 2) rem mp -> sn;
  endfor;
  sn = 0;

enddefine;

lvars p = 3; printf('M2', '%p\n'); while p < 1000 do

  if Lucas_Lehmer_Test(p) then
      printf('M', '%p');
      printf(p, '%p\n');
  endif;
  p + 2 -> p;

endwhile;</lang>

The output (obtained in few seconds) is: <lang pop11>M2 M3 M5 M7 M13 M17 M19 M31 M61 M89 M107 M127 M521 M607</lang>

PureBasic

PureBasic has no large integer support. Calculations are limited to the range of a signed quad integer type. <lang PureBasic>Procedure Lucas_Lehmer_Test(p)

 Protected mp.q = (1 << p) - 1, sn.q = 4, i
 For i = 3 To p
   sn = (sn * sn - 2) % mp
 Next
 If sn = 0
   ProcedureReturn #True
 EndIf
 ProcedureReturn #False

EndProcedure

  1. upperBound = SizeOf(Quad) * 8 - 1 ;equivalent to significant bits in a signed quad integer

If OpenConsole()

 Define p = 3
 PrintN("M2")
 While p <= #upperBound
   If Lucas_Lehmer_Test(p)
     PrintN("M" + Str(p))
   EndIf
   p + 2
 Wend
 
 Print(#CRLF$ + #CRLF$ + "Press ENTER to exit"): Input()
 CloseConsole()

EndIf</lang> Sample output:

M2
M3
M5
M7
M13
M17
M19
M31

Python

<lang python>from sys import stdout from math import sqrt, log

def is_prime ( p ):

 if p == 2: return True # Lucas-Lehmer test only works on odd primes
 elif p <= 1 or p % 2 == 0: return False
 else:
   for i in range(3, int(sqrt(p))+1, 2 ): 
     if p % i == 0: return False
   return True

def is_mersenne_prime ( p ):

 if p == 2:
   return True
 else:
   m_p = ( 1 << p ) - 1
   s = 4
   for i in range(3, p+1): 
     s = (s ** 2 - 2) % m_p
   return s == 0

precision = 20000 # maximum requested number of decimal places of 2 ** MP-1 # long_bits_width = precision / log(2) * log(10) upb_prime = int( long_bits_width - 1 ) / 2 # no unsigned # upb_count = 45 # find 45 mprimes if int was given enough bits #

print (" Finding Mersenne primes in M[2..%d]:"%upb_prime)

count=0 for p in range(2, upb_prime+1):

 if is_prime(p) and is_mersenne_prime(p):
   print("M%d"%p),
   stdout.flush()
   count += 1
 if count >= upb_count: break

print</lang>

Output:

 Finding Mersenne primes in M[2..33218]: 
 M2 M3 M5 M7 M13 M17 M19 M31 M61 M89 M107 M127 M521 M607 M1279 M2203 M2281 M3217 M4253 M4423 M9689 M9941 M11213 M19937 M21701 M23209

Ruby

<lang ruby>def is_prime ( p )

 if p == 2
   return true
 elsif p <= 1 || p % 2 == 0
   return false
 else
   (3 .. Math.sqrt(p)).step(2) do |i|
     if p % i == 0
       return false
     end
   end
   return true
 end

end

def is_mersenne_prime ( p )

 if p == 2
   return true
 else
   m_p = ( 1 << p ) - 1
   s = 4
   (p-2).times do
     s = (s ** 2 - 2) % m_p
   end
   return s == 0
 end

end

precision = 20000 # maximum requested number of decimal places of 2 ** MP-1 # long_bits_width = precision / Math.log(2) * Math.log(10) upb_prime = (long_bits_width - 1).to_i / 2 # no unsigned # upb_count = 45 # find 45 mprimes if int was given enough bits #

puts " Finding Mersenne primes in M[2..%d]:"%upb_prime

count = 0 for p in 2..upb_prime

 if is_prime(p) && is_mersenne_prime(p)
   print "M%d "%p
   count += 1
 end
 if count >= upb_count
   break
 end

end puts</lang>

Output:

 Finding Mersenne primes in M[2..33218]: 
 M2 M3 M5 M7 M13 M17 M19 M31 M61 M89 M107 M127 M521 M607 M1279 M2203 M2281 M3217 M4253 M4423 M9689 M9941 M11213 M19937 M21701 M23209

Scheme

<lang scheme>;;;The heart of the algorithm (define (S n)

 (let ((m (- (expt 2 n) 1)))
   (let loop ((c (- n 2)) (a 4))
     (if (zero? c)
         a
         (loop (- c 1) (remainder (- (* a a) 2) m))))))

(define (mersenne-prime? n)

 (if (= n 2)
   #t
   (zero? (S n))))
Trivial unoptimized implementation for the base primes

(define (next-prime x)

 (if (prime? (+ x 1))
     (+ x 1)
     (next-prime (+ x 1))))

(define (prime? x)

 (let loop ((c 2))
   (cond ((>= c x) #t)
         ((zero? (remainder x c)) #f)
         (else (loop (+ c 1))))))
Main loop

(let loop ((i 45) (p 2))

 (if (not (zero? i))
     (if (mersenne-prime? p)
         (begin
           (display "M") (display p) (display " ")
           (loop (- i 1) (next-prime p)))
         (loop i (next-prime p)))))</lang>
M2 M3 M5 M7 M13...

Tcl

Modeled after the Pop11 solution.

<lang Tcl>proc main argv {

   set n 0
   set t [clock seconds]
   show_mersenne 2 [incr n] t
   for {set p 3} {$p <= [lindex $argv 0]} {incr p 2} {
       if {![prime $p]} continue
       if {[LucasLehmer $p]} {
           show_mersenne $p [incr n] t
       }
   }

} proc show_mersenne {p n timevar} {

   upvar 1 $timevar time
   set now [clock seconds]
   puts [format "%2d: %5ds  M%s" $n [expr {$now - $time}] $p]
   set time $now

} proc prime i {

  if {$i in {2 3}} {return 1}
  prime0 $i [expr {int(sqrt($i))}]

} proc prime0 {i div} {

   expr {!($i % $div)? 0: $div <= 2? 1: [prime0 $i [incr div -1]]}

} proc LucasLehmer p {

   set mp [expr {2**$p-1}]
   set s  4
   for {set i 2} {$i < $p} {incr i} {
       set s [expr {($s**2 - 2) % $mp}]
   }
   expr {$s == 0}

}

main 33218</lang> Sample output. The program was still running, but as the next Mersenne prime is 19937 there will be a long wait until the program finds it.

 1:     0s  M2
 2:     0s  M3
 3:     0s  M5
 4:     0s  M7
 5:     0s  M13
 6:     0s  M17
 7:     0s  M19
 8:     0s  M31
 9:     0s  M61
10:     0s  M89
11:     0s  M107
12:     0s  M127
13:     1s  M521
14:     0s  M607
15:     4s  M1279
16:    21s  M2203
17:     4s  M2281
18:    69s  M3217
19:   180s  M4253
20:    39s  M4423
21:  5543s  M9689
22:   655s  M9941
23:  3546s  M11213