Execute SNUSP/D
Appearance
Execute SNUSP/D is an implementation of SNUSP.
Other implementations of SNUSP.
Execute SNUSP/D is part of RCSNUSP. You may find other members of RCSNUSP at Category:RCSNUSP.
This D implementation supports commands from all the three SNUSP variants, as described on the Esolang SNUSP page, plus an extended mode, SUPERNATURAL.
SUPERNATURAL Mode:
- ~ : code input (materialization):
- Read the char in current code pointer as input, assign it to memory currently pointed to by memory pointer.
- * : join and wait tasks (telepathy):
- A task has a state property of free/join/wait;
- A task is by default initialized as free-state;
- The splited new thread inherites free/join/wait-state from the old thread;
- When a free-state task first executes this * command, the task enters into a join-state;
- Then if a join-state task executes another * command, the task enters into a wait-state;
- A wait-state task stops its execution, and waits until all alive join-state tasks are turning into a wait-state, which then all these wait-state tasks are return to free-state;
- This command enables global synchronization of the tasks.
- Difference to original specification:
- The original specification does not require threads execution in a specific order. For this command to be useful, the order of execution of tasks(threads) becomes important;
- In this implementation, the order of execution is first-created-first-executed;
- The original specification specifies that (&)SPLIT-ed old thread skips the immediate code (see below a->b->c->d example), which may lead to anti-intuition codes (which is good for an esoteric language :). This implementation retain old-thread-skips-immediate-code behavior in BLOATED mode, but new-thread-skips-immediate-code in SUPERNATURAL mode ( A->B->C->D example). 1->2->...->8 is thread creation order in SUPERNATURAL mode.
- $*&\==&\:&\:&\:=\
; ~ ~ ~ ~ &\=> new(B)
; 2A 3B 4C 5D \=> old(A)
; \=!\=!\=!\===*..=.#
; /=!/=!/=!/===*.=.=.#
; 1b 6c 7d 8a &\=> old(a)
; ~ ~ ~ ~ \=> new(b)
\==&/;&/;&/;=/
- ^ : warp (teleport):
- The code pointer will bounce back to the code space boundary in its reverse direction;
- then forward and stop after the first ^ it encounter in normal direction.
- Example :
- ==a^A<=cp==B^==<=C^==
- when the code pointer cp heading into A's^, next turn, the code pointer will be in C. if no such ^ in the reverse direction, the code pointer will be in a next turn.
module snud ;
private import std.string, std.random ;
// io interface, which has to be defined in another module
interface IIO {
void setDebugInput(string s) ;
void output(int v) ;
bool inputReady() ;
int input() ;
}
int rnd(int b) { return b < 0 ? (-rand()) % (-b + 1) : rand() % (b + 1) ; }
// simple stack template
void push(T)(inout T[] stk, T value) { stk ~= value ; }
T pop(T)(inout T[] stk, bool discard = true) {
T top = stk[$-1] ;
if(discard) stk.length = stk.length - 1 ;
return top ;
}
// a 2x tuple type
struct X(U,V = U) {
U x ; V y ;
void to(ref U a, ref V b) { a = x ; b = y ; }
void from(U a, V b) { x = a ; y = b ; }
}
alias X!(int) I2 ; // intxint, used as code pointer, memory pointer & direction
alias X!(I2) ST ; // (intxint)x(intxint), used as cpu state [cp,dp]
enum Mode : uint {CORE = 1, MODULAR, BLOATED, SUPERNATURAL } ;
// used to locate '$' and debugInput
string pfind(I2* loc, string[] c, string sl, string sr = null) {
int rx, dir = 1 , start = 0 , end = c.length - 1 ;
if(sr){ dir = -1 ; start = c.length - 1 ; end = 0 ; }
with(*loc)
for(x = -1, y = start ; y*dir <= end*dir ; y += dir)
if((x = std.string.find(c[y], sl)) >= 0) {
if(sr && (rx = std.string.rfind(c[y], sr)) >= 0)
if(rx > x + sl.length)
return c[y][x + sl.length..rx] ;
break ;
}
return null ;
}
// a 2d memory space
final class Memory {
private int[I2] cells ;
void reset() { foreach(k, v ; cells) cells[k] = 0 ; }
void opIndexAssign(int value, I2 key) { cells[key] = value ; }
int opIndex(I2 key) {
int* vp = key in cells ; // get value pointer of the key, null if no such key
if(vp is null) { cells[key] = 0 ; return 0 ; } // initialize the value/key pair
return *vp ; // return the already existed value
}
}
final class CPU {
final class Task {
enum {FREE, JOINED, WAITING }
const int id ;
I2 cp, dp, mp ;
int join = FREE ;
bool quit = false ;
private ST[] stack ;
private char curCode ;
this(I2 Cp, I2 Dp, I2 Mp, int joinstate = FREE) {
cp = Cp ; dp = Dp ; mp = Mp ; id = Id++ ;
if((join = joinstate) == JOINED) joinwait++ ;
}
private void fwd(int step = 1) { with(cp) from(x + dp.x*step, y + dp.y*step) ; }
private void rfx(int dir) { with(dp) from(dir*y, dir*x) ; }
// _outer_ is D keyword for an inner class to ref outer class
private bool hasCode() { return this.outer.hasCode(cp) ; }
char getCode() { return this.outer.getCode(cp) ; }
Task execute() {
curCode = getCode ;
if(curCode in acceptCmd) // this control which SNUSP variants is used
switch(curCode) {
case '<' : mp.x-- ; break ;
case '>' : mp.x++ ; break ;
case ':' : mp.y-- ; break ;
case ';' : mp.y++ ; break ;
case '+' : m[mp] = m[mp] + 1 ; break ;
case '-' : m[mp] = m[mp] - 1 ; break ;
case ',' :
if(!io.inputReady()) goto RET ; // wait input
else m[mp] = io.input() ; break ;
case '.' : io.output(m[mp]) ; break ;
case '!' : fwd ; break ;
case '?' : if(m[mp] == 0) fwd ; break ;
case '%' : m[mp] = rnd(m[mp]) ; break ;
case '\\': rfx( 1) ; break ;
case '/' : rfx(-1) ; break ;
case '@' : stack.push(ST(cp, dp)) ; break ; // save caller state
case '#' :
if(stack.length > 0) // return from subroutine
{ stack.pop().to(cp,dp) ; fwd ; break ; }
case '\0': // else process as \0, = quit
quit = true ; goto RET ;
case '&' :
if(tasksMode == Mode.BLOATED) // old task skip immediate code
{ fwd ; queued ~= new Task(cp, dp, mp, join) ; break ; }
else // new task skip immediate code
{ fwd(2) ; queued ~= new Task(cp, dp, mp, join) ; fwd(-2) ; break ; }
case '~' : fwd ; m[mp] = getCode ; break ; // read next code as input
case '*' : // join/wait threads
switch(join) {
case FREE : join = JOINED ; joinwait++ ; break ; // schedule to join
case JOINED : join = WAITING ; joinwait-- ; goto RET ; // start waiting join
case WAITING :
if(joinwait <= 0) { join = FREE ; break ; } // all joined, release all
else goto RET ; // keep waiting
}
break ;
case '^' : // wrap to the boundary in reverse direction then stop after the 1st '^'
while(hasCode) fwd(-1) ; while(getCode != '^') fwd ; break ;
default: //other char is a error command, since it should be seived out
debug throw new Exception("unknown command") ;
}
fwd ; // next code
RET: // directly go here, if waiting input/join, or quit
lastcp = cp ; lastmp = mp ;
if(quit && join == JOINED) joinwait-- ;
return this ;
}
}
this(IIO inputoutput) { m = new Memory ; io = inputoutput ; }
bool hasCode(I2 codePtr)
{ with(codePtr) return !(x < 0 || y < 0 || x >= width || y >= lines) ; }
char getCode(I2 codePtr)
{ with(codePtr) return hasCode(codePtr) ? src[y][x] : '\0' ; }
string program() { if(prog is null) prog = join(src,"\n") ; return prog ; }
CPU load(string codes) {
src = splitlines(codes) ; width = 0 ; lines = src.length ; prog = null ;
foreach(k,l; src)
{ if ((src[k] = stripr(tr(l,"\0"," "))).length > width) width = src[k].length ; }
foreach(k,l; src) src[k] = l ~ repeat(" ", width - l.length) ;
debugInput = pfind(&start, src, "debug[", "]debug") ;
pfind(&start, src, "$") ;
if(start.x < 0) start = I2(0,0) ; else start.x++ ;
return this ;
}
CPU initialize(Mode mode = Mode.SUPERNATURAL, bool useDebugInput = true) {
if(useDebugInput) io.setDebugInput(debugInput) ; else io.setDebugInput("") ;
tasks = [ new Task(start, I2(1,0), I2(0,0)) ] ; // 1st task
tick = 0 ; Id = 0 ; joinwait = 0 ; nTaskLeft = 1 ;
queued = null ; m.reset() ; tasksMode = mode ; acceptCmd = null ;
foreach(c ; join(command[0..mode],"")) acceptCmd[c] = c ;
return this ;
}
int run(string codes,Mode mode = Mode.SUPERNATURAL, bool useDebugInput = true)
{ return load(codes).initialize(mode, useDebugInput).run() ; }
int run() { while(nTaskLeft) run1Tick ; return m[lastmp] ; }
bool run1Tick() {
if(nTaskLeft > 0) {
nTaskLeft = 0 ; tick++ ;
foreach(tsk ; tasks) // execute & update task
if((tasks[nTaskLeft] = tsk.execute).quit == false)
nTaskLeft++ ;
tasks.length = nTaskLeft ;
if(queued) { tasks ~= queued ; queued = null ; } // join queued tasks
nTaskLeft = tasks.length ;
}
return nTaskLeft > 0 ;
}
static const string[] command = ["<>+-,.!?/\\\0","@#",":;&%","~*^"] ;
Memory m ;
IIO io ;
string prog, debugInput ;
Mode tasksMode ;
Task[] tasks, queued ;
I2 start, lastcp, lastmp ;
uint width, lines, tick, joinwait, nTaskLeft ;
private string[] src ;
private char[char] acceptCmd ;
private uint Id = 0 ;
}
Sample SNUSP using a console io :
module rcsnusp ;
import snud ;
import std.stdio, std.file, std.conv ;
extern(C) {
int kbhit() ;
int getch() ;
int printf(in char*,...);
}
final class CIO : IIO {
private string debugInput ;
void setDebugInput(string s) { debugInput = cast(string)s.dup.reverse ; }
void output(int v){ printf("%1c", cast(char) v) ; }
bool inputReady() { return debugInput.length || kbhit() ; }
int input()
{ return cast(int)(debugInput.length ? debugInput.pop() : getch()) ; }
}
int main(string[] args) {
CPU cpu = new CPU(new CIO) ;
int result ;
Mode mode = Mode.SUPERNATURAL ;
bool useDebug = true ;
if(args.length <= 1) { // from stdin
string[] p ;
string b ;
while((b = readln()) != null) p ~= std.string.chomp(b) ;
cpu.load(std.string.join(p,"\n")).initialize(mode,useDebug) ;
for(int i = 0 ; i < 10 ; i++) { // do some debug action
cpu.run1Tick ;
with (cpu.tasks[0])
writefln( // debug state output
"m(%3d,%3d)=[%4d][%1s] c(%3d,%3d,%3d,%3d)=[%1s](%3d) id<%3d> jc(%1d) quit[%3s]",
mp.x, mp.y, cpu.m[mp], cast(char) (cpu.m[mp] >= 32 && cpu.m[mp]<128 ? cpu.m[mp] : '?'),
cp.x, cp.y, dp.x, dp.y, getCode, getCode, id, join, quit ? "YES" : "NO") ;
}
result = cpu.run(std.string.join(p,"\n"), mode, useDebug) ;
} else { // from file names
if(args.length > 2 && std.string.isNumeric(args[2]))
mode = cast(Mode) toInt(args[2]) ;
if(mode < Mode.CORE || mode > Mode.SUPERNATURAL)
mode = Mode.SUPERNATURAL ;
if(args.length > 3)
useDebug = std.string.tolower(args[3]) == "no" ? false : true ;
result = cpu.run(cast(string) std.file.read(args[1]), mode, useDebug) ;
}
writefln("\ntick:%d", cpu.tick) ;
return result ;
}