/* Module "matrix.wren" */
/* Matrix represents a two dimensional list of Nums. Once created the number of
rows and columns of the matrix cannot be changed but individual elements can be.
*/
class Matrix {
// Returns an instance of the identity matrix for a given number of rows.
static identity(numRows) {
if (numRows.type != Num || !numRows.isInteger || numRows < 1) {
Fiber.abort("Number of rows must be a positive integer.")
}
var id = new_(numRows, numRows, 0)
for (i in 0...numRows) id.set_(i, i, 1)
return id
}
// Constructs a new Matrix object by passing it the number of rows and
// columns and the initial value for each element.
construct new(numRows, numCols, filler) {
if (numRows.type != Num || !numRows.isInteger || numRows < 1) {
Fiber.abort("Number of rows must be a positive integer.")
}
if (numCols.type != Num || !numCols.isInteger || numCols < 1) {
Fiber.abort("Number of columns must be a positive integer.")
}
if (filler.type != Num) Fiber.abort("Filler must be a number.")
_a = List.filled(numRows, null)
for (i in 0...numRows) _a[i] = List.filled(numCols, filler)
_nr = numRows
_nc = numCols
}
// Convenience version of the public constructor which uses a filler of zero.
static new(numRows, numCols) { new(numRows, numCols, 0) }
// Private version of above constructor to avoid type checks.
construct new_(numRows, numCols, filler) {
_a = List.filled(numRows, null)
for (i in 0...numRows) _a[i] = List.filled(numCols, filler)
_nr = numRows
_nc = numCols
}
// Constructs a new Matrix object from a two dimensional list of numbers.
construct new(a) {
if (a.type != List || a.count == 0 || a[0].type != List || a[0].count == 0 || a[0][0].type != Num) {
Fiber.abort("Argument must be a non-empty two dimensional list of numbers.")
}
_nr = a.count
_nc = a[0].count
// copy the list so it can be mutated independently
_a = List.filled(_nr, null)
for (i in 0..._nr) _a[i] = a[i].toList
}
// Private version of above constructor to avoid type checks and copying.
construct new_(a) {
_a = a
_nr = a.count
_nc = a[0].count
}
// Basic properties.
numRows { _nr } // returns the number of rows
numCols { _nc } // returns the number of columns
size { [_nr, _nc] } // returns both the above in a list
numElements { _nr * _nc } // returns the number of elements
first { _a[0][0] } // returns the first element
last { _a[-1][-1] } // returns the last element
// Creates another Matrix by multiplying all elements of the current instance by -1.
- { this * -1 }
// Creates another Matrix by either:
// 1. adding another Matrix of the same size to the current instance; or
// 2. adding a number to each element of the current instance.
+(b) {
var c = List.filled(_nr, null)
if (b is Num) {
for (i in 0..._nr) {
c[i] = List.filled(_nc, 0)
for (j in 0..._nc) c[i][j] = _a[i][j] + b
}
} else if (b is Matrix) {
if (!sameSize(b)) Fiber.abort("Matrices must be of the same size.")
for (i in 0..._nr) {
c[i] = List.filled(_nc, 0)
for (j in 0..._nc) c[i][j] = _a[i][j] + b.get_(i, j)
}
} else {
Fiber.abort("Argument must either be a matrix or a number.")
}
return Matrix.new_(c)
}
// Creates another Matrix by either:
// 1. subtracting another Matrix of the same size from the current instance; or
// 2. subtracting a number from each element of the current instance.
-(b) { this + (-b) }
// Creates another Matrix by either:
// 1. multiplying the current instance by another Matrix of appropriate size; or
// 2. multiplying each element of the current instance by a number.
*(b) {
var c = List.filled(_nr, null)
if (b is Num) {
for (i in 0..._nr) {
c[i] = List.filled(_nc, 0)
for (j in 0..._nc) c[i][j] = _a[i][j] * b
}
} else if (b is Matrix) {
if (_nc != b.numRows) Fiber.abort("Cannot multiply these matrices.")
for (i in 0..._nr) {
c[i] = List.filled(b.numCols, 0)
for (j in 0...b.numCols) {
for (k in 0..._nc) c[i][j] = c[i][j] + _a[i][k] * b.get_(k, j)
}
}
} else {
Fiber.abort("Argument must either be a matrix or a number.")
}
return Matrix.new_(c)
}
// Creates another Matrix by dividing each element of the current instance by a number.
/(n) { this * (1/n) }
// Creates another Matrix by applying the modulus operator to each element of the
// current instance.
%(n) { apply { |e| e % n } }
// Synomym for pow(n).
^(n) { pow(n) }
// Creates another Matrix by applying the 'abs' method to each element of the
// current instance.
abs { apply { |e| e.abs } }
// Creates another matrix by multiplying the current instance by itself 'n' times.
pow(n) {
if (n.type != Num || !n.isInteger || n < 0) {
Fiber.abort("Argument must be a non-negative integer.")
}
if (n == 0) return Matrix.identity(_nr)
if (n == 1) return this.copy()
var p = Matrix.identity(_nr)
var base = this.copy()
while (n > 0) {
if ((n & 1) == 1) p = p * base
n = n >> 1
base = base * base
}
return p
}
// Private methods to check that a row or column number are valid.
validRowNum_(rn) { rn.type == Num && rn.isInteger && rn >= 0 && rn < _nr }
validColNum_(cn) { cn.type == Num && cn.isInteger && cn >= 0 && cn < _nc }
// Returns a copy of this instance's 'i'th row.
row(i) { validRowNum_(i) ? _a[i].toList : Fiber.abort("Invalid row number.") }
// Returns a copy of this instance's 'i'th column.
col(i) {
if (!validColNum_(i)) Fiber.abort("Invalid column number.")
var t = List.filled(_nc, 0)
for (r in 0..._nr) t[r] = _a[r][i]
return t
}
// Returns a copy of this instance's main diagonal as long as its square.
diag {
if (!isSquare) Fiber.abort("Matrix must be square.")
var d = List.filled(_nr, 0)
for (i in 0..._nr) d[i] = _a[i][i]
return d
}
// Returns a copy of this instance's 'i'th row (synonym for row(i)).
[i] { row(i) }
// Returns the element at row 'i' and column 'j' of the current instance.
[i, j] { (validRowNum_(i) && validColNum_(j)) ? _a[i][j] : Fiber.abort("Out of range.") }
// Sets the element at row 'i' and column 'j' of the current instance to value 'v'.
[i, j]=(v) {
if (!validRowNum_(i) || !validColNum_(j)) Fiber.abort("Out of range.")
if (v.type != Num) Fiber.abort("Element value must be a number.")
_a[i][j] = v
}
// Private methods to get or set the elements at row 'i' and column 'j' of the current
// instance without any validity checks.
get_(i, j) { _a[i][j] }
set_(i, j, v) { _a[i][j] = v }
// Returns whether or not this instance is the same size as another Matrix
sameSize(b) { _nr == b.numRows && _nc == b.numCols }
// Various self-explanatory properties.
isSquare { _nr == _nc }
isRowVector { _nr == 1 }
isColVector { _nc == 1 }
isSymmetric { isSquare && this == this.transpose }
isSkewSymmetric { isSquare && this == -this.transpose }
isOrthogonal { isSquare && inverse == transpose }
isIdempotent { isSquare && (this * this == this) }
isInvolutory { isSquare && (this * this == Matrix.identity(_nr)) }
isSingular { det == 0 }
// Returns whether all the elements of the current instance outside the main diagonal
// are zero.
isDiagonal {
if (!isSquare) return false
for (i in 0..._nr) {
for (j in 0..._nr) {
if (i != j && _a[i][j] != 0) return false
}
}
return true
}
// Returns whether the current instance is 'diagonally dominant' i.e. whether, for every
// row, the absolute value of the diagonal element in a row is greater than or
// equal to the sum of the absolute values of all the other elements in that row.
isDiagonallyDominant {
if (!isSquare) return false
for (i in 0..._nr) {
var sum = 0
for (j in 0..._nr) sum = sum + _a[i][j].abs
sum = sum - _a[i][i].abs
if (_a[i][i].abs < sum) return false
}
return true
}
// Returns whether all the current instance's elements above the main diagonal are zero.
isLowerTriangular {
if (!isSquare) return false
for (i in 0..._nr - 1) {
for (j in i + 1..._nr) {
if (_a[i][j] != 0) return false
}
}
return true
}
// Returns whether all the current instance's elements below the main diagonal are zero.
isUpperTriangular {
if (!isSquare) return false
for (i in 1..._nr) {
for (j in 0...i) {
if (_a[i][j] != 0) return false
}
}
return true
}
// Returns whether the current instance is lower or upper triangular.
isTriangular { isLowerTrinagular || isUpperTriangular }
// Returns whether or not current instance's elements are either 0 or 1.
isBinary {
for (i in 0..._nr) {
for (j in 0..._nc) {
if (_a[i][j] != 0 && _a[i][j] != 1) return false
}
}
return true
}
// Returns the transpose of the current instance.
transpose {
var t = Matrix.new_(_nc, _nr, 0)
for (i in 0..._nc) {
for (j in 0..._nr) t.set_(i, j, _a[j][i])
}
return t
}
// Returns a new Matrix formed by applying a function ( Num -> Num )
// to each element of the current instance.
apply(f) {
var t = Matrix.new_(_nc, _nr, 0)
for (i in 0..._nr) {
for (j in 0..._nc) t.set_(i, j, f.call(_a[i][j]))
}
return t
}
// Transforms the current instance by applying a function ( Num -> Num )
// to each of its elements.
transform(f) {
for (i in 0..._nr) {
for (j in 0..._nc) _a[i][j] = f.call(_a[i][j])
}
}
// Changes all elements of the current instance by multiplying them by 'm'
// and then adding 'a'.
changeAll(m, a) {
if (m.type != Num || a.type != Num) Fiber.abort("Multiplier and addend must be numbers.")
for (i in 0..._nr) {
for (j in 0..._nc) _a[i][j] = _a[i][j]*m + a
}
}
// Changes all elements of a specified row of the current instance by multiplying
// them by 'm' and then adding 'a'.
changeRow(rowNum, m, a) {
if (!validRowNum_(rowNum)) Fiber.abort("Invalid row number.")
if (m.type != Num || a.type != Num) Fiber.abort("Multiplier and addend must be numbers.")
for (j in 0..._nc) _a[rowNum][j] = _a[rowNum][j]*m + a
}
// Changes all elements of a specified column of the current instance by multiplying
// them by 'm' and then adding 'a'.
changeCol(colNum, m, a) {
if (!validColNum_(colNum)) Fiber.abort("Invalid column number.")
if (m.type != Num || a.type != Num) Fiber.abort("Multiplier and addend must be numbers.")
for (i in 0..._nr) _a[i][colNum] = _a[i][colNum]*m + a
}
// Swaps two specified rows of the current instance.
swapRows(rowNum1, rowNum2) {
if (!validRowNum_(rowNum1) || !validRowNum_(rowNum2)) Fiber.abort("Invalid row number.")
swapRows_(rowNum1, rowNum2)
}
// Private method to swap two rows of the current instance without checking validity.
swapRows_(rowNum1, rowNum2) {
if (rowNum1 == rowNum2) return
var t = row(rowNum1)
for (j in 0..._nc) {
_a[rowNum1][j] = _a[rowNum2][j]
_a[rowNum2][j] = t[j]
}
}
// Swaps two specified columns of the current instance.
swapCols(colNum1, colNum2) {
if (!validColNum_(colNum1) || !validColNum_(colNum2)) Fiber.abort("Invalid column number.")
if (colNum1 == colNum2) return
var t = col(colNum1)
for (i in 0..._nr) {
_a[i][colNum1] = _a[i][colNum2]
_a[i][colNum2] = t[i]
}
}
// Copies the elements of the current instance to a 2D list.
toList {
var l = List.filled(_nr, null)
for (i in 0..._nr) l[i] = _a[i].toList
return l
}
// Flattens the current instance by transferring all its elements row by row
// to a new single dimensional list.
flatten() {
var t = []
for (i in 0..._nr) t.addAll(_a[i])
return t
}
// Returns a copy of this instance
copy() { Matrix.new_(this.toList) }
// Checks whether or not the current instance's elements all have the same
// values as the corresponding elements of another Matrix.
==(b) {
if (b.type != Matrix) Fiber.abort("Argument must be a matrix.")
if (!sameSize(b)) return false
for (i in 0..._nr) {
for (j in 0..._nc) if (_a[i][j] != b.get_(i, j)) return false
}
return true
}
// Checks whether or not all the current instance's elements do not have the same
// values as the corresponding elements of another Matrix.
!=(b) { !(this == b) }
// Checks whether or not the current instance's elements all have the same values
// as the corresponding elements of another Matrix to within a specified tolerance,
almostEquals(b, tol) {
if (b.type != Matrix) Fiber.abort("Argument must be a matrix.")
if (!sameSize(b)) return false
if (tol.type != Num || tol <= 0 || tol >= 1e-5) {
Fiber.abort("Tolerance must be a positive number <= 1e-5.")
}
var d = this - b
for (i in 0..._nr) {
for (j in 0..._nc) if (d.get_(i, j).abs > tol) return false
}
return true
}
// Convenince version of above method which uses a tolerance of 1e-14.
almostEquals(b) { almostEquals(b, 1e-14) }
// Returns a minor of the current instance after removing a specified row
// and a specified column.
minor(rowNum, colNum) {
if (!isSquare) Fiber.abort("Matrix must be square.")
if (!validRowNum_(rowNum)) Fiber.abort("Invalid row number.")
if (!validColNum_(colNum)) Fiber.abort("Invalid column number.")
return minor_(rowNum, colNum)
}
// Private version of the above method which returns the minor without
// validity checks.
minor_(x, y) {
var len = _nr - 1
var result = List.filled(len, null)
for (i in 0...len) {
result[i] = List.filled(len, 0)
for (j in 0...len) {
if (i < x && j < y) {
result[i][j] = _a[i][j]
} else if (i >= x && j < y) {
result[i][j] = _a[i+1][j]
} else if (i < x && j >= y) {
result[i][j] = _a[i][j+1]
} else {
result[i][j] = _a[i+1][j+1]
}
}
}
return Matrix.new_(result)
}
// Returns the matrix of cofactors of the current instance.
cofactors {
if (!isSquare) Fiber.abort("Matrix must be square.")
var cf = List.filled(_nr, null)
for (i in 0..._nr) {
cf[i] = List.filled(_nc, 0)
for (j in 0..._nc) cf[i][j] = minor_(i, j).det * (-1).pow(i + j)
}
return Matrix.new_(cf)
}
// Returns the adjugate of the current instance.
adjugate { cofactors.transpose }
// Returns the inverse of this instance if it's square and if it exists
// using the Gauss-Jordan method.
inverse {
if (!isSquare) Fiber.abort("Matrix must be square.")
if (det == 0) Fiber.abort("No inverse as determinant is zero.")
var aug = Matrix.new_(_nr, 2 *_nr, 0)
for (i in 0..._nr) {
for (j in 0..._nr) aug.set_(i, j, _a[i][j])
aug.set_(i, i + _nr, 1)
}
aug.toReducedRowEchelonForm
var inv = Matrix.new_(_nr, _nr, 0)
for (i in 0..._nr) {
for (j in _nr...2 *_nr) inv.set_(i, j - _nr, aug.get_(i, j))
}
return inv
}
// Converts the current instance in place to reduced row echelon form.
toReducedRowEchelonForm {
var lead = 0
for (r in 0..._nr) {
if (_nc <= lead) return
var i = r
while (_a[i][lead] == 0) {
i = i + 1
if (_nr == i) {
i = r
lead = lead + 1
if (_nc == lead) return
}
}
swapRows_(i, r)
if (_a[r][lead] != 0) {
var div = _a[r][lead]
for (j in 0..._nc) _a[r][j] = _a[r][j] / div
}
for (k in 0..._nr) {
if (k != r) {
var mult = _a[k][lead]
for (j in 0..._nc) _a[k][j] = _a[k][j] - _a[r][j] * mult
}
}
lead = lead + 1
}
}
// Create a new submatrix from rowNum1 to rowNum2 inclusive and from
// colNum1 to colNum2 inclusive of the current instance.
subMatrix(rowNum1, colNum1, rowNum2, colNum2) {
if (!validRowNum_(rowNum1)) Fiber.abort("Invalid first row number.")
if (!validColNum_(colNum1)) Fiber.abort("Invalid first column number.")
if (!validRowNum_(rowNum2)) Fiber.abort("Invalid second row number.")
if (!validColNum_(colNum2)) Fiber.abort("Invalid second column number.")
if (rowNum1 > rowNum2) Fiber.abort("First row number cannot be greater than second.")
if (colNum1 > colNum2) Fiber.abort("First column number cannot be greater than second.")
return subMatrix_(rowNum1, colNum1, rowNum2, colNum2)
}
// Private version of the above method which returns the submatrix without
// validity checks.
subMatrix_(rowNum1, colNum1, rowNum2, colNum2) {
var t = Matrix.new_(rowNum2 - rowNum1 + 1, colNum2 - colNum1 + 1, 0)
for (i in rowNum1..rowNum2) {
for (j in colNum1..colNum2) {
t.set_(i - rowNum1, j - colNum1, _a[i][j])
}
}
return t
}
// Returns the trace of the current instance if it's square.
trace {
if (!isSquare) Fiber.abort("Cannot calculate the trace of a non-square matrix.")
var sum = 0
for (i in 0..._nr) sum = sum + _a[i][i]
return sum
}
// Returns the determinant of the current instance if it's square using
// Laplace expansion.
det {
if (!isSquare) Fiber.abort("Cannot calculate the determinant of a non-square matrix.")
if (_nr == 1) return _a[0][0]
if (_nr == 2) return _a[1][1] * _a[0][0] - _a[0][1] * _a[1][0]
var sign = 1
var sum = 0
for (i in 0..._nr) {
var m = minor_(0, i)
sum = sum + sign * _a[0][i] * m.det
sign = -sign
}
return sum
}
// Returns the permanent of the current instance if it's square using
// Laplace expansion.
perm {
if (!isSquare) Fiber.abort("Cannot calculate the permanent of a non-square matrix.")
if (_nr == 1) return _a[0][0]
var sum = 0
for (i in 0..._nr) {
var m = minor_(0, i)
sum = sum + _a[0][i] * m.perm
}
return sum
}
// Returns the Kronecker product of this instance with another Matrix.
kronecker(b) {
if (b.type != Matrix) Fiber.abort("Argument must be a matrix.")
var m = _nr
var n = _nc
var p = b.numRows
var q = b.numCols
var rtn = m * p
var ctn = n * q
var r = List.filled(rtn, null)
for (i in 0...rtn) r[i] = List.filled(ctn, 0)
for (i in 0...m) {
for (j in 0...n) {
for (k in 0...p) {
for (l in 0...q) {
r[p * i + k][q * j + l] = _a[i][j] * b.get_(k, l)
}
}
}
}
return Matrix.new_(r)
}
// Returns the sum of all elements of the current instance.
sum {
var sum = 0
for (i in 0..._nr) {
for (j in 0..._nc) sum = sum + _a[i][j]
}
return sum
}
// Returns the mean of all elements of the current instance.
mean { sum / (_nc * _nr) }
// Returns the norm of all elements of the current instance.
norm {
var sum = 0
for (i in 0..._nr) {
for (j in 0..._nc) sum = sum + _a[i][j] * _a[i][j]
}
return sum.sqrt
}
// Returns the product of all elements of the current instance.
prod {
var prd = 1
for (i in 0..._nr) {
for (j in 0..._nc) {
if (_a[i][j] == 0) return 0
prd = prd * _a[i][j]
}
}
return prd
}
// Returns the greatest element of the current instance.
max {
var m = -1/0
for (i in 0..._nr) {
for (j in 0..._nc) if (_a[i][j] > m) m = _a[i][j]
}
return m
}
// Returns the smallest element of the current instance.
min {
var m = 1/0
for (i in 0..._nr) {
for (j in 0..._nc) if (_a[i][j] < m) m = _a[i][j]
}
return m
}
// Private helper method for 'lup' which returns 'p' and the sign of 'p'.
pivotize_() {
var im = Matrix.identity(_nr)
var sign = 1
for (i in 0..._nr) {
var max = _a[i][i]
var row = i
for (j in i..._nr) {
if (_a[j][i] > max) {
max = _a[j][i]
row = j
}
}
if (i != row) {
im.swapRows_(i, row)
sign = -sign
}
}
return [im, sign]
}
// Applies LU decomposition with partial pivoting to the current instance if it's square
// and returns the list [l, u, p, sign] were 'l' is a lower triangular matrix, 'u' is
// an upper triangular matrix, 'p' is a permutation matrix such that p * this = l * u
// and 'sign' is the sign (+1 or -1) of 'p'.
lup {
if (!isSquare) Fiber.abort("Matrix must be square.")
var l = Matrix.new_(_nr, _nr, 0)
var u = Matrix.new_(_nr, _nr, 0)
var res = pivotize_()
var p = res[0]
var sign = res[1]
var a = p * this
for (j in 0..._nr) {
l.set_(j, j, 1)
for (i in 0..j) {
var sum = 0
for (k in 0...i) sum = sum + u.get_(k, j) * l.get_(i, k)
u.set_(i, j, a.get_(i, j) - sum)
}
for (i in j..._nr) {
var sum2 = 0
for (k in 0...j) sum2 = sum2 + u.get_(k, j) * l.get_(i, k)
l.set_(i, j, (a.get_(i, j) - sum2) / u.get_(j, j))
}
}
return [l, u, p, sign]
}
// Returns the lower Cholesky factor (a lower triangular matrix) of the current instance
// provided its symmetric and otherwise suitable.
cholesky() {
if (!isSymmetric) Fiber.abort("Matrix must be symmetric.")
var n = _nr
var res = List.filled(n, null)
for (r in 0...n) {
res[r] = List.filled(n, 0)
for (c in 0..r) {
var sum = 0
if (c == r) {
for (j in 0...c) sum = sum + res[c][j] * res[c][j]
res[c][c] = (_a[c][c] - sum).sqrt
} else {
for (j in 0...c) sum = sum + res[r][j] * res[c][j]
res[r][c] = (_a[r][c] - sum) / res[c][c]
}
}
}
return Matrix.new_(res)
}
// Prints the current instance's elements as a 2D list with each row on a new line.
print() { System.print(_a.join("\n")) }
// Returns the current instance's elements as a string.
toString { _a.toString }
// Returns the current instance's elements as a string
// after first rounding each element to 'p' decimal places.
toString(p) {
if (p.type != Num || !p.isInteger || p < 0) {
Fiber.abort("Number of decimal places must be a non-negative integer.")
}
var s = List.filled(_nr, "")
var pow = 10.pow(p)
for (i in 0..._nr) {
var t = List.filled(_nc, "")
for (j in 0..._nc) {
var r = (_a[i][j]*pow).round / pow
t[j] = r.toString
if (t[j] == "-0") t[j] = "0"
}
s[i] = t.toString
}
return s
}
}
/* Matrices contains various routines applicable to lists of Matrix objects. */
class Matrices {
static sum(a) { a.reduce { |acc, x| acc + x } }
static mean(a) { sum(a)/a.count }
static prod(a) { a[1..-1].reduce(a[0]) { |acc, x| acc * x } }
}