In computer science, an AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Lookup, insertion, and deletion all take O(log n) time in both the average and worst cases, where n is the number of nodes in the tree prior to the operation. Insertions and deletions may require the tree to be rebalanced by one or more tree rotations.

Task
AVL tree
You are encouraged to solve this task according to the task description, using any language you may know.
This page uses content from Wikipedia. The original article was at AVL tree. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)

AVL trees are often compared with red-black trees because they support the same set of operations and because red-black trees also take O(log n) time for the basic operations. Because AVL trees are more rigidly balanced, they are faster than red-black trees for lookup-intensive applications. Similar to red-black trees, AVL trees are height-balanced, but in general not weight-balanced nor μ-balanced; that is, sibling nodes can have hugely differing numbers of descendants.


Task

Implement an AVL tree in the language of choice, and provide at least basic operations.

Agda

This implementation uses the type system to enforce the height invariants, though not the BST invariants <lang agda> module Avl where

-- The Peano naturals data Nat : Set where

z : Nat
s : Nat -> Nat

-- An AVL tree's type is indexed by a natural. -- Avl N is the type of AVL trees of depth N. There arj 3 different -- node constructors: -- Left: The left subtree is one level deeper than the right -- Balanced: The subtrees have the same depth -- Right: The right Subtree is one level deeper than the left -- Since the AVL invariant is that the depths of a node's subtrees -- always differ by at most 1, this perfectly encodes the AVL depth invariant. data Avl : Nat -> Set where

 Empty : Avl z
 Left : {X : Nat} -> Nat -> Avl (s X) -> Avl X -> Avl (s (s X))
 Balanced : {X : Nat} -> Nat -> Avl X -> Avl X -> Avl (s X)
 Right : {X : Nat} -> Nat -> Avl X -> Avl (s X) -> Avl (s (s X))

-- A wrapper type that hides the AVL tree invariant. This is the interface -- exposed to the user. data Tree : Set where

 avl : {N : Nat} -> Avl N -> Tree

-- Comparison result data Ord : Set where

 Less : Ord
 Equal : Ord
 Greater : Ord

-- Comparison function cmp : Nat -> Nat -> Ord cmp z (s X) = Less cmp z z = Equal cmp (s X) z = Greater cmp (s X) (s Y) = cmp X Y

-- Insertions can either leave the depth the same or -- increase it by one. Encode this in the type. data InsertResult : Nat -> Set where

 Same : {X : Nat} -> Avl X -> InsertResult X
 Bigger : {X : Nat} -> Avl (s X) -> InsertResult X

-- If the left subtree is 2 levels deeper than the right, rotate to the right. -- balance-left X L R means X is the root, L is the left subtree and R is the right. balance-left : {N : Nat} -> Nat -> Avl (s (s N)) -> Avl N -> InsertResult (s (s N)) balance-left X (Right Y A (Balanced Z B C)) D = Same (Balanced Z (Balanced X A B) (Balanced Y C D)) balance-left X (Right Y A (Left Z B C)) D = Same (Balanced Z (Balanced X A B) (Right Y C D)) balance-left X (Right Y A (Right Z B C)) D = Same (Balanced Z (Left X A B) (Balanced Y C D)) balance-left X (Left Y (Balanced Z A B) C) D = Same (Balanced Z (Balanced X A B) (Balanced Y C D)) balance-left X (Left Y (Left Z A B) C) D = Same (Balanced Z (Left X A B) (Balanced Y C D)) balance-left X (Left Y (Right Z A B) C) D = Same (Balanced Z (Right X A B) (Balanced Y C D)) balance-left X (Balanced Y (Balanced Z A B) C) D = Bigger (Right Z (Balanced X A B) (Left Y C D)) balance-left X (Balanced Y (Left Z A B) C) D = Bigger (Right Z (Left X A B) (Left Y C D)) balance-left X (Balanced Y (Right Z A B) C) D = Bigger (Right Z (Right X A B) (Left Y C D))

-- Symmetric with balance-left balance-right : {N : Nat} -> Nat -> Avl N -> Avl (s (s N)) -> InsertResult (s (s N)) balance-right X A (Left Y (Left Z B C) D) = Same (Balanced Z (Balanced X A B) (Right Y C D)) balance-right X A (Left Y (Balanced Z B C) D) = Same(Balanced Z (Balanced X A B) (Balanced Y C D)) balance-right X A (Left Y (Right Z B C) D) = Same(Balanced Z (Left X A B) (Balanced Y C D)) balance-right X A (Balanced Z B (Left Y C D)) = Bigger(Left Z (Right X A B) (Left Y C D)) balance-right X A (Balanced Z B (Balanced Y C D)) = Bigger (Left Z (Right X A B) (Balanced Y C D)) balance-right X A (Balanced Z B (Right Y C D)) = Bigger (Left Z (Right X A B) (Right Y C D)) balance-right X A (Right Z B (Left Y C D)) = Same (Balanced Z (Balanced X A B) (Left Y C D)) balance-right X A (Right Z B (Balanced Y C D)) = Same (Balanced Z (Balanced X A B) (Balanced Y C D)) balance-right X A (Right Z B (Right Y C D)) = Same (Balanced Z (Balanced X A B) (Right Y C D))

-- insert' T N does all the work of inserting the element N into the tree T. insert' : {N : Nat} -> Avl N -> Nat -> InsertResult N insert' Empty N = Bigger (Balanced N Empty Empty) insert' (Left Y L R) X with cmp X Y insert' (Left Y L R) X | Less with insert' L X insert' (Left Y L R) X | Less | Same L' = Same (Left Y L' R) insert' (Left Y L R) X | Less | Bigger L' = balance-left Y L' R insert' (Left Y L R) X | Equal = Same (Left Y L R) insert' (Left Y L R) X | Greater with insert' R X insert' (Left Y L R) X | Greater | Same R' = Same (Left Y L R') insert' (Left Y L R) X | Greater | Bigger R' = Same (Balanced Y L R') insert' (Balanced Y L R) X with cmp X Y insert' (Balanced Y L R) X | Less with insert' L X insert' (Balanced Y L R) X | Less | Same L' = Same (Balanced Y L' R) insert' (Balanced Y L R) X | Less | Bigger L' = Bigger (Left Y L' R) insert' (Balanced Y L R) X | Equal = Same (Balanced Y L R) insert' (Balanced Y L R) X | Greater with insert' R X insert' (Balanced Y L R) X | Greater | Same R' = Same (Balanced Y L R') insert' (Balanced Y L R) X | Greater | Bigger R' = Bigger (Right Y L R') insert' (Right Y L R) X with cmp X Y insert' (Right Y L R) X | Less with insert' L X insert' (Right Y L R) X | Less | Same L' = Same (Right Y L' R) insert' (Right Y L R) X | Less | Bigger L' = Same (Balanced Y L' R) insert' (Right Y L R) X | Equal = Same (Right Y L R) insert' (Right Y L R) X | Greater with insert' R X insert' (Right Y L R) X | Greater | Same R' = Same (Right Y L R') insert' (Right Y L R) X | Greater | Bigger R' = balance-right Y L R'

-- Wrapper around insert' to use the depth-agnostic type Tree. insert : Tree -> Nat -> Tree insert (avl T) X with insert' T X ... | Same T' = avl T' ... | Bigger T' = avl T' </lang>

C#

See AVL_tree/C_sharp.

C

See AVL tree/C

C++

Translation of: D

<lang cpp>

  1. include <algorithm>
  2. include <iostream>

/* AVL node */ template <class T> class AVLnode { public:

   T key;
   int balance;
   AVLnode *left, *right, *parent;
   AVLnode(T k, AVLnode *p) : key(k), balance(0), parent(p),
                       left(NULL), right(NULL) {}
   ~AVLnode() {
       delete left;
       delete right;
   }

};

/* AVL tree */ template <class T> class AVLtree { public:

   AVLtree(void);
   ~AVLtree(void);
   bool insert(T key);
   void deleteKey(const T key);
   void printBalance();

private:

   AVLnode<T> *root;
   AVLnode<T>* rotateLeft          ( AVLnode<T> *a );
   AVLnode<T>* rotateRight         ( AVLnode<T> *a );
   AVLnode<T>* rotateLeftThenRight ( AVLnode<T> *n );
   AVLnode<T>* rotateRightThenLeft ( AVLnode<T> *n );
   void rebalance                  ( AVLnode<T> *n );
   int height                      ( AVLnode<T> *n );
   void setBalance                 ( AVLnode<T> *n );
   void printBalance               ( AVLnode<T> *n );
   void clearNode                  ( AVLnode<T> *n );

};

/* AVL class definition */ template <class T> void AVLtree<T>::rebalance(AVLnode<T> *n) {

   setBalance(n);
   if (n->balance == -2) {
       if (height(n->left->left) >= height(n->left->right))
           n = rotateRight(n);
       else
           n = rotateLeftThenRight(n);
   }
   else if (n->balance == 2) {
       if (height(n->right->right) >= height(n->right->left))
           n = rotateLeft(n);
       else
           n = rotateRightThenLeft(n);
   }
   if (n->parent != NULL) {
       rebalance(n->parent);
   }
   else {
       root = n;
   }

}

template <class T> AVLnode<T>* AVLtree<T>::rotateLeft(AVLnode<T> *a) {

   AVLnode<T> *b = a->right;
   b->parent = a->parent;
   a->right = b->left;
   if (a->right != NULL)
       a->right->parent = a;
   b->left = a;
   a->parent = b;
   if (b->parent != NULL) {
       if (b->parent->right == a) {
           b->parent->right = b;
       }
       else {
           b->parent->left = b;
       }
   }
   setBalance(a);
   setBalance(b);
   return b;

}

template <class T> AVLnode<T>* AVLtree<T>::rotateRight(AVLnode<T> *a) {

   AVLnode<T> *b = a->left;
   b->parent = a->parent;
   a->left = b->right;
   if (a->left != NULL)
       a->left->parent = a;
   b->right = a;
   a->parent = b;
   if (b->parent != NULL) {
       if (b->parent->right == a) {
           b->parent->right = b;
       }
       else {
           b->parent->left = b;
       }
   }
   setBalance(a);
   setBalance(b);
   return b;

}

template <class T> AVLnode<T>* AVLtree<T>::rotateLeftThenRight(AVLnode<T> *n) {

   n->left = rotateLeft(n->left);
   return rotateRight(n);

}

template <class T> AVLnode<T>* AVLtree<T>::rotateRightThenLeft(AVLnode<T> *n) {

   n->right = rotateRight(n->right);
   return rotateLeft(n);

}

template <class T> int AVLtree<T>::height(AVLnode<T> *n) {

   if (n == NULL)
       return -1;
   return 1 + std::max(height(n->left), height(n->right));

}

template <class T> void AVLtree<T>::setBalance(AVLnode<T> *n) {

   n->balance = height(n->right) - height(n->left);

}

template <class T> void AVLtree<T>::printBalance(AVLnode<T> *n) {

   if (n != NULL) {
       printBalance(n->left);
       std::cout << n->balance << " ";
       printBalance(n->right);
   }

}

template <class T> AVLtree<T>::AVLtree(void) : root(NULL) {}

template <class T> AVLtree<T>::~AVLtree(void) {

   delete root;

}

template <class T> bool AVLtree<T>::insert(T key) {

   if (root == NULL) {
       root = new AVLnode<T>(key, NULL);
   }
   else {
       AVLnode<T>
           *n = root,
           *parent;
       while (true) {
           if (n->key == key)
               return false;
           parent = n;
           bool goLeft = n->key > key;
           n = goLeft ? n->left : n->right;
           if (n == NULL) {
               if (goLeft) {
                   parent->left = new AVLnode<T>(key, parent);
               }
               else {
                   parent->right = new AVLnode<T>(key, parent);
               }
               rebalance(parent);
               break;
           }
       }
   }
   return true;

}

template <class T> void AVLtree<T>::deleteKey(const T delKey) {

   if (root == NULL)
       return;
   AVLnode<T>
       *n       = root,
       *parent  = root,
       *delNode = NULL,
       *child   = root;
   while (child != NULL) {
       parent = n;
       n = child;
       child = delKey >= n->key ? n->right : n->left;
       if (delKey == n->key)
           delNode = n;
   }
   if (delNode != NULL) {
       delNode->key = n->key;
       child = n->left != NULL ? n->left : n->right;
       if (root->key == delKey) {
           root = child;
       }
       else {
           if (parent->left == n) {
               parent->left = child;
           }
           else {
               parent->right = child;
           }
           rebalance(parent);
       }
   }

}

template <class T> void AVLtree<T>::printBalance() {

   printBalance(root);
   std::cout << std::endl;

}

int main(void) {

   AVLtree<int> t;
   std::cout << "Inserting integer values 1 to 10" << std::endl;
   for (int i = 1; i <= 10; ++i)
       t.insert(i);
   std::cout << "Printing balance: ";
   t.printBalance();

} </lang>

Output:
Inserting integer values 1 to 10
Printing balance: 0 0 0 1 0 0 0 0 1 0 

More elaborate version

See AVL_tree/C++

Managed C++

See AVL_tree/Managed_C++

Common Lisp

Provided is an imperative implementation of an AVL tree with a similar interface and documentation to HASH-TABLE. <lang lisp>(defpackage :avl-tree

 (:use :cl)
 (:export
  :avl-tree
  :make-avl-tree
  :avl-tree-count
  :avl-tree-p
  :avl-tree-key<=
  :gettree
  :remtree
  :clrtree
  :dfs-maptree
  :bfs-maptree))

(in-package :avl-tree)

(defstruct %tree

 key
 value
 balance
 left
 right)

(defstruct (avl-tree (:constructor %make-avl-tree))

 key<=
 tree
 count)

(defun make-avl-tree (key<=)

 "Create a new AVL tree using the given comparison function KEY<=

for emplacing keys into the tree."

 (%make-avl-tree :key<= key<= :count 0))

(defun height (tree)

 "Calculate the height of a tree, assuming the balances are correct."
 (if tree
     (1+ (height (if (<= 0 (%tree-balance tree))
                     (%tree-right tree)
                     (%tree-left tree))))
     0))

(defun calc-balance (tree)

 "Calculate the new balance of the tree from the heights of the children."
 (setf (%tree-balance tree)
       (- (height (%tree-right tree))
          (height (%tree-left tree)))))

(defmacro swap (place-a place-b)

 "Swap the values of two places."
 (let ((tmp (gensym)))
   `(let ((,tmp ,place-a))
      (setf ,place-a ,place-b)
      (setf ,place-b ,tmp))))

(defun swap-kv (tree-a tree-b)

 "Swap the keys and values of two trees."
 (swap (%tree-value tree-a) (%tree-value tree-b))
 (swap (%tree-key tree-a) (%tree-key tree-b)))
We should really use gensyms for the variables in here.

(defmacro slash-rotate (tree right left)

 "Rotate nodes in a slash `/` imbalance."
 `(let* ((a ,tree)
         (b (,right a))
         (c (,right b))
         (a-left (,left a))
         (b-left (,left b)))
    (setf (,right a) c)
    (setf (,left a) b)
    (setf (,left b) a-left)
    (setf (,right b) b-left)
    (swap-kv a b)
    (calc-balance b)
    (calc-balance a)))

(defmacro angle-rotate (tree right left)

 "Rotate nodes in an angle bracket `<` imbalance."
 `(let* ((a ,tree)
         (b (,right a))
         (c (,left b))
         (a-left (,left a))
         (c-left (,left c))
         (c-right (,right c)))
    (setf (,left a) c)
    (setf (,left c) a-left)
    (setf (,right c) c-left)
    (setf (,left b) c-right)
    (swap-kv a c)
    (calc-balance c)
    (calc-balance b)
    (calc-balance a)))

(defun right-right-rotate (tree)

 (slash-rotate tree %tree-right %tree-left))

(defun left-left-rotate (tree)

 (slash-rotate tree %tree-left %tree-right))

(defun right-left-rotate (tree)

 (angle-rotate tree %tree-right %tree-left))

(defun left-right-rotate (tree)

 (angle-rotate tree %tree-left %tree-right))

(defun rotate (tree)

 "Perform a rotation on the given TREE if it is imbalanced."
 (calc-balance tree)
 (with-slots ((broot balance) left right) tree
   (cond ((< 1 broot) ;; Right heavy tree
          (if (<= 0 (%tree-balance right))
              (right-right-rotate tree)
              (right-left-rotate tree)))
         ((> -1 broot) ;; Left heavy tree
          (if (<= 0 (%tree-balance left))
              (left-right-rotate tree)
              (left-left-rotate tree))))))

(defun gettree (key avl-tree &optional default)

 "Finds an entry in AVL-TREE whos key is KEY and returns the

associated value and T as multiple values, or returns DEFAULT and NIL if there was no such entry. Entries can be added using SETF."

 (with-slots (key<= tree) avl-tree
   (labels
       ((rec (tree)
          (if tree
              (with-slots ((t-key key) left right value) tree
                (if (funcall key<= t-key key)
                    (if (funcall key<= key t-key)
                        (values value t)
                        (rec right))
                    (rec left)))
              (values default nil))))
     (rec tree))))

(defun puttree (value key avl-tree)

 "Emplace the the VALUE with the given KEY into the AVL-TREE, or

overwrite the value if the given key already exists."

 (let ((node (make-%tree :key key :value value :balance 0)))
   (with-slots (key<= tree count) avl-tree
     (cond (tree
            (labels
                ((rec (tree)
                   (with-slots ((t-key key) left right) tree
                     (if (funcall key<= t-key key)
                         (if (funcall key<= key t-key)
                             (setf (%tree-value tree) value)
                             (cond (right (rec right))
                                   (t (setf right node)
                                      (incf count))))
                         (cond (left (rec left))
                               (t (setf left node)
                                  (incf count))))
                     (rotate tree))))
              (rec tree)))
           (t (setf tree node)
              (incf count))))
   value))

(defun (setf gettree) (value key avl-tree &optional default)

 (declare (ignore default))
 (puttree value key avl-tree))

(defun remtree (key avl-tree)

 "Remove the entry in AVL-TREE associated with KEY. Return T if

there was such an entry, or NIL if not."

 (with-slots (key<= tree count) avl-tree
   (labels
       ((find-left (tree)
          (with-slots ((t-key key) left right) tree
            (if left
                (find-left left)
                tree)))
        (rec (tree &optional parent type)
          (when tree
            (prog1
                (with-slots ((t-key key) left right) tree
                  (if (funcall key<= t-key key)
                      (cond
                        ((funcall key<= key t-key)
                         (cond
                           ((and left right)
                            (let ((sub-left (find-left right)))
                              (swap-kv sub-left tree)
                              (rec right tree :right)))
                           (t
                            (let ((sub (or left right)))
                              (case type
                                (:right (setf (%tree-right parent) sub))
                                (:left (setf (%tree-left parent) sub))
                                (nil (setf (avl-tree-tree avl-tree) sub))))
                            (decf count)))
                         t)
                        (t (rec right tree :right)))
                      (rec left tree :left)))
              (when parent (rotate parent))))))
     (rec tree))))

(defun clrtree (avl-tree)

 "This removes all the entries from AVL-TREE and returns the tree itself."
 (setf (avl-tree-tree avl-tree) nil)
 (setf (avl-tree-count avl-tree) 0)
 avl-tree)

(defun dfs-maptree (function avl-tree)

 "For each entry in AVL-TREE call the two-argument FUNCTION on

the key and value of each entry in depth-first order from left to right. Consequences are undefined if AVL-TREE is modified during this call."

 (with-slots (key<= tree) avl-tree
   (labels
       ((rec (tree)
          (when tree
            (with-slots ((t-key key) left right key value) tree
              (rec left)
              (funcall function key value)
              (rec right)))))
     (rec tree))))

(defun bfs-maptree (function avl-tree)

 "For each entry in AVL-TREE call the two-argument FUNCTION on

the key and value of each entry in breadth-first order from left to right. Consequences are undefined if AVL-TREE is modified during this call."

 (with-slots (key<= tree) avl-tree
   (let* ((queue (cons nil nil))
          (end queue))
     (labels ((pushend (value)
                (when value
                  (setf (cdr end) (cons value nil))
                  (setf end (cdr end))))
              (empty-p () (eq nil (cdr queue)))
              (popfront ()
                (prog1 (pop (cdr queue))
                  (when (empty-p) (setf end queue)))))
       (when tree
         (pushend tree)
         (loop until (empty-p)
            do (let ((current (popfront)))
                 (with-slots (key value left right) current
                   (funcall function key value)
                   (pushend left)
                   (pushend right)))))))))

(defun test ()

 (let ((tree (make-avl-tree #'<=))
       (printer (lambda (k v) (print (list k v)))))
   (loop for key in '(0 8 6 4 2 3 7 9 1 5 5)
      do (setf (gettree key tree) key))
   (loop for key in '(0 1 2 3 4 10)
      do (print (multiple-value-list (gettree key tree))))
   (terpri)
   (print tree)
   (terpri)
   (dfs-maptree printer tree)
   (terpri)
   (bfs-maptree printer tree)
   (terpri)
   (loop for key in '(0 1 2 3 10 7)
      do (print (remtree key tree)))
   (terpri)
   (print tree)
   (terpri)
   (clrtree tree)
   (print tree))
 (values))</lang>

D

Translation of: Java

<lang d>import std.stdio, std.algorithm;

class AVLtree {

   private Node* root;
   private static struct Node {
       private int key, balance;
       private Node* left, right, parent;
       this(in int k, Node* p) pure nothrow @safe @nogc {
           key = k;
           parent = p;
       }
   }
   public bool insert(in int key) pure nothrow @safe {
       if (root is null)
           root = new Node(key, null);
       else {
           Node* n = root;
           Node* parent;
           while (true) {
               if (n.key == key)
                   return false;
               parent = n;
               bool goLeft = n.key > key;
               n = goLeft ? n.left : n.right;
               if (n is null) {
                   if (goLeft) {
                       parent.left = new Node(key, parent);
                   } else {
                       parent.right = new Node(key, parent);
                   }
                   rebalance(parent);
                   break;
               }
           }
       }
       return true;
   }
   public void deleteKey(in int delKey) pure nothrow @safe @nogc {
       if (root is null)
           return;
       Node* n = root;
       Node* parent = root;
       Node* delNode = null;
       Node* child = root;
       while (child !is null) {
           parent = n;
           n = child;
           child = delKey >= n.key ? n.right : n.left;
           if (delKey == n.key)
               delNode = n;
       }
       if (delNode !is null) {
           delNode.key = n.key;
           child = n.left !is null ? n.left : n.right;
           if (root.key == delKey) {
               root = child;
           } else {
               if (parent.left is n) {
                   parent.left = child;
               } else {
                   parent.right = child;
               }
               rebalance(parent);
           }
       }
   }
   private void rebalance(Node* n) pure nothrow @safe @nogc {
       setBalance(n);
       if (n.balance == -2) {
           if (height(n.left.left) >= height(n.left.right))
               n = rotateRight(n);
           else
               n = rotateLeftThenRight(n);
       } else if (n.balance == 2) {
           if (height(n.right.right) >= height(n.right.left))
               n = rotateLeft(n);
           else
               n = rotateRightThenLeft(n);
       }
       if (n.parent !is null) {
           rebalance(n.parent);
       } else {
           root = n;
       }
   }
   private Node* rotateLeft(Node* a) pure nothrow @safe @nogc {
       Node* b = a.right;
       b.parent = a.parent;
       a.right = b.left;
       if (a.right !is null)
           a.right.parent = a;
       b.left = a;
       a.parent = b;
       if (b.parent !is null) {
           if (b.parent.right is a) {
               b.parent.right = b;
           } else {
               b.parent.left = b;
           }
       }
       setBalance(a, b);
       return b;
   }
   private Node* rotateRight(Node* a) pure nothrow @safe @nogc {
       Node* b = a.left;
       b.parent = a.parent;
       a.left = b.right;
       if (a.left !is null)
           a.left.parent = a;
       b.right = a;
       a.parent = b;
       if (b.parent !is null) {
           if (b.parent.right is a) {
               b.parent.right = b;
           } else {
               b.parent.left = b;
           }
       }
       setBalance(a, b);
       return b;
   }
   private Node* rotateLeftThenRight(Node* n) pure nothrow @safe @nogc {
       n.left = rotateLeft(n.left);
       return rotateRight(n);
   }
   private Node* rotateRightThenLeft(Node* n) pure nothrow @safe @nogc {
       n.right = rotateRight(n.right);
       return rotateLeft(n);
   }
   private int height(in Node* n) const pure nothrow @safe @nogc {
       if (n is null)
           return -1;
       return 1 + max(height(n.left), height(n.right));
   }
   private void setBalance(Node*[] nodes...) pure nothrow @safe @nogc {
       foreach (n; nodes)
           n.balance = height(n.right) - height(n.left);
   }
   public void printBalance() const @safe {
       printBalance(root);
   }
   private void printBalance(in Node* n) const @safe {
       if (n !is null) {
           printBalance(n.left);
           write(n.balance, ' ');
           printBalance(n.right);
       }
   }

}

void main() @safe {

   auto tree = new AVLtree();
   writeln("Inserting values 1 to 10");
   foreach (immutable i; 1 .. 11)
       tree.insert(i);
   write("Printing balance: ");
   tree.printBalance;

}</lang>

Output:
Inserting values 1 to 10
Printing balance: 0 0 0 1 0 0 0 0 1 0 

Go

A package: <lang go>package avl

// AVL tree adapted from Julienne Walker's presentation at // http://eternallyconfuzzled.com/tuts/datastructures/jsw_tut_avl.aspx. // This port uses similar indentifier names.

// The Key interface must be supported by data stored in the AVL tree. type Key interface {

   Less(Key) bool
   Eq(Key) bool

}

// Node is a node in an AVL tree. type Node struct {

   Data    Key      // anything comparable with Less and Eq.
   Balance int      // balance factor
   Link    [2]*Node // children, indexed by "direction", 0 or 1.

}

// A little readability function for returning the opposite of a direction, // where a direction is 0 or 1. Go inlines this. // Where JW writes !dir, this code has opp(dir). func opp(dir int) int {

   return 1 - dir

}

// single rotation func single(root *Node, dir int) *Node {

   save := root.Link[opp(dir)]
   root.Link[opp(dir)] = save.Link[dir]
   save.Link[dir] = root
   return save

}

// double rotation func double(root *Node, dir int) *Node {

   save := root.Link[opp(dir)].Link[dir]
   root.Link[opp(dir)].Link[dir] = save.Link[opp(dir)]
   save.Link[opp(dir)] = root.Link[opp(dir)]
   root.Link[opp(dir)] = save
   save = root.Link[opp(dir)]
   root.Link[opp(dir)] = save.Link[dir]
   save.Link[dir] = root
   return save

}

// adjust valance factors after double rotation func adjustBalance(root *Node, dir, bal int) {

   n := root.Link[dir]
   nn := n.Link[opp(dir)]
   switch nn.Balance {
   case 0:
       root.Balance = 0
       n.Balance = 0
   case bal:
       root.Balance = -bal
       n.Balance = 0
   default:
       root.Balance = 0
       n.Balance = bal
   }
   nn.Balance = 0

}

func insertBalance(root *Node, dir int) *Node {

   n := root.Link[dir]
   bal := 2*dir - 1
   if n.Balance == bal {
       root.Balance = 0
       n.Balance = 0
       return single(root, opp(dir))
   }
   adjustBalance(root, dir, bal)
   return double(root, opp(dir))

}

func insertR(root *Node, data Key) (*Node, bool) {

   if root == nil {
       return &Node{Data: data}, false
   }
   dir := 0
   if root.Data.Less(data) {
       dir = 1
   }
   var done bool
   root.Link[dir], done = insertR(root.Link[dir], data)
   if done {
       return root, true
   }
   root.Balance += 2*dir - 1
   switch root.Balance {
   case 0:
       return root, true
   case 1, -1:
       return root, false
   }
   return insertBalance(root, dir), true

}

// Insert a node into the AVL tree. // Data is inserted even if other data with the same key already exists. func Insert(tree **Node, data Key) {

   *tree, _ = insertR(*tree, data)

}

func removeBalance(root *Node, dir int) (*Node, bool) {

   n := root.Link[opp(dir)]
   bal := 2*dir - 1
   switch n.Balance {
   case -bal:
       root.Balance = 0
       n.Balance = 0
       return single(root, dir), false
   case bal:
       adjustBalance(root, opp(dir), -bal)
       return double(root, dir), false
   }
   root.Balance = -bal
   n.Balance = bal
   return single(root, dir), true

}

func removeR(root *Node, data Key) (*Node, bool) {

   if root == nil {
       return nil, false
   }
   if root.Data.Eq(data) {
       switch {
       case root.Link[0] == nil:
           return root.Link[1], false
       case root.Link[1] == nil:
           return root.Link[0], false
       }
       heir := root.Link[0]
       for heir.Link[1] != nil {
           heir = heir.Link[1]
       }
       root.Data = heir.Data
       data = heir.Data
   }
   dir := 0
   if root.Data.Less(data) {
       dir = 1
   }
   var done bool
   root.Link[dir], done = removeR(root.Link[dir], data)
   if done {
       return root, true
   }
   root.Balance += 1 - 2*dir
   switch root.Balance {
   case 1, -1:
       return root, true
   case 0:
       return root, false
   }
   return removeBalance(root, dir)

}

// Remove a single item from an AVL tree. // If key does not exist, function has no effect. func Remove(tree **Node, data Key) {

   *tree, _ = removeR(*tree, data)

}</lang> A demonstration program: <lang go>package main

import (

   "encoding/json"
   "fmt"
   "log"
   "avl"

)

type intKey int

// satisfy avl.Key func (k intKey) Less(k2 avl.Key) bool { return k < k2.(intKey) } func (k intKey) Eq(k2 avl.Key) bool { return k == k2.(intKey) }

// use json for cheap tree visualization func dump(tree *avl.Node) {

   b, err := json.MarshalIndent(tree, "", "   ")
   if err != nil {
       log.Fatal(err)
   }
   fmt.Println(string(b))

}

func main() {

   var tree *avl.Node
   fmt.Println("Empty tree:")
   dump(tree)
   fmt.Println("\nInsert test:")
   avl.Insert(&tree, intKey(3))
   avl.Insert(&tree, intKey(1))
   avl.Insert(&tree, intKey(4))
   avl.Insert(&tree, intKey(1))
   avl.Insert(&tree, intKey(5))
   dump(tree)
   fmt.Println("\nRemove test:")
   avl.Remove(&tree, intKey(3))
   avl.Remove(&tree, intKey(1))
   dump(tree)

}</lang>

Output:
Empty tree:
null

Insert test:
{
   "Data": 3,
   "Balance": 0,
   "Link": [
      {
         "Data": 1,
         "Balance": -1,
         "Link": [
            {
               "Data": 1,
               "Balance": 0,
               "Link": [
                  null,
                  null
               ]
            },
            null
         ]
      },
      {
         "Data": 4,
         "Balance": 1,
         "Link": [
            null,
            {
               "Data": 5,
               "Balance": 0,
               "Link": [
                  null,
                  null
               ]
            }
         ]
      }
   ]
}

Remove test:
{
   "Data": 4,
   "Balance": 0,
   "Link": [
      {
         "Data": 1,
         "Balance": 0,
         "Link": [
            null,
            null
         ]
      },
      {
         "Data": 5,
         "Balance": 0,
         "Link": [
            null,
            null
         ]
      }
   ]
}

Haskell

Solution of homework #4 from course http://www.seas.upenn.edu/~cis194/spring13/lectures.html. <lang haskell>data Tree a = Leaf | Node Int (Tree a) a (Tree a)

 deriving (Show, Eq)

foldTree :: Ord a => [a] -> Tree a foldTree = foldr insert Leaf

height Leaf = -1 height (Node h _ _ _) = h

depth a b = 1 + (height a `max` height b)

insert :: Ord a => a -> Tree a -> Tree a insert v Leaf = Node 1 Leaf v Leaf insert v t@(Node n left v' right)

   | v' < v = rotate $ Node n left v' (insert v right)
   | v' > v = rotate $ Node n (insert v left) v' right
   | otherwise = t

max' :: Ord a => Tree a -> Maybe a max' Leaf = Nothing max' (Node _ _ v right) = case right of

                              Leaf -> Just v
                              _    -> max' right

delete :: Ord a => a -> Tree a -> Tree a delete _ Leaf = Leaf delete x (Node h left v right)

   | x == v = maybe left (\m -> rotate $ Node h left m (delete m right)) (max' right)
   | x > v  = rotate $ Node h left v (delete x right)
   | x < v  = rotate $ Node h (delete x left) v right 

rotate :: Tree a -> Tree a rotate Leaf = Leaf -- left left case rotate (Node h (Node lh ll lv lr) v r)

   | lh - height r > 1 && height ll - height lr > 0 = 
     Node lh ll lv (Node (depth r lr) lr v r)

-- right right case rotate (Node h l v (Node rh rl rv rr))

   | rh - height l > 1 && height rr - height rl > 0 =
     Node rh (Node (depth l rl) l v rl) rv rr

-- left right case rotate (Node h (Node lh ll lv (Node rh rl rv rr)) v r)

   | lh - height r > 1 = Node h (Node (rh+1) (Node (lh-1) ll lv rl) rv rr) v r

-- right left case rotate (Node h l v (Node rh (Node lh ll lv lr) rv rr))

   | rh - height l > 1 = Node h l v (Node (lh+1) ll lv (Node (rh-1) lr rv rr))

-- re-weighting rotate (Node h l v r) = let (l', r') = (rotate l, rotate r)

                       in Node (depth l' r') l' v r'

draw :: Show a => Tree a -> String draw t = "\n" ++ draw' t 0 ++ "\n"

 where
   draw' Leaf _ = []
   draw' (Node h l v r) d = draw' r (d+1) ++ node ++ draw' l (d+1)
     where
       node = padding d ++ show (v, h) ++ "\n"
       padding n = replicate (n*4) ' '</lang>
*Main> putStr $ draw $ foldTree [1..15]

            (15,0)
        (14,1)
            (13,0)
    (12,2)
            (11,0)
        (10,1)
            (9,0)
(8,3)
            (7,0)
        (6,1)
            (5,0)
    (4,2)
            (3,0)
        (2,1)
            (1,0)

Java

This code has been cobbled together from various online examples. It's not easy to find a clear and complete explanation of AVL trees. Textbooks tend to concentrate on red-black trees because of their better efficiency. (AVL trees need to make 2 passes through the tree when inserting and deleting: one down to find the node to operate upon and one up to rebalance the tree.) <lang java>public class AVLtree {

   private Node root;
   private class Node {
       private int key;
       private int balance;
       private int height;
       private Node left, right, parent;
       Node(int k, Node p) {
           key = k;
           parent = p;
       }
   }
   public boolean insert(int key) {
       if (root == null)
           root = new Node(key, null);
       else {
           Node n = root;
           Node parent;
           while (true) {
               if (n.key == key)
                   return false;
               parent = n;
               boolean goLeft = n.key > key;
               n = goLeft ? n.left : n.right;
               if (n == null) {
                   if (goLeft) {
                       parent.left = new Node(key, parent);
                   } else {
                       parent.right = new Node(key, parent);
                   }
                   rebalance(parent);
                   break;
               }
           }
       }
       return true;
   }
   private void delete(Node node){
       if(node.left == null && node.right == null){
           if(node.parent == null) root = null;
           else{
               Node parent = node.parent;
               if(parent.left == node){
                   parent.left = null;
               }else parent.right = null;
               rebalance(parent);
           }
           return;
       }
       if(node.left!=null){
           Node child = node.left;
           while (child.right!=null) child = child.right;
           node.key = child.key;
           delete(child);
       }else{
           Node child = node.right;
           while (child.left!=null) child = child.left;
           node.key = child.key;
           delete(child);
       }
   }
   public void delete(int delKey) {
       if (root == null)
           return;
       Node node = root;
       Node child = root;
       while (child != null) {
           node = child;
           child = delKey >= node.key ? node.right : node.left;
           if (delKey == node.key) {
               delete(node);
               return;
           }
       }
   }
   private void rebalance(Node n) {
       setBalance(n);
       if (n.balance == -2) {
           if (height(n.left.left) >= height(n.left.right))
               n = rotateRight(n);
           else
               n = rotateLeftThenRight(n);
       } else if (n.balance == 2) {
           if (height(n.right.right) >= height(n.right.left))
               n = rotateLeft(n);
           else
               n = rotateRightThenLeft(n);
       }
       if (n.parent != null) {
           rebalance(n.parent);
       } else {
           root = n;
       }
   }
   private Node rotateLeft(Node a) {
       Node b = a.right;
       b.parent = a.parent;
       a.right = b.left;
       if (a.right != null)
           a.right.parent = a;
       b.left = a;
       a.parent = b;
       if (b.parent != null) {
           if (b.parent.right == a) {
               b.parent.right = b;
           } else {
               b.parent.left = b;
           }
       }
       setBalance(a, b);
       return b;
   }
   private Node rotateRight(Node a) {
       Node b = a.left;
       b.parent = a.parent;
       a.left = b.right;
       if (a.left != null)
           a.left.parent = a;
       b.right = a;
       a.parent = b;
       if (b.parent != null) {
           if (b.parent.right == a) {
               b.parent.right = b;
           } else {
               b.parent.left = b;
           }
       }
       setBalance(a, b);
       return b;
   }
   private Node rotateLeftThenRight(Node n) {
       n.left = rotateLeft(n.left);
       return rotateRight(n);
   }
   private Node rotateRightThenLeft(Node n) {
       n.right = rotateRight(n.right);
       return rotateLeft(n);
   }
   private int height(Node n) {
       if (n == null)
           return -1;
       return n.height;
   }
   private void setBalance(Node... nodes) {
       for (Node n : nodes)
           reheight(n);
           n.balance = height(n.right) - height(n.left);
   }
   public void printBalance() {
       printBalance(root);
   }
   private void printBalance(Node n) {
       if (n != null) {
           printBalance(n.left);
           System.out.printf("%s ", n.balance);
           printBalance(n.right);
       }
   }
   private void reheight(Node node){
       if(node!=null){
           node.height=1 + Math.max(height(node.left), height(node.right));
       }
   }
   public static void main(String[] args) {
       AVLtree tree = new AVLtree();
       System.out.println("Inserting values 1 to 10");
       for (int i = 1; i < 10; i++)
           tree.insert(i);
       System.out.print("Printing balance: ");
       tree.printBalance();
   }

}</lang>

Inserting values 1 to 10
Printing balance: 0 0 0 1 0 1 0 0 0

More elaborate version

See AVL_tree/Java

Kotlin

Translation of: Java

<lang scala>// version 1.0.6

class AvlTree {

   private var root: Node? = null
  
   private class Node(var key: Int, var parent: Node?) {
       var balance: Int = 0
       var left : Node? = null
       var right: Node? = null
   }
   fun insert(key: Int): Boolean {
       if (root == null)
           root = Node(key, null)
       else {
           var n: Node? = root
           var parent: Node
           while (true) {
               if (n!!.key == key) return false
               parent = n
               val goLeft = n.key > key
               n = if (goLeft) n.left else n.right
               if (n == null) {
                   if (goLeft) 
                       parent.left  = Node(key, parent)
                   else        
                       parent.right = Node(key, parent)
                   rebalance(parent)
                   break
               }
           }
       }
       return true
   }
   fun delete(delKey: Int) {
       if (root == null) return
       var n:       Node? = root
       var parent:  Node? = root
       var delNode: Node? = null
       var child:   Node? = root
       while (child != null) {
           parent = n
           n = child
           child = if (delKey >= n.key) n.right else n.left
           if (delKey == n.key) delNode = n
       }
       if (delNode != null) {
           delNode.key = n!!.key
           child = if (n.left != null) n.left else n.right
           if (root!!.key == delKey) 
               root = child
           else {
               if (parent!!.left == n) 
                   parent.left = child
               else
                   parent.right = child
               rebalance(parent)
           }
       }
   }
   private fun rebalance(n: Node) {
       setBalance(n)
       var nn = n
       if (nn.balance == -2)
           if (height(nn.left!!.left) >= height(nn.left!!.right))
               nn = rotateRight(nn)
           else
               nn = rotateLeftThenRight(nn)
       else if (nn.balance == 2)
           if (height(nn.right!!.right) >= height(nn.right!!.left))
               nn = rotateLeft(nn)
           else
               nn = rotateRightThenLeft(nn)
       if (nn.parent != null) rebalance(nn.parent!!)
       else root = nn
   }
   private fun rotateLeft(a: Node): Node {
       val b: Node? = a.right
       b!!.parent = a.parent
       a.right = b.left
       if (a.right != null) a.right!!.parent = a 
       b.left = a
       a.parent = b 
       if (b.parent != null) {
           if (b.parent!!.right == a) 
               b.parent!!.right = b
           else 
               b.parent!!.left = b
       } 
       setBalance(a, b)
       return b
   }
   private fun rotateRight(a: Node): Node { 
       val b: Node? = a.left
       b!!.parent = a.parent
       a.left = b.right 
       if (a.left != null) a.left!!.parent = a 
       b.right = a
       a.parent = b 
       if (b.parent != null) {
           if (b.parent!!.right == a) 
               b.parent!!.right = b
           else 
               b.parent!!.left = b;
       }
       setBalance(a, b) 
       return b
   }
   private fun rotateLeftThenRight(n: Node): Node {
       n.left = rotateLeft(n.left!!)
       return rotateRight(n)
   }

   private fun rotateRightThenLeft(n: Node): Node {
       n.right = rotateRight(n.right!!)
       return rotateLeft(n)
   }

   private fun height(n: Node?): Int {
       if (n == null) return -1
       return 1 + Math.max(height(n.left), height(n.right))
   }

   private fun setBalance(vararg nodes: Node) {
       for (n in nodes) n.balance = height(n.right) - height(n.left)
   }
   public fun printKey() {
       printKey(root)
       println()
   }

   private fun printKey(n: Node?) {
       if (n != null) {
           printKey(n.left)
           print("${n.key} ")
           printKey(n.right)
       }
   } 
   
   public fun printBalance() {
       printBalance(root)
       println()
   }

   private fun printBalance(n: Node?) {
       if (n != null) {
           printBalance(n.left)
           print("${n.balance} ")
           printBalance(n.right)
       }
   }                               

}

fun main(args: Array<String>) {

   val tree = AvlTree()
   println("Inserting values 1 to 10")
   for (i in 1..10) tree.insert(i)
   print("Printing key     : ")
   tree.printKey()
   print("Printing balance : ")
   tree.printBalance()

}</lang>

Output:
Inserting values 1 to 10
Printing key     : 1 2 3 4 5 6 7 8 9 10
Printing balance : 0 0 0 1 0 0 0 0 1 0

Objective-C

Translation of: Java
This example is incomplete. It is missing an @interface for AVLTree and also missing any @interface or @implementation for AVLTreeNode. Please ensure that it meets all task requirements and remove this message.

<lang Objective-C> @implementation AVLTree

-(BOOL)insertWithKey:(NSInteger)key {

   if (self.root == nil) {
       self.root = [[AVLTreeNode alloc]initWithKey:key andParent:nil];
   } else {
       
       AVLTreeNode *n = self.root;
       AVLTreeNode *parent;
       
       while (true) {
           
           if (n.key == key) {
               return false;
           }
           
           parent = n;
           
           BOOL goLeft = n.key > key;
           n = goLeft ? n.left : n.right;
           
           if (n == nil) {
               
               if (goLeft) {
                   parent.left = [[AVLTreeNode alloc]initWithKey:key andParent:parent];
               } else {
                   parent.right = [[AVLTreeNode alloc]initWithKey:key andParent:parent];
               }
               [self rebalanceStartingAtNode:parent];
               break;
           }
       }
   }
   
   return true;

}

-(void)rebalanceStartingAtNode:(AVLTreeNode*)n {

   [self setBalance:@[n]];
   
   if (n.balance == -2) {
       if ([self height:(n.left.left)] >= [self height:n.left.right]) {
           n = [self rotateRight:n];
       } else {
           n = [self rotateLeftThenRight:n];
       }
   } else if (n.balance == 2) {
       if ([self height:n.right.right] >= [self height:n.right.left]) {
           n = [self rotateLeft:n];
       } else {
           n = [self rotateRightThenLeft:n];
       }
   }
   
   if (n.parent != nil) {
       [self rebalanceStartingAtNode:n.parent];
   } else {
       self.root = n;
   }

}


-(AVLTreeNode*)rotateRight:(AVLTreeNode*)a {

   AVLTreeNode *b = a.left;
   b.parent = a.parent;
   
   a.left = b.right;
   
   if (a.left != nil) {
       a.left.parent = a;
   }
   
   b.right = a;
   a.parent = b;
   
   if (b.parent != nil) {
       if (b.parent.right == a) {
           b.parent.right = b;
       } else {
           b.parent.left = b;
       }
   }
   
   [self setBalance:@[a,b]];
   return b;
   

}

-(AVLTreeNode*)rotateLeftThenRight:(AVLTreeNode*)n {

   n.left = [self rotateLeft:n.left];
   return [self rotateRight:n];
   

}

-(AVLTreeNode*)rotateRightThenLeft:(AVLTreeNode*)n {

   n.right = [self rotateRight:n.right];
   return [self rotateLeft:n];

}

-(AVLTreeNode*)rotateLeft:(AVLTreeNode*)a {

   //set a's right node as b
   AVLTreeNode* b = a.right;
   //set b's parent as a's parent (which could be nil)
   b.parent = a.parent;
   //in case b had a left child transfer it to a
   a.right = b.left;
   
   // after changing a's reference to the right child, make sure the parent is set too
   if (a.right != nil) {
       a.right.parent = a;
   }
   
   // switch a over to the left to be b's left child
   b.left = a;
   a.parent = b;
   
   if (b.parent != nil) {
       if (b.parent.right == a) {
           b.parent.right = b;
       } else {
           b.parent.right = b;
       }
   }
   
   [self setBalance:@[a,b]];
   
   return b;
   

}


-(void) setBalance:(NSArray*)nodesArray {

   for (AVLTreeNode* n in nodesArray) {
       
       n.balance = [self height:n.right] - [self height:n.left];
   }
   

}

-(int)height:(AVLTreeNode*)n {

   if (n == nil) {
       return -1;
   }
   
   return 1 + MAX([self height:n.left], [self height:n.right]);

}

-(void)printKey:(AVLTreeNode*)n {

   if (n != nil) {
       [self printKey:n.left];
       NSLog(@"%ld", n.key);
       [self printKey:n.right];
   }

}

-(void)printBalance:(AVLTreeNode*)n {

   if (n != nil) {
       [self printBalance:n.left];
       NSLog(@"%ld", n.balance);
       [self printBalance:n.right];
   }

} @end -- test

int main(int argc, const char * argv[]) {

   @autoreleasepool {
       AVLTree *tree = [AVLTree new];
       NSLog(@"inserting values 1 to 6");
       [tree insertWithKey:1];
       [tree insertWithKey:2];
       [tree insertWithKey:3];
       [tree insertWithKey:4];
       [tree insertWithKey:5];
       [tree insertWithKey:6];
       
       NSLog(@"printing balance: ");
       [tree printBalance:tree.root];
       
       NSLog(@"printing key: ");
       [tree printKey:tree.root];
   }
   return 0;

}

</lang>

Output:
inserting values 1 to 6
printing balance:
0
0
0
0
1
0

printing key:
1
2
3
4
5
6

Phix

Translated from the C version at http://www.geeksforgeeks.org/avl-tree-set-2-deletion
The standard distribution includes demo\rosetta\AVL_tree.exw, which contains a slightly longer but perhaps more readable version, with a command line equivalent of https://www.cs.usfca.edu/~galles/visualization/AVLtree.html as well as a simple tree structure display routine and additional verification code (both modelled on the C version found on this page) <lang Phix>enum KEY = 0,

    LEFT,
    HEIGHT,    -- (NB +/-1 gives LEFT or RIGHT)
    RIGHT

sequence tree = {} integer freelist = 0

function newNode(object key) integer node

   if freelist=0 then
       node = length(tree)+1
       tree &= {key,NULL,1,NULL}
   else
       node = freelist
       freelist = tree[freelist]
       tree[node+KEY..node+RIGHT] = {key,NULL,1,NULL}
   end if
   return node

end function

function height(integer node)

   return iff(node=NULL?0:tree[node+HEIGHT])

end function

procedure setHeight(integer node)

   tree[node+HEIGHT] = max(height(tree[node+LEFT]), height(tree[node+RIGHT]))+1

end procedure

function rotate(integer node, integer direction) integer idirection = LEFT+RIGHT-direction integer pivot = tree[node+idirection]

   {tree[pivot+direction],tree[node+idirection]} = {node,tree[pivot+direction]}
   setHeight(node)
   setHeight(pivot)
   return pivot

end function

function getBalance(integer N)

   return iff(N==NULL ? 0 : height(tree[N+LEFT])-height(tree[N+RIGHT]))

end function

function insertNode(integer node, object key)

   if node==NULL then
       return newNode(key)
   end if
   integer c = compare(key,tree[node+KEY])
   if c!=0 then
       integer direction = HEIGHT+c    -- LEFT or RIGHT
       tree[node+direction] = insertNode(tree[node+direction], key)
       setHeight(node)
       integer balance = trunc(getBalance(node)/2) -- +/-1 (or 0)
       if balance then
           direction = HEIGHT-balance  -- LEFT or RIGHT
           c = compare(key,tree[tree[node+direction]+KEY])
           if c=balance then
               tree[node+direction] = rotate(tree[node+direction],direction)
           end if
           if c!=0 then
               node = rotate(node,LEFT+RIGHT-direction)
           end if
       end if
   end if
   return node

end function

function minValueNode(integer node)

   while 1 do
       integer next = tree[node+LEFT]
       if next=NULL then exit end if
       node = next
   end while
   return node

end function

function deleteNode(integer root, object key) integer c

   if root=NULL then return root end if
   c = compare(key,tree[root+KEY])
   if c=-1 then
       tree[root+LEFT] = deleteNode(tree[root+LEFT], key)
   elsif c=+1 then
       tree[root+RIGHT] = deleteNode(tree[root+RIGHT], key)
   elsif tree[root+LEFT]==NULL
      or tree[root+RIGHT]==NULL then
       integer temp = iff(tree[root+LEFT] ? tree[root+LEFT] : tree[root+RIGHT])
       if temp==NULL then  -- No child case
           {temp,root} = {root,NULL}
       else                -- One child case
           tree[root+KEY..root+RIGHT] = tree[temp+KEY..temp+RIGHT]
       end if
       tree[temp+KEY] = freelist
       freelist = temp
   else                    -- Two child case
       integer temp = minValueNode(tree[root+RIGHT])
       tree[root+KEY] = tree[temp+KEY]
       tree[root+RIGHT] = deleteNode(tree[root+RIGHT], tree[temp+KEY])
   end if
   if root=NULL then return root end if
   setHeight(root)
   integer balance = trunc(getBalance(root)/2)
   if balance then
       integer direction = HEIGHT-balance
       c = compare(getBalance(tree[root+direction]),0)
       if c=-balance then
           tree[root+direction] = rotate(tree[root+direction],direction)
       end if
       root = rotate(root,LEFT+RIGHT-direction)
   end if
   return root

end function

procedure inOrder(integer node)

   if node!=NULL then
       inOrder(tree[node+LEFT])
       printf(1, "%d ", tree[node+KEY])
       inOrder(tree[node+RIGHT])
   end if

end procedure

integer root = NULL sequence test = shuffle(tagset(50003))

   for i=1 to length(test) do
       root = insertNode(root,test[i])
   end for
   test = shuffle(tagset(50000))
   for i=1 to length(test) do
       root = deleteNode(root,test[i])
   end for
   inOrder(root)</lang>
Output:
50001 50002 50003

Lua

<lang Lua>AVL={balance=0} AVL.__mt={__index = AVL}


function AVL:new(list)

 local o={}  
 setmetatable(o, AVL.__mt)
 for _,v in ipairs(list or {}) do
   o=o:insert(v)
 end
 return o

end

function AVL:rebalance()

 local rotated=false
 if self.balance>1 then
   if self.right.balance<0 then
     self.right, self.right.left.right, self.right.left = self.right.left, self.right, self.right.left.right
     self.right.right.balance=self.right.balance>-1 and 0 or 1
     self.right.balance=self.right.balance>0 and 2 or 1
   end
   self, self.right.left, self.right = self.right, self, self.right.left
   self.left.balance=1-self.balance
   self.balance=self.balance==0 and -1 or 0
   rotated=true
 elseif self.balance<-1 then
   if self.left.balance>0 then
     self.left, self.left.right.left, self.left.right = self.left.right, self.left, self.left.right.left
     self.left.left.balance=self.left.balance<1 and 0 or -1
     self.left.balance=self.left.balance<0 and -2 or -1
   end
   self, self.left.right, self.left = self.left, self, self.left.right
   self.right.balance=-1-self.balance
   self.balance=self.balance==0 and 1 or 0
   rotated=true
 end
 return self,rotated

end

function AVL:insert(v)

 if not self.value then 
   self.value=v
   self.balance=0
   return self,1
 end
 local grow
 if v==self.value then
   return self,0
 elseif v<self.value then
   if not self.left then self.left=self:new() end
   self.left,grow=self.left:insert(v)
   self.balance=self.balance-grow
 else
   if not self.right then self.right=self:new() end
   self.right,grow=self.right:insert(v)
   self.balance=self.balance+grow
 end
 self,rotated=self:rebalance()
 return self, (rotated or self.balance==0) and 0 or grow 

end

function AVL:delete_move(dir,other,mul)

 if self[dir] then
   local sb2,v
   self[dir], sb2, v=self[dir]:delete_move(dir,other,mul)
   self.balance=self.balance+sb2*mul
   self,sb2=self:rebalance()
   return self,(sb2 or self.balance==0) and -1 or 0,v
 else
   return self[other],-1,self.value
 end

end

function AVL:delete(v,isSubtree)

 local grow=0
 if v==self.value then
   local v
   if self.balance>0 then
     self.right,grow,v=self.right:delete_move("left","right",-1)
   elseif self.left then
     self.left,grow,v=self.left:delete_move("right","left",1)
     grow=-grow
   else
     return not isSubtree and AVL:new(),-1
   end
   self.value=v
   self.balance=self.balance+grow
 elseif v<self.value and self.left then
   self.left,grow=self.left:delete(v,true)
   self.balance=self.balance-grow
 elseif v>self.value and self.right then
   self.right,grow=self.right:delete(v,true)
   self.balance=self.balance+grow
 else
   return self,0
 end
 self,rotated=self:rebalance()
 return self, grow~=0 and (rotated or self.balance==0) and -1 or 0

end

-- output functions

function AVL:toList(list)

 if not self.value then return {} end
 list=list or {}
 if self.left then self.left:toList(list) end
 list[#list+1]=self.value
 if self.right then self.right:toList(list) end
 return list

end

function AVL:dump(depth)

 if not self.value then return end
 depth=depth or 0
 if self.right then self.right:dump(depth+1) end
 print(string.rep("    ",depth)..self.value.." ("..self.balance..")")
 if self.left then self.left:dump(depth+1) end

end

-- test

local test=AVL:new{1,10,5,15,20,3,5,14,7,13,2,8,3,4,5,10,9,8,7}

test:dump() print("\ninsert 17:") test=test:insert(17) test:dump() print("\ndelete 10:") test=test:delete(10) test:dump() print("\nlist:") print(unpack(test:toList())) </lang>

Output:
            20 (0)
        15 (1)
    14 (1)
        13 (0)
10 (-1)
            9 (0)
        8 (0)
            7 (0)
    5 (-1)
                4 (0)
            3 (1)
        2 (1)
            1 (0)

insert 17:
            20 (0)
        17 (0)
            15 (0)
    14 (1)
        13 (0)
10 (-1)
            9 (0)
        8 (0)
            7 (0)
    5 (-1)
                4 (0)
            3 (1)
        2 (1)
            1 (0)

delete 10:
            20 (0)
        17 (0)
            15 (0)
    14 (1)
        13 (0)
9 (-1)
        8 (-1)
            7 (0)
    5 (-1)
                4 (0)
            3 (1)
        2 (1)
            1 (0)

list:
1       2       3       4       5       7       8       9       13      14      15      17      20

Sidef

Translation of: D

<lang ruby>class AVLtree {

   has root = nil
   struct Node {
       Number key,
       Number balance = 0,
       Node left = nil,
       Node right = nil,
       Node parent = nil,
   }
   method insert(key) {
       if (root == nil) {
           root = Node(key)
           return true
       }
       var n = root
       var parent = nil
       loop {
           if (n.key == key) {
               return false
           }
           parent = n
           var goLeft = (n.key > key)
           n = (goLeft ? n.left : n.right)
           if (n == nil) {
               var tn = Node(key, parent: parent)
               if (goLeft) {
                   parent.left = tn
               }
               else {
                   parent.right = tn
               }
               self.rebalance(parent)
               break
           }
       }
       return true
   }
   method delete_key(delKey) {
       if (root == nil) { return }
       var n = root
       var parent = root
       var delNode = nil
       var child = root
       while (child != nil) {
           parent = n
           n = child
           child = (delKey >= n.key ? n.right : n.left)
           if (delKey == n.key) {
               delNode = n
           }
       }
       if (delNode != nil) {
           delNode.key = n.key
           child = (n.left != nil ? n.left : n.right)
           if (root.key == delKey) {
               root = child
           }
           else {
               if (parent.left == n) {
                   parent.left = child
               }
               else {
                   parent.right = child
               }
               self.rebalance(parent)
           }
       }
   }
   method rebalance(n) {
       if (n == nil) { return }
       self.setBalance(n)
       given (n.balance) {
           when (-2) {
               if (self.height(n.left.left) >= self.height(n.left.right)) {
                   n = self.rotate(n, :right)
               }
               else {
                   n = self.rotate_twice(n, :left, :right)
               }
           }
           when (2) {
               if (self.height(n.right.right) >= self.height(n.right.left)) {
                   n = self.rotate(n, :left)
               }
               else {
                   n = self.rotate_twice(n, :right, :left)
               }
           }
       }
       if (n.parent != nil) {
           self.rebalance(n.parent)
       }
       else {
           root = n
       }
   }
   method rotate(a, dir) {
       var b = (dir == :left ? a.right : a.left)
       b.parent = a.parent
       (dir == :left) ? (a.right = b.left)
                      : (a.left  = b.right)
       if (a.right != nil) {
           a.right.parent = a
       }
       b.$dir = a
       a.parent = b
       if (b.parent != nil) {
           if (b.parent.right == a) {
               b.parent.right = b
           }
           else {
               b.parent.left = b
           }
       }
       self.setBalance(a, b)
       return b
   }
   method rotate_twice(n, dir1, dir2) {
       n.left = self.rotate(n.left, dir1)
       self.rotate(n, dir2)
   }
   method height(n) {
       if (n == nil) { return -1 }
       1 + Math.max(self.height(n.left), self.height(n.right))
   }
   method setBalance(*nodes) {
       nodes.each { |n|
           n.balance = (self.height(n.right) - self.height(n.left))
       }
   }
   method printBalance {
       self.printBalance(root)
   }
   method printBalance(n) {
       if (n != nil) {
           self.printBalance(n.left)
           print(n.balance, ' ')
           self.printBalance(n.right)
       }
   }

}

var tree = AVLtree()

say "Inserting values 1 to 10" 10.times { |i| tree.insert(i) } print "Printing balance: " tree.printBalance</lang>

Output:
Inserting values 1 to 10
Printing balance: 0 0 0 1 0 0 0 0 1 0

Simula

<lang simula>CLASS AVL; BEGIN

   ! AVL TREE ADAPTED FROM JULIENNE WALKER'S PRESENTATION AT ;
   ! HTTP://ETERNALLYCONFUZZLED.COM/TUTS/DATASTRUCTURES/JSW_TUT_AVL.ASPX. ;
   ! THIS PORT USES SIMILAR INDENTIFIER NAMES. ;
    
   ! THE KEY INTERFACE MUST BE SUPPORTED BY DATA STORED IN THE AVL TREE. ;
   CLASS KEY;
   VIRTUAL:
       PROCEDURE LESS  IS BOOLEAN PROCEDURE LESS (K); REF(KEY) K;;
       PROCEDURE EQUAL IS BOOLEAN PROCEDURE EQUAL(K); REF(KEY) K;;
   BEGIN
   END KEY;
    
   ! NODE IS A NODE IN AN AVL TREE. ;
   CLASS NODE(DATA); REF(KEY) DATA;  ! ANYTHING COMPARABLE WITH LESS AND EQUAL. ;
   BEGIN
       INTEGER  BALANCE;             ! BALANCE FACTOR ;
       REF(NODE) ARRAY LINK(0:1);    ! CHILDREN, INDEXED BY "DIRECTION", 0 OR 1. ;
   END NODE;
    
   ! A LITTLE READABILITY FUNCTION FOR RETURNING THE OPPOSITE OF A DIRECTION, ;
   ! WHERE A DIRECTION IS 0 OR 1.  GO INLINES THIS. ;
   ! WHERE JW WRITES !DIR, THIS CODE HAS OPP(DIR). ;
   INTEGER PROCEDURE OPP(DIR); INTEGER DIR;
   BEGIN
       OPP := 1 - DIR;
   END OPP;
    
   ! SINGLE ROTATION ;
   REF(NODE) PROCEDURE SINGLE(ROOT, DIR); REF(NODE) ROOT; INTEGER DIR;
   BEGIN
       REF(NODE) SAVE;
       SAVE :- ROOT.LINK(OPP(DIR));
       ROOT.LINK(OPP(DIR)) :- SAVE.LINK(DIR);
       SAVE.LINK(DIR) :- ROOT;
       SINGLE :- SAVE;
   END SINGLE;
    
   ! DOUBLE ROTATION ;
   REF(NODE) PROCEDURE DOUBLE(ROOT, DIR); REF(NODE) ROOT; INTEGER DIR;
   BEGIN
       REF(NODE) SAVE;
       SAVE :- ROOT.LINK(OPP(DIR)).LINK(DIR);
    
       ROOT.LINK(OPP(DIR)).LINK(DIR) :- SAVE.LINK(OPP(DIR));
       SAVE.LINK(OPP(DIR)) :- ROOT.LINK(OPP(DIR));
       ROOT.LINK(OPP(DIR)) :- SAVE;
    
       SAVE :- ROOT.LINK(OPP(DIR));
       ROOT.LINK(OPP(DIR)) :- SAVE.LINK(DIR);
       SAVE.LINK(DIR) :- ROOT;
       DOUBLE :- SAVE;
   END DOUBLE;
    
   ! ADJUST VALANCE FACTORS AFTER DOUBLE ROTATION ;
   PROCEDURE ADJUSTBALANCE(ROOT, DIR, BAL); REF(NODE) ROOT; INTEGER DIR, BAL;
   BEGIN
       REF(NODE) N, NN;
       N :- ROOT.LINK(DIR);
       NN :- N.LINK(OPP(DIR));
       IF NN.BALANCE = 0   THEN BEGIN ROOT.BALANCE := 0;    N.BALANCE := 0;   END ELSE
       IF NN.BALANCE = BAL THEN BEGIN ROOT.BALANCE := -BAL; N.BALANCE := 0;   END
                           ELSE BEGIN ROOT.BALANCE := 0;    N.BALANCE := BAL; END;
       NN.BALANCE := 0;
   END ADJUSTBALANCE;
    
   REF(NODE) PROCEDURE INSERTBALANCE(ROOT, DIR); REF(NODE) ROOT; INTEGER DIR;
   BEGIN REF(NODE) N;  INTEGER BAL;
       N :- ROOT.LINK(DIR);
       BAL := 2*DIR - 1;
       IF N.BALANCE = BAL THEN
       BEGIN
           ROOT.BALANCE := 0;
           N.BALANCE := 0;
           INSERTBALANCE :- SINGLE(ROOT, OPP(DIR));
       END ELSE
       BEGIN
           ADJUSTBALANCE(ROOT, DIR, BAL);
           INSERTBALANCE :- DOUBLE(ROOT, OPP(DIR));
       END;
   END INSERTBALANCE;
   
   CLASS TUPLE(N,B); REF(NODE) N; BOOLEAN B;;
    
   REF(TUPLE) PROCEDURE INSERTR(ROOT, DATA); REF(NODE) ROOT; REF(KEY) DATA;
   BEGIN
       IF ROOT == NONE THEN
           INSERTR :- NEW TUPLE(NEW NODE(DATA), FALSE)
       ELSE
       BEGIN
           REF(TUPLE) T;  BOOLEAN DONE;  INTEGER DIR;
           DIR := 0;
           IF ROOT.DATA.LESS(DATA) THEN
               DIR := 1;
           T :- INSERTR(ROOT.LINK(DIR), DATA);
           ROOT.LINK(DIR) :- T.N;
           DONE := T.B;
           IF DONE THEN INSERTR :- NEW TUPLE(ROOT, TRUE) ELSE
           BEGIN
               ROOT.BALANCE := ROOT.BALANCE + 2*DIR - 1;
               IF ROOT.BALANCE = 0 THEN
                   INSERTR :- NEW TUPLE(ROOT, TRUE) ELSE
               IF ROOT.BALANCE = 1 OR ROOT.BALANCE = -1 THEN
                   INSERTR :- NEW TUPLE(ROOT, FALSE)
               ELSE
                   INSERTR :- NEW TUPLE(INSERTBALANCE(ROOT, DIR), TRUE);
           END;
       END;
   END INSERTR;
    
   ! INSERT A NODE INTO THE AVL TREE. ;
   ! DATA IS INSERTED EVEN IF OTHER DATA WITH THE SAME KEY ALREADY EXISTS. ;
   PROCEDURE INSERT(TREE, DATA); NAME TREE; REF(NODE) TREE; REF(KEY) DATA;
   BEGIN
       REF(TUPLE) T;
       T :- INSERTR(TREE, DATA);
       TREE :- T.N;
   END INSERT;
    
   REF(TUPLE) PROCEDURE REMOVEBALANCE(ROOT, DIR); REF(NODE) ROOT; INTEGER DIR;
   BEGIN REF(NODE) N;  INTEGER BAL;
       N :- ROOT.LINK(OPP(DIR));
       BAL := 2*DIR - 1;
   
       IF N.BALANCE = -BAL THEN
       BEGIN ROOT.BALANCE := 0; N.BALANCE := 0;
           REMOVEBALANCE :- NEW TUPLE(SINGLE(ROOT, DIR), FALSE);
       END ELSE
   
       IF N.BALANCE = BAL THEN
       BEGIN ADJUSTBALANCE(ROOT, OPP(DIR), -BAL);
           REMOVEBALANCE :- NEW TUPLE(DOUBLE(ROOT, DIR), FALSE);
       END ELSE
   
       BEGIN ROOT.BALANCE := -BAL; N.BALANCE := BAL;
           REMOVEBALANCE :- NEW TUPLE(SINGLE(ROOT, DIR), TRUE);
       END
   END REMOVEBALANCE;
    
   REF(TUPLE) PROCEDURE REMOVER(ROOT, DATA); REF(NODE) ROOT; REF(KEY) DATA;
   BEGIN INTEGER DIR; BOOLEAN DONE; REF(TUPLE) T;
       IF ROOT == NONE THEN
           REMOVER :- NEW TUPLE(NONE, FALSE)
       ELSE
       IF ROOT.DATA.EQUAL(DATA) THEN
       BEGIN
           IF ROOT.LINK(0) == NONE THEN
           BEGIN
               REMOVER :- NEW TUPLE(ROOT.LINK(1), FALSE);
               GOTO L;
           END
   
           ELSE IF ROOT.LINK(1) == NONE THEN
           BEGIN
               REMOVER :- NEW TUPLE(ROOT.LINK(0), FALSE);
               GOTO L;
           END
   
           ELSE
           BEGIN REF(NODE) HEIR;
               HEIR :- ROOT.LINK(0);
               WHILE HEIR.LINK(1) =/= NONE DO
                   HEIR :- HEIR.LINK(1);
               ROOT.DATA :- HEIR.DATA;
               DATA :- HEIR.DATA;
           END;
       END;
       DIR := 0;
       IF ROOT.DATA.LESS(DATA) THEN
           DIR := 1;
       T :- REMOVER(ROOT.LINK(DIR), DATA); ROOT.LINK(DIR) :- T.N; DONE := T.B;
       IF DONE THEN
       BEGIN
           REMOVER :- NEW TUPLE(ROOT, TRUE);
           GOTO L;
       END;
       ROOT.BALANCE := ROOT.BALANCE + 1 - 2*DIR;
       IF ROOT.BALANCE = 1 OR ROOT.BALANCE = -1 THEN
           REMOVER :- NEW TUPLE(ROOT, TRUE)
   
       ELSE IF ROOT.BALANCE = 0 THEN
           REMOVER :- NEW TUPLE(ROOT, FALSE)
   
       ELSE
           REMOVER :- REMOVEBALANCE(ROOT, DIR);
   L:
   END REMOVER;
    
   ! REMOVE A SINGLE ITEM FROM AN AVL TREE. ;
   ! IF KEY DOES NOT EXIST, FUNCTION HAS NO EFFECT. ;
   PROCEDURE REMOVE(TREE, DATA); NAME TREE; REF(NODE) TREE; REF(KEY) DATA;
   BEGIN REF(TUPLE) T;
       T :- REMOVER(TREE, DATA);
       TREE :- T.N;
   END REMOVEM;

END.</lang> A demonstration program: <lang simula>EXTERNAL CLASS AVL;

AVL BEGIN

   KEY CLASS INTEGERKEY(I); INTEGER I;
   BEGIN
       BOOLEAN PROCEDURE LESS (K); REF(KEY) K; LESS  := I < K QUA INTEGERKEY.I;
       BOOLEAN PROCEDURE EQUAL(K); REF(KEY) K; EQUAL := I = K QUA INTEGERKEY.I;
   END INTEGERKEY;
   PROCEDURE DUMP(ROOT); REF(NODE) ROOT;
   BEGIN
       IF ROOT =/= NONE THEN
       BEGIN
           DUMP(ROOT.LINK(0));
           OUTINT(ROOT.DATA QUA INTEGERKEY.I, 0); OUTTEXT(" ");
           DUMP(ROOT.LINK(1));
       END
   END DUMP;
   INTEGER I;
   REF(NODE) TREE;
   OUTTEXT("Empty tree: "); DUMP(TREE); OUTIMAGE;

   FOR I := 3, 1, 4, 1, 5 DO
   BEGIN OUTTEXT("Insert "); OUTINT(I, 0); OUTTEXT(": ");
         INSERT(TREE, NEW INTEGERKEY(I)); DUMP(TREE); OUTIMAGE;
   END;

   FOR I := 3, 1 DO
   BEGIN OUTTEXT("Remove "); OUTINT(I, 0); OUTTEXT(": ");
         REMOVE(TREE, NEW INTEGERKEY(I)); DUMP(TREE); OUTIMAGE;
   END;

END.</lang>

Output:
Empty tree:
Insert 3: 3
Insert 1: 1 3
Insert 4: 1 3 4
Insert 1: 1 1 3 4
Insert 5: 1 1 3 4 5
Remove 3: 1 1 4 5
Remove 1: 1 4 5

Tcl

Note that in general, you would not normally write a tree directly in Tcl when writing code that required an  =  map, but would rather use either an array variable or a dictionary value (which are internally implemented using a high-performance hash table engine).

Works with: Tcl version 8.6

<lang tcl>package require TclOO

namespace eval AVL {

   # Class for the overall tree; manages real public API
   oo::class create Tree {

variable root nil class constructor Template:NodeClass AVL::Node { set class [oo::class create Node [list superclass $nodeClass]]

# Create a nil instance to act as a leaf sentinel set nil [my NewNode ""] set root [$nil ref]

# Make nil be special oo::objdefine $nil { method height {} {return 0} method key {} {error "no key possible"} method value {} {error "no value possible"} method destroy {} { # Do nothing (doesn't prohibit destruction entirely) } method print {indent increment} { # Do nothing } } }

# How to actually manufacture a new node method NewNode {key} { if {![info exists nil]} {set nil ""} $class new $key $nil [list [namespace current]::my NewNode] }

# Create a new node in the tree and return it method insert {key} { set node [my NewNode $key] if {$root eq $nil} { set root $node } else { $root insert $node } return $node }

# Find the node for a particular key method lookup {key} { for {set node $root} {$node ne $nil} {} { if {[$node key] == $key} { return $node } elseif {[$node key] > $key} { set node [$node left] } else { set node [$node right] } } error "no such node" }

# Print a tree out, one node per line method print {{indent 0} {increment 1}} { $root print $indent $increment return }

   }
   # Class of an individual node; may be subclassed
   oo::class create Node {

variable key value left right 0 refcount newNode constructor {n nil instanceFactory} { set newNode $instanceFactory set 0 [expr {$nil eq "" ? [self] : $nil}] set key $n set value {} set left [set right $0] set refcount 0 } method ref {} { incr refcount return [self] } method destroy {} { if {[incr refcount -1] < 1} next } method New {key value} { set n [{*}$newNode $key] $n setValue $value return $n }

# Getters method key {} {return $key} method value {} {return $value} method left {} {return $left} method right {args} {return $right}

# Setters method setValue {newValue} { set value $newValue } method setLeft {node} { # Non-trivial because of reference management $node ref $left destroy set left $node return } method setRight {node} { # Non-trivial because of reference management $node ref $right destroy set right $node return }

# Print a node and its descendents method print {indent increment} { puts [format "%s%s => %s" [string repeat " " $indent] $key $value] incr indent $increment $left print $indent $increment $right print $indent $increment }

method height {} { return [expr {max([$left height], [$right height]) + 1}] } method balanceFactor {} { expr {[$left height] - [$right height]} }

method insert {node} { # Simple insertion if {$key > [$node key]} { if {$left eq $0} { my setLeft $node } else { $left insert $node } } else { if {$right eq $0} { my setRight $node } else { $right insert $node } }

# Rebalance this node if {[my balanceFactor] > 1} { if {[$left balanceFactor] < 0} { $left rotateLeft } my rotateRight } elseif {[my balanceFactor] < -1} { if {[$right balanceFactor] > 0} { $right rotateRight } my rotateLeft } }

# AVL Rotations method rotateLeft {} { set new [my New $key $value] set key [$right key] set value [$right value] $new setLeft $left $new setRight [$right left] my setLeft $new my setRight [$right right] }

method rotateRight {} { set new [my New $key $value] set key [$left key] set value [$left value] $new setLeft [$left right] $new setRight $right my setLeft [$left left] my setRight $new }

   }

}</lang> Demonstrating: <lang tcl># Create an AVL tree AVL::Tree create tree

  1. Populate it with some semi-random data

for {set i 33} {$i < 127} {incr i} {

   [tree insert $i] setValue \

[string repeat [format %c $i] [expr {1+int(rand()*5)}]] }

  1. Print it out

tree print

  1. Look up a few values in the tree

for {set i 0} {$i < 10} {incr i} {

   set k [expr {33+int((127-33)*rand())}]
   puts $k=>[[tree lookup $k] value]

}

  1. Destroy the tree and all its nodes

tree destroy</lang>

Output:
64 => @@@
 48 => 000
  40 => (((((
   36 => $
    34 => """
     33 => !!
     35 => #####
    38 => &&&
     37 => %
     39 => ''''
   44 => ,
    42 => **
     41 => )))
     43 => +++++
    46 => .
     45 => --
     47 => ////
  56 => 888
   52 => 444
    50 => 22222
     49 => 1111
     51 => 333
    54 => 6
     53 => 555
     55 => 77
   60 => <<<<
    58 => ::::
     57 => 99999
     59 => ;
    62 => >>>
     61 => ===
     63 => ??
 96 => ``
  80 => PPPPP
   72 => HHHH
    68 => DDD
     66 => BBBB
      65 => A
      67 => CCC
     70 => FFF
      69 => EEEE
      71 => GGG
    76 => LL
     74 => JJ
      73 => III
      75 => KKKK
     78 => N
      77 => MMMMM
      79 => OOOOO
   88 => XXX
    84 => TTTT
     82 => R
      81 => QQQQ
      83 => SSSS
     86 => V
      85 => UUU
      87 => WWW
    92 => \\\
     90 => Z
      89 => YYYYY
      91 => [
     94 => ^^^^^
      93 => ]]]]
      95 => _____
  112 => pppp
   104 => hh
    100 => d
     98 => bb
      97 => aaa
      99 => cccc
     102 => ff
      101 => eeee
      103 => gggg
    108 => lll
     106 => j
      105 => iii
      107 => kkkkk
     110 => nn
      109 => m
      111 => o
   120 => x
    116 => ttt
     114 => rrrrr
      113 => qqqqq
      115 => s
     118 => vvv
      117 => uuuu
      119 => wwww
    124 => ||||
     122 => zzzz
      121 => y
      123 => {{{
     125 => }}}}
      126 => ~~~~
53=>555
55=>77
60=><<<<
100=>d
99=>cccc
93=>]]]]
57=>99999
56=>888
47=>////
39=>''''

TypeScript

Translation of: Java

For use within a project, consider adding "export default" to AVLtree class declaration. <lang JavaScript>/** A single node in an AVL tree */ class AVLnode <T> {

   balance: number
   left: AVLnode<T>
   right: AVLnode<T>
   constructor(public key: T, public parent: AVLnode<T> = null) {
       this.balance = 0
       this.left = null
       this.right = null
   }

}

/** The balanced AVL tree */ class AVLtree <T> {

   // public members organized here
   constructor() {
       this.root = null
   }
   insert(key: T): boolean {
       if (this.root === null) {
           this.root = new AVLnode<T>(key)
       } else {
           let n: AVLnode<T> = this.root,
               parent: AVLnode<T> = null
           while (true) {
               if(n.key === key) {
                   return false
               }
               parent = n
               let goLeft: boolean = n.key > key
               n = goLeft ? n.left : n.right
               if (n === null) {
                   if (goLeft) {
                       parent.left = new AVLnode<T>(key, parent)
                   } else {
                       parent.right = new AVLnode<T>(key, parent)
                   }
                   this.rebalance(parent)
                   break
               }
           }
       }
       return true
   }
   deleteKey(delKey: T): void {
       if (this.root === null) {
           return
       }
       let n: AVLnode<T> = this.root,
           parent: AVLnode<T> = this.root,
           delNode: AVLnode<T> = null,
           child: AVLnode<T> = this.root
       
       while (child !== null) {
           parent = n
           n = child
           child = delKey >= n.key ? n.right : n.left
           if (delKey === n.key) {
               delNode = n
           }
       }
       if (delNode !== null) {
           delNode.key = n.key
           child = n.left !== null ? n.left : n.right
           if (this.root.key === delKey) {
               this.root = child
           } else {
               if (parent.left === n) {
                   parent.left = child
               } else {
                   parent.right = child
               }
               this.rebalance(parent)
           }
       }
   }
   treeBalanceString(n: AVLnode<T> = this.root): string {
       if (n !== null) {
           return `${this.treeBalanceString(n.left)} ${n.balance} ${this.treeBalanceString(n.right)}`
       }
       return ""
   }
   toString(n: AVLnode<T> = this.root): string {
       if (n !== null) {
           return `${this.toString(n.left)} ${n.key} ${this.toString(n.right)}`
       }
       return ""
   }


   // private members organized here
   private root: AVLnode<T>
   private rotateLeft(a: AVLnode<T>): AVLnode<T> {
       let b: AVLnode<T> = a.right
       b.parent = a.parent
       a.right = b.left
       if (a.right !== null) {
           a.right.parent = a
       }
       b.left = a
       a.parent = b
       if (b.parent !== null) {
           if (b.parent.right === a) {
               b.parent.right = b
           } else {
               b.parent.left = b
           }
       }
       this.setBalance(a)
       this.setBalance(b)
       return b
   }
   private rotateRight(a: AVLnode<T>): AVLnode<T> {
       let b: AVLnode<T> = a.left
       b.parent = a.parent
       a.left = b.right
       if (a.left !== null) {
           a.left.parent = a
       }
       b.right = a
       a.parent = b
       if (b.parent !== null) {
           if (b.parent.right === a) {
               b.parent.right = b
           } else {
               b.parent.left = b
           }
       }
       this.setBalance(a)
       this.setBalance(b)
       return b
   }
   private rotateLeftThenRight(n: AVLnode<T>): AVLnode<T> {
       n.left = this.rotateLeft(n.left)
       return this.rotateRight(n)
   }
   private rotateRightThenLeft(n: AVLnode<T>): AVLnode<T> {
       n.right = this.rotateRight(n.right)
       return this.rotateLeft(n)
   }
   private rebalance(n: AVLnode<T>): void {
       this.setBalance(n)
       if (n.balance === -2) {
           if(this.height(n.left.left) >= this.height(n.left.right)) {
               n = this.rotateRight(n)
           } else {
               n = this.rotateLeftThenRight(n)
           }
       } else if (n.balance === 2) {
           if(this.height(n.right.right) >= this.height(n.right.left)) {
               n = this.rotateLeft(n)
           } else {
               n = this.rotateRightThenLeft(n)
           }
       }
       if (n.parent !== null) {
           this.rebalance(n.parent)
       } else {
           this.root = n
       }
   }
   private height(n: AVLnode<T>): number {
       if (n === null) {
           return -1
       }
       return 1 + Math.max(this.height(n.left), this.height(n.right))
   }
   private setBalance(n: AVLnode<T>): void {
       n.balance = this.height(n.right) - this.height(n.left)
   }
   
   public showNodeBalance(n: AVLnode<T>): string {
       if (n !== null) {
           return `${this.showNodeBalance(n.left)} ${n.balance} ${this.showNodeBalance(n.right)}`
       }
       return ""
   }

} </lang>