Sorting algorithms/Patience sort: Difference between revisions

From Rosetta Code
Content added Content deleted
m (→‎{{header|Phix}}: pp_StrFmt tweaks)
No edit summary
Line 593: Line 593:
}
}
}</lang>
}</lang>
{{out}}
<pre>[-31, 0, 1, 2, 4, 65, 83, 99, 782]</pre>

=={{header|Javascript}}==
<lang Javascript>const patienceSort = (nums) => {
const piles = []

for (let i = 0; i < nums.length; i++) {
const num = nums[i]
const destinationPileIndex = piles.findIndex(
(pile) => num >= pile[pile.length - 1]
)
if (destinationPileIndex === -1) {
piles.push([num])
} else {
piles[destinationPileIndex].push(num)
}
}

for (let i = 0; i < nums.length; i++) {
let destinationPileIndex = 0
for (let p = 1; p < piles.length; p++) {
const pile = piles[p]
if (pile[0] < piles[destinationPileIndex][0]) {
destinationPileIndex = p
}
}
const distPile = piles[destinationPileIndex]
nums[i] = distPile.shift()
if (distPile.length === 0) {
piles.splice(destinationPileIndex, 1)
}
}

return nums
}
console.log(patienceSort([10,6,-30,9,18,1,-20]));
</lang>
{{out}}
{{out}}
<pre>[-31, 0, 1, 2, 4, 65, 83, 99, 782]</pre>
<pre>[-31, 0, 1, 2, 4, 65, 83, 99, 782]</pre>

Revision as of 19:00, 3 July 2020

Task
Sorting algorithms/Patience sort
You are encouraged to solve this task according to the task description, using any language you may know.

Sort an array of numbers (of any convenient size) into ascending order using   Patience sorting.


Related task



C

Takes integers as input, prints out usage on incorrect invocation <lang C>

  1. include<stdlib.h>
  2. include<stdio.h>

int* patienceSort(int* arr,int size){ int decks[size][size],i,j,min,pickedRow;

int *count = (int*)calloc(sizeof(int),size),*sortedArr = (int*)malloc(size*sizeof(int));

for(i=0;i<size;i++){ for(j=0;j<size;j++){ if(count[j]==0 || (count[j]>0 && decks[j][count[j]-1]>=arr[i])){ decks[j][count[j]] = arr[i]; count[j]++; break; } } }

min = decks[0][count[0]-1]; pickedRow = 0;

for(i=0;i<size;i++){ for(j=0;j<size;j++){ if(count[j]>0 && decks[j][count[j]-1]<min){ min = decks[j][count[j]-1]; pickedRow = j; } } sortedArr[i] = min; count[pickedRow]--;

for(j=0;j<size;j++) if(count[j]>0){ min = decks[j][count[j]-1]; pickedRow = j; break; } }

free(count); free(decks);

return sortedArr; }

int main(int argC,char* argV[]) { int *arr, *sortedArr, i;

if(argC==0) printf("Usage : %s <integers to be sorted separated by space>"); else{ arr = (int*)malloc((argC-1)*sizeof(int));

for(i=1;i<=argC;i++) arr[i-1] = atoi(argV[i]);

sortedArr = patienceSort(arr,argC-1);

for(i=0;i<argC-1;i++) printf("%d ",sortedArr[i]); }

return 0; } </lang> Invocation and output :

C:\rosettaCode>patienceSort.exe 4 65 2 -31 0 99 83 781 1
-31 0 1 2 4 65 83 99 781

C++

<lang cpp>#include <iostream>

  1. include <vector>
  2. include <stack>
  3. include <iterator>
  4. include <algorithm>
  5. include <cassert>

template <class E> struct pile_less {

 bool operator()(const std::stack<E> &pile1, const std::stack<E> &pile2) const {
   return pile1.top() < pile2.top();
 }

};

template <class E> struct pile_greater {

 bool operator()(const std::stack<E> &pile1, const std::stack<E> &pile2) const {
   return pile1.top() > pile2.top();
 }

};


template <class Iterator> void patience_sort(Iterator first, Iterator last) {

 typedef typename std::iterator_traits<Iterator>::value_type E;
 typedef std::stack<E> Pile;
 std::vector<Pile> piles;
 // sort into piles
 for (Iterator it = first; it != last; it++) {
   E& x = *it;
   Pile newPile;
   newPile.push(x);
   typename std::vector<Pile>::iterator i =
     std::lower_bound(piles.begin(), piles.end(), newPile, pile_less<E>());
   if (i != piles.end())
     i->push(x);
   else
     piles.push_back(newPile);
 }
 // priority queue allows us to merge piles efficiently
 // we use greater-than comparator for min-heap
 std::make_heap(piles.begin(), piles.end(), pile_greater<E>());
 for (Iterator it = first; it != last; it++) {
   std::pop_heap(piles.begin(), piles.end(), pile_greater<E>());
   Pile &smallPile = piles.back();
   *it = smallPile.top();
   smallPile.pop();
   if (smallPile.empty())
     piles.pop_back();
   else
     std::push_heap(piles.begin(), piles.end(), pile_greater<E>());
 }
 assert(piles.empty());

}

int main() {

 int a[] = {4, 65, 2, -31, 0, 99, 83, 782, 1};
 patience_sort(a, a+sizeof(a)/sizeof(*a));
 std::copy(a, a+sizeof(a)/sizeof(*a), std::ostream_iterator<int>(std::cout, ", "));
 std::cout << std::endl;
 return 0;

}</lang>

Output:
-31, 0, 1, 2, 4, 65, 83, 99, 782, 

Clojure

<lang clojure> (defn patience-insert

 "Inserts a value into the sequence where each element is a stack.
  Comparison replaces the definition of less than.
  Uses the greedy strategy."
 [comparison sequence value]
 (lazy-seq
  (if (empty? sequence) `((~value)) ;; If there are no places to put the "card", make a new stack
      (let [stack (first sequence)  
            top       (peek stack)]
        (if (comparison value top)
          (cons (conj stack value)  ;; Either put the card in a stack or recurse to the next stack
                (rest sequence))   
          (cons stack               
                (patience-insert comparison
                                 (rest sequence)
                                 value)))))))

(defn patience-remove

 "Removes the value from the top of the first stack it shows up in.
  Leaves the stacks otherwise intact."
 [sequence value]
 (lazy-seq
  (if (empty? sequence) nil              ;; If there are no stacks, we have no work to do
      (let [stack (first sequence)
            top       (peek stack)]
        (if (= top value)                ;; Are we there yet?
          (let [left-overs (pop stack)]  
            (if (empty? left-overs)      ;; Handle the case that the stack is empty and needs to be removed
              (rest sequence)            
              (cons left-overs           
                    (rest sequence))))   
          (cons stack                    
                (patience-remove (rest sequence)
                                 value)))))))

(defn patience-recover

 "Builds a sorted sequence from a list of patience stacks.
  The given comparison takes the place of 'less than'"
 [comparison sequence]
 (loop [sequence sequence
        sorted         []]
   (if (empty? sequence) sorted 
       (let [smallest  (reduce #(if (comparison %1 %2) %1 %2)  ;; Gets the smallest element in the list
                               (map peek sequence))            
             remaining    (patience-remove sequence smallest)] 
         (recur remaining                    
                (conj sorted smallest)))))) ;; Recurse over the remaining values and add the new smallest to the end of the sorted list

(defn patience-sort

 "Sorts the sequence by comparison.
  First builds the list of valid patience stacks.
  Then recovers the sorted list from those.
  If you don't supply a comparison, assumes less than."
 ([comparison sequence]
    (->> (reduce (comp doall ;; This is prevent a stack overflow by making sure all work is done when it needs to be
                       (partial patience-insert comparison)) ;; Insert all the values into the list of stacks
                 nil                                         
                 sequence)
         (patience-recover comparison)))              ;; After we have the stacks, send it off to recover the sorted list
 ([sequence]
    ;; In the case we don't have an operator, defer to ourselves with less than
    (patience-sort < sequence)))

Sort the test sequence and print it

(println (patience-sort [4 65 2 -31 0 99 83 782 1])) </lang>

Output:
[-31 0 1 2 4 65 83 99 782]

D

Translation of: Python

<lang d>import std.stdio, std.array, std.range, std.algorithm;

void patienceSort(T)(T[] items) /*pure nothrow @safe*/ if (__traits(compiles, T.init < T.init)) {

   //SortedRange!(int[][], q{ a.back < b.back }) piles;
   T[][] piles;
   foreach (x; items) {
       auto p = [x];
       immutable i = piles.length -
                     piles
                     .assumeSorted!q{ a.back < b.back }
                     .upperBound(p)
                     .length;
       if (i != piles.length)
           piles[i] ~= x;
       else
           piles ~= p;
   }
   piles.nWayUnion!q{ a > b }.copy(items.retro);

}

void main() {

   auto data = [4, 65, 2, -31, 0, 99, 83, 782, 1];
   data.patienceSort;
   assert(data.isSorted);
   data.writeln;

}</lang>

Output:
[-31, 0, 1, 2, 4, 65, 83, 99, 782]

Elixir

<lang elixir>defmodule Sort do

 def patience_sort(list) do
   piles = deal_pile(list, [])
   merge_pile(piles, [])
 end
 
 defp deal_pile([], piles), do: piles
 defp deal_pile([h|t], piles) do
   index = Enum.find_index(piles, fn pile -> hd(pile) <= h end)
   new_piles = if index, do:   add_element(piles, index, h, []),
                         else: piles ++ h
   deal_pile(t, new_piles)
 end
 
 defp add_element([h|t], 0,     elm, work), do: Enum.reverse(work, [[elm | h] | t])
 defp add_element([h|t], index, elm, work), do: add_element(t, index-1, elm, [h | work])
 
 defp merge_pile([], list), do: list
 defp merge_pile(piles, list) do
   {max, index} = max_index(piles)
   merge_pile(delete_element(piles, index, []), [max | list])
 end
 
 defp max_index([h|t]), do: max_index(t, hd(h), 1, 0)
 
 defp max_index([], max, _, max_i), do: {max, max_i}
 defp max_index([h|t], max, index, _) when hd(h)>max, do: max_index(t, hd(h), index+1, index)
 defp max_index([_|t], max, index, max_i)           , do: max_index(t, max, index+1, max_i)
 
 defp delete_element([h|t], 0, work) when length(h)==1, do: Enum.reverse(work, t)
 defp delete_element([h|t], 0, work)                  , do: Enum.reverse(work, [tl(h) | t])
 defp delete_element([h|t], index, work), do: delete_element(t, index-1, [h | work])

end

IO.inspect Sort.patience_sort [4, 65, 2, -31, 0, 99, 83, 782, 1]</lang>

Output:
[-31, 0, 1, 2, 4, 65, 83, 99, 782]

Go

This version is written for int slices, but can be easily modified to sort other types. <lang go>package main

import (

 "fmt"
 "container/heap"
 "sort"

)

type IntPile []int func (self IntPile) Top() int { return self[len(self)-1] } func (self *IntPile) Pop() int {

   x := (*self)[len(*self)-1]
   *self = (*self)[:len(*self)-1]
   return x

}

type IntPilesHeap []IntPile func (self IntPilesHeap) Len() int { return len(self) } func (self IntPilesHeap) Less(i, j int) bool { return self[i].Top() < self[j].Top() } func (self IntPilesHeap) Swap(i, j int) { self[i], self[j] = self[j], self[i] } func (self *IntPilesHeap) Push(x interface{}) { *self = append(*self, x.(IntPile)) } func (self *IntPilesHeap) Pop() interface{} {

   x := (*self)[len(*self)-1]
   *self = (*self)[:len(*self)-1]
   return x

}

func patience_sort (n []int) {

 var piles []IntPile
 // sort into piles
 for _, x := range n {
   j := sort.Search(len(piles), func (i int) bool { return piles[i].Top() >= x })
   if j != len(piles) {
     piles[j] = append(piles[j], x)
   } else {
     piles = append(piles, IntPile{ x })
   }
 }
 // priority queue allows us to merge piles efficiently
 hp := IntPilesHeap(piles)
 heap.Init(&hp)
 for i, _ := range n {
   smallPile := heap.Pop(&hp).(IntPile)
   n[i] = smallPile.Pop()
   if len(smallPile) != 0 {
     heap.Push(&hp, smallPile)
   }
 }
 if len(hp) != 0 {
   panic("something went wrong")
 }

}

func main() {

   a := []int{4, 65, 2, -31, 0, 99, 83, 782, 1}
   patience_sort(a)
   fmt.Println(a)

}</lang>

Output:
[-31 0 1 2 4 65 83 99 782]

Haskell

<lang haskell>import Control.Monad.ST import Control.Monad import Data.Array.ST import Data.List import qualified Data.Set as S

newtype Pile a = Pile [a]

instance Eq a => Eq (Pile a) where

 Pile (x:_) == Pile (y:_) = x == y

instance Ord a => Ord (Pile a) where

 Pile (x:_) `compare` Pile (y:_) = x `compare` y

patienceSort :: Ord a => [a] -> [a] patienceSort = mergePiles . sortIntoPiles where

 sortIntoPiles :: Ord a => [a] -> a
 sortIntoPiles lst = runST $ do
     piles <- newSTArray (1, length lst) []
     let bsearchPiles x len = aux 1 len where
           aux lo hi | lo > hi = return lo
                     | otherwise = do
             let mid = (lo + hi) `div` 2
             m <- readArray piles mid
             if head m < x then
               aux (mid+1) hi
             else
               aux lo (mid-1)
         f len x = do
           i <- bsearchPiles x len
           writeArray piles i . (x:) =<< readArray piles i
           return $ if i == len+1 then len+1 else len
     len <- foldM f 0 lst
     e <- getElems piles
     return $ take len e
     where newSTArray :: Ix i => (i,i) -> e -> ST s (STArray s i e)
           newSTArray = newArray
 mergePiles :: Ord a => a -> [a]
 mergePiles = unfoldr f . S.fromList . map Pile where
   f pq = case S.minView pq of
            Nothing -> Nothing
            Just (Pile [x], pq') -> Just (x, pq')
            Just (Pile (x:xs), pq') -> Just (x, S.insert (Pile xs) pq')

main :: IO () main = print $ patienceSort [4, 65, 2, -31, 0, 99, 83, 782, 1]</lang>

Output:
[-31,0,1,2,4,65,83,99,782]

J

The data structure for append and transfer are as x argument a list with cdr as the stacks and car as the data to sort or growing sorted list; and the y argument being the index of pile to operate on. New piles are created by using the new value, accomplished by selecting the entire x argument as a result. Filtering removes empty stacks during unpiling. <lang J> Until =: 2 :'u^:(0=v)^:_' Filter =: (#~`)(`:6)

locate_for_append =: 1 i.~ (<&> {:S:0) NB. returns an index append =: (<@:(({::~ >:) , 0 {:: [)`]`(}.@:[)}) :: [ pile =: (, append locate_for_append)/@:(;/) NB. pile DATA

smallest =: ((>:@:i. , ]) <./)@:({:S:0@:}.) NB. index of pile with smallest value , that value transfer =: (}:&.>@:({~ {.) , <@:((0{::[),{:@:]))`(1 0 * ])`[} unpile =: >@:{.@:((0<#S:0)Filter@:(transfer smallest)Until(1=#))@:(a:&,)

patience_sort =: unpile@:pile

assert (/:~ -: patience_sort) ?@$~30 NB. test with 30 randomly chosen integers

Show =: 1 : 0

smoutput y
u y
smoutput A=:x ,&:< y
x u y

)

pile_demo =: (, append Show locate_for_append)/@:(;/) NB. pile DATA unpile_demo =: >@:{.@:((0<#S:0)Filter@:(transfer Show smallest)Until(1=#))@:(a:&,) patience_sort_demo =: unpile_demo@:pile_demo </lang>

   JVERSION
Engine: j701/2011-01-10/11:25
Library: 8.02.12
Platform: Linux 64
Installer: unknown
InstallPath: /usr/share/j/8.0.2
   
   patience_sort_demo Show ?.@$~10
4 6 8 6 5 8 6 6 6 9
┌─────┬─┐
│┌─┬─┐│0│
││6│9││ │
│└─┴─┘│ │
└─────┴─┘
┌───────┬─┐
│┌─┬───┐│1│
││6│9 6││ │
│└─┴───┘│ │
└───────┴─┘
┌─────────┬─┐
│┌─┬─┬───┐│2│
││6│6│9 6││ │
│└─┴─┴───┘│ │
└─────────┴─┘
┌───────────┬─┐
│┌─┬─┬─┬───┐│3│
││8│6│6│9 6││ │
│└─┴─┴─┴───┘│ │
└───────────┴─┘
┌─────────────┬─┐
│┌─┬─┬─┬─┬───┐│0│
││5│8│6│6│9 6││ │
│└─┴─┴─┴─┴───┘│ │
└─────────────┴─┘
┌───────────────┬─┐
│┌─┬───┬─┬─┬───┐│4│
││6│8 5│6│6│9 6││ │
│└─┴───┴─┴─┴───┘│ │
└───────────────┴─┘
┌─────────────────┬─┐
│┌─┬─┬───┬─┬─┬───┐│5│
││8│6│8 5│6│6│9 6││ │
│└─┴─┴───┴─┴─┴───┘│ │
└─────────────────┴─┘
┌───────────────────┬─┐
│┌─┬─┬─┬───┬─┬─┬───┐│0│
││6│8│6│8 5│6│6│9 6││ │
│└─┴─┴─┴───┴─┴─┴───┘│ │
└───────────────────┴─┘
┌─────────────────────┬─┐
│┌─┬───┬─┬───┬─┬─┬───┐│0│
││4│8 6│6│8 5│6│6│9 6││ │
│└─┴───┴─┴───┴─┴─┴───┘│ │
└─────────────────────┴─┘
┌──────────────────────┬───┐
│┌┬─────┬─┬───┬─┬─┬───┐│1 4│
│││8 6 4│6│8 5│6│6│9 6││   │
│└┴─────┴─┴───┴─┴─┴───┘│   │
└──────────────────────┴───┘
┌─────────────────────┬───┐
│┌─┬───┬─┬───┬─┬─┬───┐│3 5│
││4│8 6│6│8 5│6│6│9 6││   │
│└─┴───┴─┴───┴─┴─┴───┘│   │
└─────────────────────┴───┘
┌─────────────────────┬───┐
│┌───┬───┬─┬─┬─┬─┬───┐│1 6│
││4 5│8 6│6│8│6│6│9 6││   │
│└───┴───┴─┴─┴─┴─┴───┘│   │
└─────────────────────┴───┘
┌─────────────────────┬───┐
│┌─────┬─┬─┬─┬─┬─┬───┐│2 6│
││4 5 6│8│6│8│6│6│9 6││   │
│└─────┴─┴─┴─┴─┴─┴───┘│   │
└─────────────────────┴───┘
┌─────────────────────┬───┐
│┌───────┬─┬─┬─┬─┬───┐│3 6│
││4 5 6 6│8│8│6│6│9 6││   │
│└───────┴─┴─┴─┴─┴───┘│   │
└─────────────────────┴───┘
┌─────────────────────┬───┐
│┌─────────┬─┬─┬─┬───┐│3 6│
││4 5 6 6 6│8│8│6│9 6││   │
│└─────────┴─┴─┴─┴───┘│   │
└─────────────────────┴───┘
┌─────────────────────┬───┐
│┌───────────┬─┬─┬───┐│3 6│
││4 5 6 6 6 6│8│8│9 6││   │
│└───────────┴─┴─┴───┘│   │
└─────────────────────┴───┘
┌─────────────────────┬───┐
│┌─────────────┬─┬─┬─┐│1 8│
││4 5 6 6 6 6 6│8│8│9││   │
│└─────────────┴─┴─┴─┘│   │
└─────────────────────┴───┘
┌─────────────────────┬───┐
│┌───────────────┬─┬─┐│1 8│
││4 5 6 6 6 6 6 8│8│9││   │
│└───────────────┴─┴─┘│   │
└─────────────────────┴───┘
┌─────────────────────┬───┐
│┌─────────────────┬─┐│1 9│
││4 5 6 6 6 6 6 8 8│9││   │
│└─────────────────┴─┘│   │
└─────────────────────┴───┘
4 5 6 6 6 6 6 8 8 9
   

Java

<lang java>import java.util.*;

public class PatienceSort {

   public static <E extends Comparable<? super E>> void sort (E[] n) {
       List<Pile<E>> piles = new ArrayList<Pile<E>>();
       // sort into piles
       for (E x : n) {
           Pile<E> newPile = new Pile<E>();
           newPile.push(x);
           int i = Collections.binarySearch(piles, newPile);
           if (i < 0) i = ~i;
           if (i != piles.size())
               piles.get(i).push(x);
           else
               piles.add(newPile);
       }

       // priority queue allows us to retrieve least pile efficiently
       PriorityQueue<Pile<E>> heap = new PriorityQueue<Pile<E>>(piles);
       for (int c = 0; c < n.length; c++) {
           Pile<E> smallPile = heap.poll();
           n[c] = smallPile.pop();
           if (!smallPile.isEmpty())
               heap.offer(smallPile);
       }
       assert(heap.isEmpty());
   }

   private static class Pile<E extends Comparable<? super E>> extends Stack<E> implements Comparable<Pile<E>> {
       public int compareTo(Pile<E> y) { return peek().compareTo(y.peek()); }
   }
   public static void main(String[] args) {

Integer[] a = {4, 65, 2, -31, 0, 99, 83, 782, 1}; sort(a); System.out.println(Arrays.toString(a));

   }

}</lang>

Output:
[-31, 0, 1, 2, 4, 65, 83, 99, 782]

JavaScript

<lang Javascript>const patienceSort = (nums) => {

 const piles = []
 for (let i = 0; i < nums.length; i++) {
   const num = nums[i]
   const destinationPileIndex = piles.findIndex(
     (pile) => num >= pile[pile.length - 1]
   )
   if (destinationPileIndex === -1) {
     piles.push([num])
   } else {
     piles[destinationPileIndex].push(num)
   }
 }
 for (let i = 0; i < nums.length; i++) {
   let destinationPileIndex = 0
   for (let p = 1; p < piles.length; p++) {
     const pile = piles[p]
     if (pile[0] < piles[destinationPileIndex][0]) {
       destinationPileIndex = p
     }
   }
   const distPile = piles[destinationPileIndex]
   nums[i] = distPile.shift()
   if (distPile.length === 0) {
     piles.splice(destinationPileIndex, 1)
   }
 }
 return nums

} console.log(patienceSort([10,6,-30,9,18,1,-20])); </lang>

Output:
[-31, 0, 1, 2, 4, 65, 83, 99, 782]

Julia

<lang julia>function patiencesort(list::Vector{T}) where T

   piles = Vector{Vector{T}}()
   for n in list
       if isempty(piles) || 
           (i = findfirst(pile -> n <= pile[end], piles)) ==  nothing
           push!(piles, [n])
       else
           push!(piles[i], n)
       end
   end
   mergesorted(piles)

end

function mergesorted(vecvec)

   lengths = map(length, vecvec)
   allsum = sum(lengths)
   sorted = similar(vecvec[1], allsum)
   for i in 1:allsum
       (val, idx) = findmin(map(x -> x[end], vecvec))
       sorted[i] = pop!(vecvec[idx])
       if isempty(vecvec[idx])
           deleteat!(vecvec, idx)
       end
   end
   sorted

end

println(patiencesort(rand(collect(1:1000), 12)))

</lang>

Output:
[186, 243, 255, 257, 427, 486, 513, 613, 657, 734, 866, 907]

Kotlin

<lang scala>// version 1.1.2

fun <T : Comparable<T>> patienceSort(arr: Array<T>) {

   if (arr.size < 2) return
   val piles = mutableListOf<MutableList<T>>()
   outer@ for (el in arr) {
       for (pile in piles) {
           if (pile.last() > el) {
               pile.add(el)
               continue@outer
           }
       }
       piles.add(mutableListOf(el))
   }

   for (i in 0 until arr.size) {
       var min = piles[0].last()
       var minPileIndex = 0
       for (j in 1 until piles.size) {
           if (piles[j].last() < min) {
               min = piles[j].last()
               minPileIndex = j
           }
       } 
       arr[i] = min
       val minPile = piles[minPileIndex]
       minPile.removeAt(minPile.lastIndex)
       if (minPile.size == 0) piles.removeAt(minPileIndex)
   }    

}

fun main(args: Array<String>) {

   val iArr = arrayOf(4, 65, 2, -31, 0, 99, 83, 782, 1)
   patienceSort(iArr)
   println(iArr.contentToString())
   val cArr = arrayOf('n', 'o', 'n', 'z', 'e', 'r', 'o', 's', 'u','m')
   patienceSort(cArr)
   println(cArr.contentToString())
   val sArr = arrayOf("dog", "cow", "cat", "ape", "ant", "man", "pig", "ass", "gnu")
   patienceSort(sArr)
   println(sArr.contentToString())

}</lang>

Output:
[-31, 0, 1, 2, 4, 65, 83, 99, 782]
[e, m, n, n, o, o, r, s, u, z]
[ant, ape, ass, cat, cow, dog, gnu, man, pig]

OCaml

<lang ocaml>module PatienceSortFn (Ord : Set.OrderedType) : sig

   val patience_sort : Ord.t list -> Ord.t list
 end = struct
 module PilesSet = Set.Make
   (struct
      type t = Ord.t list
      let compare x y = Ord.compare (List.hd x) (List.hd y)
    end);;
 let sort_into_piles list =
   let piles = Array.make (List.length list) [] in
   let bsearch_piles x len =
     let rec aux lo hi =
       if lo > hi then
         lo
       else
         let mid = (lo + hi) / 2 in
         if Ord.compare (List.hd piles.(mid)) x < 0 then
           aux (mid+1) hi
         else
           aux lo (mid-1)
     in
       aux 0 (len-1)
   in
   let f len x =
     let i = bsearch_piles x len in
     piles.(i) <- x :: piles.(i);
     if i = len then len+1 else len
   in
   let len = List.fold_left f 0 list in
   Array.sub piles 0 len
 let merge_piles piles =
   let pq = Array.fold_right PilesSet.add piles PilesSet.empty in
   let rec f pq acc =
     if PilesSet.is_empty pq then
       acc
     else
       let elt = PilesSet.min_elt pq in
       match elt with
         [] -> failwith "Impossible"
       | x::xs ->
         let pq' = PilesSet.remove elt pq in
         f (if xs = [] then pq' else PilesSet.add xs pq') (x::acc)
   in
   List.rev (f pq [])
 let patience_sort n =
   merge_piles (sort_into_piles n)

end</lang> Usage:

# module IntPatienceSort = PatienceSortFn
  (struct
     type t = int
     let compare = compare
   end);;        
module IntPatienceSort : sig val patience_sort : int list -> int list end
# IntPatienceSort.patience_sort [4; 65; 2; -31; 0; 99; 83; 782; 1];;
- : int list = [-31; 0; 1; 2; 4; 65; 83; 99; 782]

Perl

Translation of: Raku

<lang Perl>sub patience_sort {

   my @s = [shift];
   for my $card (@_) {

my @t = grep { $_->[-1] > $card } @s; if (@t) { push @{shift(@t)}, $card } else { push @s, [$card] }

   }
   my @u;
   while (my @v = grep @$_, @s) {

my $value = (my $min = shift @v)->[-1]; for (@v) { ($min, $value) = ($_, $_->[-1]) if $_->[-1] < $value } push @u, pop @$min;

   }
   return @u

}

print join ' ', patience_sort qw(4 3 6 2 -1 13 12 9); </lang>

Output:
-1 2 3 4 6 9 12 13

Phix

<lang Phix>function patience_sort(sequence s)

   -- create list of sorted lists
   sequence piles = {}
   for i=1 to length(s) do
       object n = s[i]
       for p=1 to length(piles)+1 do
           if p>length(piles) then
               piles = append(piles,{n})
           elsif n>=piles[p][$] then
               piles[p] = append(piles[p],n)
               exit
           end if
       end for
   end for
   -- merge sort the piles
   sequence res = ""
   while length(piles) do
       integer idx = smallest(piles,return_index:=true)
       res = append(res,piles[idx][1])
       if length(piles[idx])=1 then
           piles[idx..idx] = {}
       else
           piles[idx] = piles[idx][2..$]
       end if
   end while
   return res

end function

constant tests = {{4,65,2,-31,0,99,83,782,1},

                 {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15},
                 "nonzerosum",
                 {"dog", "cow", "cat", "ape", "ant", "man", "pig", "ass", "gnu"}}

for i=1 to length(tests) do

   pp(patience_sort(tests[i]),{pp_IntCh,false})

end for</lang>

Output:
{-31,0,1,2,4,65,83,99,782}
{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}
`emnnoorsuz`
{`ant`, `ape`, `ass`, `cat`, `cow`, `dog`, `gnu`, `man`, `pig`}

PHP

<lang php><?php class PilesHeap extends SplMinHeap {

   public function compare($pile1, $pile2) {
       return parent::compare($pile1->top(), $pile2->top());
   }

}

function patience_sort(&$n) {

   $piles = array();
   // sort into piles
   foreach ($n as $x) {
       // binary search
       $low = 0; $high = count($piles)-1;
       while ($low <= $high) {
           $mid = (int)(($low + $high) / 2);
           if ($piles[$mid]->top() >= $x)
               $high = $mid - 1;
           else
               $low = $mid + 1;
       }
       $i = $low;
       if ($i == count($piles))
           $piles[] = new SplStack();
       $piles[$i]->push($x);
   }
   // priority queue allows us to merge piles efficiently
   $heap = new PilesHeap();
   foreach ($piles as $pile)
       $heap->insert($pile);
   for ($c = 0; $c < count($n); $c++) {
       $smallPile = $heap->extract();
       $n[$c] = $smallPile->pop();
       if (!$smallPile->isEmpty())
       $heap->insert($smallPile);
   }
   assert($heap->isEmpty());

}

$a = array(4, 65, 2, -31, 0, 99, 83, 782, 1); patience_sort($a); print_r($a); ?></lang>

Output:
Array
(
    [0] => -31
    [1] => 0
    [2] => 1
    [3] => 2
    [4] => 4
    [5] => 65
    [6] => 83
    [7] => 99
    [8] => 782
)

PicoLisp

<lang PicoLisp>(de leftmost (Lst N H)

  (let L 1
     (while (<= L H)
        (use (X)
           (setq X (/ (+ L H) 2))
        (if (>= (caar (nth Lst X)) N)
              (setq H (dec X))
              (setq L (inc X)) ) ) )
     L ) )

(de patience (Lst)

  (let (L (cons (cons (car Lst)))  C 1  M NIL)
     (for N (cdr Lst)
        (let I (leftmost L N C)
           (and
              (> I C)
              (conc L (cons NIL))
              (inc 'C) )
           (push (nth L I) N) ) )
     (make
        (loop
           (setq M (cons 0 T))
           (for (I . Y) L
              (let? S (car Y)
                 (and
                    (< S (cdr M))
                    (setq M (cons I S)) ) ) )
           (T (=T (cdr M)))
           (link (pop (nth L (car M)))) ) ) ) )
        

(println

  (patience (4 65 2 -31 0 99 83 782 1)) )
  

(bye)</lang>

Prolog

<lang prolog>patience_sort(UnSorted,Sorted) :- make_piles(UnSorted,[],Piled), merge_piles(Piled,[],Sorted).

make_piles([],P,P). make_piles([N|T],[],R) :- make_piles(T,N,R). make_piles([N|T],[[P|Pnt]|Tp],R) :- N =< P, make_piles(T,[[N,P|Pnt]|Tp],R). make_piles([N|T],[[P|Pnt]|Tp],R) :- N > P, make_piles(T,[[N],[P|Pnt]|Tp], R).

merge_piles([],M,M). merge_piles([P|T],L,R) :- merge_pile(P,L,Pl), merge_piles(T,Pl,R).

merge_pile([],M,M). merge_pile(M,[],M). merge_pile([N|T1],[N|T2],[N,N|R]) :- merge_pile(T1,T2,R). merge_pile([N|T1],[P|T2],[P|R]) :- N > P, merge_pile([N|T1],T2,R). merge_pile([N|T1],[P|T2],[N|R]) :- N < P, merge_pile(T1,[P|T2],R).</lang>

Output:
?- patience_sort([4, 65, 2, -31, 0, 99, 83, 782, 1],Sorted).
Sorted = [-31, 0, 1, 2, 4, 65, 83, 99, 782] .

Python

Works with: Python version 2.7+ and 3.2+

(for functools.total_ordering)

<lang python>from functools import total_ordering from bisect import bisect_left from heapq import merge

@total_ordering class Pile(list):

   def __lt__(self, other): return self[-1] < other[-1]
   def __eq__(self, other): return self[-1] == other[-1]

def patience_sort(n):

   piles = []
   # sort into piles
   for x in n:
       new_pile = Pile([x])
       i = bisect_left(piles, new_pile)
       if i != len(piles):
           piles[i].append(x)
       else:
           piles.append(new_pile)
   # use a heap-based merge to merge piles efficiently
   n[:] = merge(*[reversed(pile) for pile in piles])

if __name__ == "__main__":

   a = [4, 65, 2, -31, 0, 99, 83, 782, 1]
   patience_sort(a)
   print a</lang>
Output:
[-31, 0, 1, 2, 4, 65, 83, 99, 782]

Racket

<lang racket>#lang racket/base (require racket/match racket/list)

the car of a pile is the "bottom", i.e. where we place a card

(define (place-greedily ps-in c <?)

 (let inr ((vr null) (ps ps-in))
   (match ps
     [(list) (reverse (cons (list c) vr))]
     [(list (and psh (list ph _ ...)) pst ...)
      #:when (<? c ph) (append (reverse (cons (cons c psh) vr)) pst)]
     [(list psh pst ...) (inr (cons psh vr) pst)])))

(define (patience-sort cs-in <?)

 ;; Scatter
 (define piles
   (let scatter ((cs cs-in) (ps null))
     (match cs [(list) ps] [(cons a d) (scatter d (place-greedily ps a <?))])))
 ;; Gather
 (let gather ((rv null) (ps piles))
   (match ps
     [(list) (reverse rv)]
     [(list psh pst ...)
      (let scan ((least psh) (seens null) (unseens pst))
        (define least-card (car least))
        (match* (unseens least)
          [((list) (list l)) (gather (cons l rv) seens)]
          [((list) (cons l lt)) (gather (cons l rv) (cons lt seens))]
          [((cons (and ush (cons u _)) ust) (cons l _))
           #:when (<? l u) (scan least (cons ush seens) ust)]
          [((cons ush ust) least) (scan ush (cons least seens) ust)]))])))

(patience-sort (shuffle (for/list ((_ 10)) (random 7))) <)</lang>

Output:
'(1 1 2 2 2 3 4 4 4 5)

Raku

(formerly Perl 6)

Works with: rakudo version 2015-10-22

<lang perl6>multi patience(*@deck) {

   my @stacks;
   for @deck -> $card {
       with @stacks.first: $card before *[*-1] -> $stack {
           $stack.push: $card;
       }
       else {
           @stacks.push: [$card];
       }
   }
   gather while @stacks {
       take .pop given min :by(*[*-1]), @stacks;
       @stacks .= grep: +*;
   }

}

say ~patience ^10 . pick(*);</lang>

Output:
0 1 2 3 4 5 6 7 8 9

REXX

The items to be sorted can be any form of REXX number, not just integers;   the items may also be character strings.

Duplicates are also sorted correctly. <lang rexx>/*REXX program sorts a list of things (or items) using the patience sort algorithm. */ parse arg xxx; say ' input: ' xxx /*obtain a list of things from the C.L.*/ n=words(xxx); #=0;  !.=1 /*N: # of things; #: number of piles*/ @.= /* [↓] append or create a pile (@.j) */

  do i=1  for n;            q=word(xxx, i)      /* [↓]  construct the piles of things. */
                do j=1  for #                   /*add the   Q   thing (item) to a pile.*/
                if q>word(@.j,1) then iterate   /*Is this item greater?   Then skip it.*/
                @.j=q  @.j;           iterate i /*add this item to the top of the pile.*/
                end   /*j*/                     /* [↑]  find a pile, or make a new pile*/
  #=#+1;  @.#=q                                 /*increase the pile count;  a new pile.*/
  end                 /*i*/                     /*we are done with creating the piles. */

$= /* [↓] build a thingy list from piles*/

  do k=1  until  words($)==n                    /*pick off the smallest from the piles.*/
  _=                                            /*this is the smallest thingy so far···*/
          do m=1  for  #;   z=word(@.m, !.m)    /*traipse through many piles of items. */
          if z==  then iterate                /*Is this pile null?    Then skip pile.*/
          if _==  then _=z                    /*assume this one is the low pile value*/
          if _>=z   then do;  _=z;  p=m;  end   /*found a low value in a pile of items.*/
          end   /*m*/                           /*the traipsing is done, we found a low*/
  $=$ _                                         /*add to the output thingy  ($)  list. */
  !.p=!.p + 1                                   /*bump the thingy pointer in pile  P.  */
  end           /*k*/                           /* [↑]  each iteration finds a low item*/
                                                /* [↓]  string  $  has a leading blank.*/

say 'output: ' strip($) /*stick a fork in it, we're all done. */</lang>

output   when using the input of:   4 65 2 -31 0 99 83 782 7.88 1e1 1
 input:  4 65 2 -31 0 99 83 782 7.88 1e1 1
output:  -31 0 1 2 4 7.88 1e1 65 83 99 782
output   when using the input of:   dog cow cat ape ant man pterodactyl
 input:  dog cow cat ape ant man pterodactyl
output:  ant ape cat cow dog man pterodactyl

Ruby

<lang ruby>class Array

 def patience_sort
   piles = []
   each do |i|
     if (idx = piles.index{|pile| pile.last <= i})
       piles[idx] << i
     else
       piles << [i]    #create a new pile
     end
   end
   # merge piles
   result = []
   until piles.empty?
     first = piles.map(&:first)
     idx = first.index(first.min)
     result << piles[idx].shift
     piles.delete_at(idx) if piles[idx].empty?
   end
   result
 end

end

a = [4, 65, 2, -31, 0, 99, 83, 782, 1] p a.patience_sort</lang>

Output:
[-31, 0, 1, 2, 4, 65, 83, 99, 782]

Scala

Library: Scala Concise
Works with: Scala version 2.13

<lang Scala>import scala.collection.mutable

object PatienceSort extends App {

 def sort[A](source: Iterable[A])(implicit bound: A => Ordered[A]): Iterable[A] = {
   val  piles = mutable.ListBuffer[mutable.Stack[A]]()
   def PileOrdering: Ordering[mutable.Stack[A]] =
     (a: mutable.Stack[A], b: mutable.Stack[A]) => b.head.compare(a.head)
   // Use a priority queue, to simplify extracting minimum elements.
   val pq = new mutable.PriorityQueue[mutable.Stack[A]]()(PileOrdering)
   // Create ordered piles of elements
   for (elem <- source) {
     // Find leftmost "possible" pile
     // If there isn't a pile available, add a new one.
     piles.find(p => p.head >= elem) match {
       case Some(p) => p.push(elem)
       case _ => piles += mutable.Stack(elem)
     }
   }
   pq ++= piles
   // Return a new list, by taking the smallest stack head
   // until all stacks are empty.
   for (_ <- source) yield {
     val smallestList = pq.dequeue
     val smallestVal = smallestList.pop
     if (smallestList.nonEmpty) pq.enqueue(smallestList)
     smallestVal
   }
 }
 println(sort(List(4, 65, 2, -31, 0, 99, 83, 782, 1)))

}</lang>

Sidef

<lang ruby>func patience(deck) {

 var stacks = [];
 deck.each { |card|
   given (stacks.first { card < .last }) { |stack|
     case (defined stack) {
       stack << card
     }
     default {
       stacks << [card]
     }
   }
 }
 gather {
   while (stacks) {
     take stacks.min_by { .last }.pop
     stacks.grep!{ !.is_empty }
   }
 }

}

var a = [4, 65, 2, -31, 0, 99, 83, 782, 1] say patience(a)</lang>

Output:
[-31, 0, 1, 2, 4, 65, 83, 99, 782]

Standard ML

Works with: SML/NJ

<lang sml>structure PilePriority = struct

 type priority = int
 fun compare (x, y) = Int.compare (y, x) (* we want min-heap *)
 type item = int list
 val priority = hd

end

structure PQ = LeftPriorityQFn (PilePriority)

fun sort_into_piles n =

 let
   val piles = DynamicArray.array (length n, [])
   fun bsearch_piles x =
     let
       fun aux (lo, hi) =
         if lo > hi then
           lo
         else
           let
             val mid = (lo + hi) div 2
           in
             if hd (DynamicArray.sub (piles, mid)) < x then
               aux (mid+1, hi)
             else
               aux (lo, mid-1)
           end
     in
       aux (0, DynamicArray.bound piles)
     end
   fun f x =
     let
       val i = bsearch_piles x 
     in
       DynamicArray.update (piles, i, x :: DynamicArray.sub (piles, i))
     end
 in
   app f n;
   piles
 end

fun merge_piles piles =

 let
   val heap = DynamicArray.foldl PQ.insert PQ.empty piles
   fun f (heap, acc) =
     case PQ.next heap of
       NONE => acc
     | SOME (x::xs, heap') =>
       f ((if null xs then heap' else PQ.insert (xs, heap')),
          x::acc)
 in
   rev (f (heap, []))
 end

fun patience_sort n =

 merge_piles (sort_into_piles n)</lang>

Usage:

- patience_sort [4, 65, 2, ~31, 0, 99, 83, 782, 1];
val it = [~31,0,1,2,4,65,83,99,782] : int list

Tcl

Works with: Tcl version 8.6

This uses the -bisect option to lsearch in order to do an efficient binary search (in combination with -index end, which means that the search is indexed by the end of the sublist). <lang tcl>package require Tcl 8.6

proc patienceSort {items} {

   # Make the piles
   set piles {}
   foreach item $items {

set p [lsearch -bisect -index end $piles $item] if {$p == -1} { lappend piles [list $item] } else { lset piles $p end+1 $item }

   }
   # Merge the piles; no suitable builtin, alas
   set indices [lrepeat [llength $piles] 0]
   set result {}
   while 1 {

set j 0 foreach pile $piles i $indices { set val [lindex $pile $i] if {$i < [llength $pile] && (![info exist min] || $min > $val)} { set k $j set next [incr i] set min $val } incr j } if {![info exist min]} break lappend result $min unset min lset indices $k $next

   }
   return $result

}</lang> Demonstrating: <lang tcl>puts [patienceSort {4 65 2 -31 0 99 83 782 1}]</lang>

Output:
-31 0 1 2 4 65 83 99 782

zkl

<lang zkl>fcn patienceSort(ns){

  piles:=L();
  foreach n in (ns){ newPile:=True;   // create list of sorted lists
     foreach p in (piles){

if(n>=p[-1]) { p.append(n); newPile=False; break; }

     }
     if(newPile)piles.append(L(n));
  }
  // merge sort the piles
  r:=Sink(List); while(piles){
     mins:=piles.apply("get",0).enumerate();
     min :=mins.reduce(fcn(a,b){ (a[1]<b[1]) and a or b },mins[0])[0];
     r.write(piles[min].pop(0));
     if(not piles[min]) piles.del(min);
  }
  r.close();

}</lang> <lang zkl>T(T(3,2,6,4,3,5,1),

 T(4,65,2,-31,0,99,83,782,1), 
 T(0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15),
 "foobar")

.pump(Console.println,patienceSort);</lang>

Output:
L(1,2,3,3,4,5,6)
L(-31,0,1,2,4,65,83,99,782)
L(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)
L("a","b","f","o","o","r")