I'm working on modernizing Rosetta Code's infrastructure. Starting with communications. Please accept this time-limited open invite to RC's Slack.. --Michael Mol (talk) 20:59, 30 May 2020 (UTC)

# Show the (decimal) value of a number of 1s appended with a 3, then squared

Show the (decimal) value of a number of 1s appended with a 3, then squared is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.

(n   1's   appended by the digit   3)   and then square the result,     where   0   <=   n   <   8

## 11l

Translation of: Python
L(i) 0..7 {print(‘( ’(‘1’ * i)‘3 ) ^ 2 = ’(Int64((‘1’ * i)‘3’) ^ 2))}
Output:
( 3 ) ^ 2 = 9
( 13 ) ^ 2 = 169
( 113 ) ^ 2 = 12769
( 1113 ) ^ 2 = 1238769
( 11113 ) ^ 2 = 123498769
( 111113 ) ^ 2 = 12346098769
( 1111113 ) ^ 2 = 1234572098769
( 11111113 ) ^ 2 = 123456832098769

procedure Ones_Plus_Three is

Root  : Big_Natural := 3;
Squared : Big_Natural;
begin
for N in 0 .. 8 loop
Squared := Root**2;

Put (To_String (Root, Width => 12));
Put (" ");
Put (To_String (Squared, Width => 20));
New_Line;

Root := @ + 10**(N + 1);
end loop;
end Ones_Plus_Three;
Output:
3                     9
13                   169
113                 12769
1113               1238769
11113             123498769
111113           12346098769
1111113         1234572098769
11111113       123456832098769
111111113     12345679432098769

## ALGOL 68

Assuming LONG INT is large enough (as in e.g. ALGOL 68G).

BEGIN
LONG INT n := 0;
FOR i TO 8 DO
LONG INT n3 = ( n * 10 ) + 3;
print( ( whole( n3, 0 ), " ", whole( n3 * n3, 0 ), newline ) );
n *:= 10 +:= 1
OD
END
Output:
3 9
13 169
113 12769
1113 1238769
11113 123498769
111113 12346098769
1111113 1234572098769
11111113 123456832098769

Alternative version that shows the values for higher numbers of ones.

Works with: ALGOL 68G version Any - tested with release 2.8.3.win32
BEGIN
PR precision 250 PR
LONG LONG INT n := 0;
FOR i FROM 0 TO 111 DO
LONG LONG INT n3 = ( n * 10 ) + 3;
IF i > 84 THEN
STRING v := whole( n3 * n3, 0 );
INT pos := 0;
STRING pattern := "123456790";
INT p len := ( UPB pattern - LWB pattern ) + 1;
WHILE string in string( pattern, pos, v ) DO
v := v[ 1 : pos - 1 ] + "A" + v[ pos + p len : ]
OD;
pattern := "987654320";
WHILE string in string( pattern, pos, v ) DO
v := v[ 1 : pos - 1 ] + "Z" + v[ pos + p len : ]
OD;
print( ( whole( i, -3 ), " ", v, newline ) )
FI;
n *:= 10 +:= 1
OD
END
Output:

As the 111...113^2 values get rather large, the code above replaces "123456790" with "A" and "987654320" with "Z". The number of ones is shown on the left.

85 AAAAAAAAA1234ZZZZZZZZZ98769
86 AAAAAAAAA123460ZZZZZZZZZ98769
87 AAAAAAAAA12345720ZZZZZZZZZ98769
88 AAAAAAAAA1234568320ZZZZZZZZZ98769
89 AAAAAAAAA123456794320ZZZZZZZZZ98769
90 AAAAAAAAAA54320ZZZZZZZZZ98769
91 AAAAAAAAAA1654320ZZZZZZZZZ98769
92 AAAAAAAAAA127654320ZZZZZZZZZ98769
93 AAAAAAAAAA12387654320ZZZZZZZZZ98769
94 AAAAAAAAAA1234ZZZZZZZZZZ98769
95 AAAAAAAAAA123460ZZZZZZZZZZ98769
96 AAAAAAAAAA12345720ZZZZZZZZZZ98769
97 AAAAAAAAAA1234568320ZZZZZZZZZZ98769
98 AAAAAAAAAA123456794320ZZZZZZZZZZ98769
99 AAAAAAAAAAA54320ZZZZZZZZZZ98769
100 AAAAAAAAAAA1654320ZZZZZZZZZZ98769
101 AAAAAAAAAAA127654320ZZZZZZZZZZ98769
102 AAAAAAAAAAA12387654320ZZZZZZZZZZ98769
103 AAAAAAAAAAA1234ZZZZZZZZZZZ98769
104 AAAAAAAAAAA123460ZZZZZZZZZZZ98769
105 AAAAAAAAAAA12345720ZZZZZZZZZZZ98769
106 AAAAAAAAAAA1234568320ZZZZZZZZZZZ98769
107 AAAAAAAAAAA123456794320ZZZZZZZZZZZ98769
108 AAAAAAAAAAAA54320ZZZZZZZZZZZ98769
109 AAAAAAAAAAAA1654320ZZZZZZZZZZZ98769
110 AAAAAAAAAAAA127654320ZZZZZZZZZZZ98769
111 AAAAAAAAAAAA12387654320ZZZZZZZZZZZ98769

## Arturo

loop 0..7 'x [
num: to :integer(repeat "1" x) ++ "3"
print [num num^2]
]
Output:
3 9
13 169
113 12769
1113 1238769
11113 123498769
111113 12346098769
1111113 1234572098769
11111113 123456832098769

## AWK

# syntax: GAWK -f SHOW_THE_DECIMAL_VALUE_OF_A_NUMBER_OF_1S_APPENDED_WITH_A_3_THEN_SQUARED.AWK
# converted from FreeBASIC
BEGIN {
for (i=0; i<=7; i++) {
m = make13(i)
printf("%1d %9s^2 %'20d\n",i,m,m*m)
}
exit(0)
}
function make13(n, t) {
while (n--) {
t = 10 * (t+1)
}
return(t+3)
}

Output:
0         3^2                    9
1        13^2                  169
2       113^2               12,769
3      1113^2            1,238,769
4     11113^2          123,498,769
5    111113^2       12,346,098,769
6   1111113^2    1,234,572,098,769
7  11111113^2  123,456,832,098,769

## C

#include <stdio.h>
#include <stdint.h>

uint64_t ones_plus_three(uint64_t ones) {
uint64_t r = 0;
while (ones--) r = r*10 + 1;
return r*10 + 3;
}

int main() {
uint64_t n;
for (n=0; n<8; n++) {
uint64_t x = ones_plus_three(n);
printf("%8lu^2 = %15lu\n", x, x*x);
}
return 0;
}
Output:
3^2 =               9
13^2 =             169
113^2 =           12769
1113^2 =         1238769
11113^2 =       123498769
111113^2 =     12346098769
1111113^2 =   1234572098769
11111113^2 = 123456832098769

## C#

For 0 <= n < 22

using System; using BI = System.Numerics.BigInteger;
class Program { static void Main(string[] args) {
for (BI x = 3; BI.Log10(x) < 22; x = (x - 2) * 10 + 3)
Console.WriteLine("{1,43} {0,-20}", x, x * x); } }
Output:
9 3
169 13
12769 113
1238769 1113
123498769 11113
12346098769 111113
1234572098769 1111113
123456832098769 11111113
12345679432098769 111111113
1234567905432098769 1111111113
123456790165432098769 11111111113
12345679012765432098769 111111111113
1234567901238765432098769 1111111111113
123456790123498765432098769 11111111111113
12345679012346098765432098769 111111111111113
1234567901234572098765432098769 1111111111111113
123456790123456832098765432098769 11111111111111113
12345679012345679432098765432098769 111111111111111113
1234567901234567905432098765432098769 1111111111111111113
123456790123456790165432098765432098769 11111111111111111113
12345679012345679012765432098765432098769 111111111111111111113
1234567901234567901238765432098765432098769 1111111111111111111113

## CLU

ones_plus_three = proc (n: int) returns (int)
r: int := 0
for i: int in int\$from_to(1, n) do
r := r*10 + 1
end
return(r*10 + 3)
end ones_plus_three

start_up = proc ()
po: stream := stream\$primary_output()

for i: int in int\$from_to(0, 7) do
n: int := ones_plus_three(i)
nsq: int := n**2

stream\$putright(po, int\$unparse(n), 8)
stream\$puts(po, "^2 = ")
stream\$putright(po, int\$unparse(nsq), 15)
stream\$putl(po, "")
end
end start_up
Output:
3^2 =               9
13^2 =             169
113^2 =           12769
1113^2 =         1238769
11113^2 =       123498769
111113^2 =     12346098769
1111113^2 =   1234572098769
11111113^2 = 123456832098769

## COBOL

IDENTIFICATION DIVISION.
PROGRAM-ID. ONES-THREE-SQUARED.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 VARIABLES.
03 N PIC 9.
03 ONES-3 PIC 9(9).
03 SQUARE PIC 9(15).
01 FMT.
03 FMT-ONES-3 PIC Z(7)9.
03 FILLER PIC X(5) VALUE "^2 = ".
03 FMT-SQUARE PIC Z(14)9.

PROCEDURE DIVISION.
BEGIN.
PERFORM N-ONES-3 VARYING N FROM 0 BY 1 UNTIL N IS EQUAL TO 8.
STOP RUN.

N-ONES-3.
MOVE ZERO TO ONES-3.
MULTIPLY 10 BY ONES-3.
MULTIPLY ONES-3 BY ONES-3 GIVING SQUARE.
MOVE ONES-3 TO FMT-ONES-3.
MOVE SQUARE TO FMT-SQUARE.
DISPLAY FMT.

MULTIPLY 10 BY ONES-3.
Output:
3^2 =               9
13^2 =             169
113^2 =           12769
1113^2 =         1238769
11113^2 =       123498769
111113^2 =     12346098769
1111113^2 =   1234572098769
11111113^2 = 123456832098769

## F#

[3L;13L;113L;1113L;11113L;111113L;1111113L;11111113L;111111113L]|>List.iter(fun n->printfn "%10d->%d" n (n*n))

Output:
3->9
13->169
113->12769
1113->1238769
11113->123498769
111113->12346098769
1111113->1234572098769
11111113->123456832098769
111111113->12345679432098769

## Factor

a(n) = ((10n+1 - 1) / 9 + 2)2

Works with: Factor version 0.99 2021-02-05
USING: io kernel math math.functions prettyprint ;

: a ( n -- e m ) 1 + 10^ 1 - 9 / 2 + dup sq ;

8 [ a swap pprint bl . ] each-integer
Output:
3 9
13 169
113 12769
1113 1238769
11113 123498769
111113 12346098769
1111113 1234572098769
11111113 123456832098769

## Fermat

Func Make13(n) = m:=0; while n>0 do m:=10*(m+1);n:=n-1; od; m:=3+m; m.
for i=0 to 7 do !Make13(i);!' ';!Make13(i)^2;!!'' od
Output:
3   9
13   169
113   12769
1113   1238769
11113   123498769
111113   12346098769
1111113   1234572098769
11111113   123456832098769

## FreeBASIC

function make13(n as uinteger) as uinteger
dim as uinteger t = 0
while n
t = 10*(t+1)
n-=1
wend
return t+3
end function

dim as ulongint m

for n as uinteger = 0 to 7
m = make13(n)^2
print make13(n), m
next n
Output:
3             9
13            169
113           12769
1113          1238769
11113         123498769
111113        12346098769
1111113       1234572098769
11111113      123456832098769

## Forth

: 1s+3
0 swap
begin dup while
swap 10 * 1+ swap 1-
repeat
drop 10 * 3 +
;

: sqr dup * ;
: show dup . ." ^2 = " sqr . cr ;

: show-upto
0 swap
begin over over < while
swap dup 1s+3 show 1+ swap
repeat
2drop
;

8 show-upto
bye
Output:
3 ^2 = 9
13 ^2 = 169
113 ^2 = 12769
1113 ^2 = 1238769
11113 ^2 = 123498769
111113 ^2 = 12346098769
1111113 ^2 = 1234572098769
11111113 ^2 = 123456832098769

## Go

Translation of: Wren
package main

import (
"fmt"
"strconv"
"strings"
)

func a(n int) {
s, _ := strconv.Atoi(strings.Repeat("1", n) + "3")
t := s * s
fmt.Printf("%d %d\n", s, t)
}

func main() {
for n := 0; n <= 7; n++ {
a(n)
}
}
Output:
3 9
13 169
113 12769
1113 1238769
11113 123498769
111113 12346098769
1111113 1234572098769
11111113 123456832098769

import Text.Printf (printf)

onesPlusThree :: [Integer]
onesPlusThree =
(3 +) . (10 *)
<\$> iterate (succ . (10 *)) 0

format :: Integer -> String
format = printf "%8lu^2 = %15lu" <*> (^ 2)

main :: IO ()
main =
(putStr . unlines . take 8) \$
format <\$> onesPlusThree
Output:
3^2 =               9
13^2 =             169
113^2 =           12769
1113^2 =         1238769
11113^2 =       123498769
111113^2 =     12346098769
1111113^2 =   1234572098769
11111113^2 = 123456832098769

## jq

Works with: jq

Works with gojq, the Go implementation of jq

For large values of n, the unbounded-precision integer arithmetic of gojq will ensure accuracy.

# For gojq
def power(\$b): . as \$in | reduce range(0;\$b) as \$i (1; . * \$in);

# For pretty-printing
def lpad(\$len): tostring | (\$len - length) as \$l | (" " * \$l)[:\$l] + .;

" n number number^2",
(range(0;8) as \$n
| ((("1"*\$n) + "3") | tonumber) as \$number
Output:
n    number            number^2
0         3                   9
1        13                 169
2       113               12769
3      1113             1238769
4     11113           123498769
5    111113         12346098769
6   1111113       1234572098769
7  11111113     123456832098769

For 100 <= n <= 105

Encoding "123456790" as "A", "987654320" as Z", and lastly "9876" as "N":

range(100; 106) as \$n
| ((("1"*\$n) + "3") | tonumber) as \$number
+ (\$number|power(2)|tostring| gsub("123456790";"A") | gsub("987654320";"Z") | gsub("9876";"N") | lpad(40))

Output:
100           AAAAAAAAAAA1654320ZZZZZZZZZZN9
101         AAAAAAAAAAA127654320ZZZZZZZZZZN9
102       AAAAAAAAAAA12387654320ZZZZZZZZZZN9
103             AAAAAAAAAAA1234ZZZZZZZZZZZN9
104           AAAAAAAAAAA123460ZZZZZZZZZZZN9
105         AAAAAAAAAAA12345720ZZZZZZZZZZZN9

## Julia

println("n  (10^(n+1) - 1) ÷ 9 + 2)       squared")
for n in 0:7
println(rpad(n, 14), rpad((big"10"^(n+1) - 1) ÷ 9 + 2, 19), ((big"10"^(n+1) - 1) ÷ 9 + 2)^2)
end

Output:
n  (10^(n+1) - 1) ÷ 9 + 2)       squared
0             3                  9
1             13                 169
2             113                12769
3             1113               1238769
4             11113              123498769
5             111113             12346098769
6             1111113            1234572098769
7             11111113           123456832098769

NORMAL MODE IS INTEGER
VECTOR VALUES FMT = \$I8,7H **2 = ,I15*\$
THROUGH LOOP, FOR I=0, 1, I.G.7
N = 0
THROUGH ONES, FOR J=1, 1, J.G.I
ONES N = N*10 + 1
N = N*10 + 3
LOOP PRINT FORMAT FMT,N,N*N
END OF PROGRAM
Output:
3**2 =               9
13**2 =             169
113**2 =           12769
1113**2 =         1238769
11113**2 =       123498769
111113**2 =     12346098769
1111113**2 =   1234572098769
11111113**2 = 123456832098769

## Mathematica / Wolfram Language

{#, #^2} & /@
Table[FromDigits[PadLeft[{3}, n, 1]], {n, 9}] // TableForm
Output:

3 9 13 169 113 12769 1113 1238769 11113 123498769 111113 12346098769 1111113 1234572098769 11111113 123456832098769 111111113 12345679432098769

## Nim

import strformat

iterator genNumbers(maxOnes: Natural): int =
var ones = 0
yield 3
for _ in 1..maxOnes:
ones = 10 * ones + 10
yield ones + 3

for i in genNumbers(7):
echo &"{i:8} {i*i:18}"
Output:
3                  9
13                169
113              12769
1113            1238769
11113          123498769
111113        12346098769
1111113      1234572098769
11111113    123456832098769

## Plain English

Only 5 entries are shown due to Plain English's 32-bit signed integers.

To run:
Start up.
Put 0 into a counter.
Loop.
If the counter is greater than 4, break.
Put 10 into a number.
Raise the number to the counter plus 1.
Subtract 1 from the number.
Divide the number by 9.
Put the number into a squared number.
Raise the squared number to 2.
Write the number then " " then the squared number on the console.
Bump the counter.
Repeat.
Wait for the escape key.
Shut down.
Output:
3 9
13 169
113 12769
1113 1238769
11113 123498769

## Python

### One Liner

The most Pythonic way.............

[print("( " + "1"*i + "3 ) ^ 2 = " + str(int("1"*i + "3")**2)) for i in range(0,8)]

Output:
( 3 ) ^ 2 = 9
( 13 ) ^ 2 = 169
( 113 ) ^ 2 = 12769
( 1113 ) ^ 2 = 1238769
( 11113 ) ^ 2 = 123498769
( 111113 ) ^ 2 = 12346098769
( 1111113 ) ^ 2 = 1234572098769
( 11111113 ) ^ 2 = 123456832098769

### Procedural

Translation of: FreeBASIC
#!/usr/bin/python

def make13(n):
t = 0
while n:
t = 10*(t+1)
n -= 1
return t+3

for n in range(0,7):
m = make13(n)**2
print("{:d}\t\t{:d}".format(make13(n),m))

### Functional

Taking the first n terms from an infinite series:

'''Sequence of 1s appended with a 3, then squared'''

from itertools import islice

# seriesOfOnesEndingWithThree :: [Int]
def seriesOfOnesEndingWithThree():
'''An ordered and non-finite stream of integers
whose decimal digits end in 3, preceded only by a
series of (zero or more) ones.
(3, 13, 113, 1113 ...)
'''

def go(n):
return lambda x: n + 10 * x

return fmapGen(go(3))(
iterate(go(1))(0)
)

# showSquare :: (Int, Int, Int) -> String
def showSquare(ew, vw, n):
'''A string representation of the square of n,
both as an expression and as a value, with a
right-justfied expression column of width ew,
and a right-justified value column of width vw.
'''

return f'{str(n).rjust(ew)}^2 = {str(n ** 2).rjust(vw)}'

# ------------------------- TEST -------------------------
# main :: IO ()
def main():
'''Listing of the first 7 values of the series.'''

xs = take(7)(
seriesOfOnesEndingWithThree()
)

final = xs[-1]
w = len(str(final))
w1 = len(str(final ** 2))
print('\n'.join([
showSquare(w, w1, x) for x in xs
]))

# ----------------------- GENERIC ------------------------

# fmapGen <\$> :: (a -> b) -> Gen [a] -> Gen [b]
def fmapGen(f):
'''A function f mapped over a
non finite stream of values.
'''

def go(g):
while True:
v = next(g, None)
if None is not v:
yield f(v)
else:
return
return go

# iterate :: (a -> a) -> a -> Gen [a]
def iterate(f):
'''An infinite list of repeated
applications of f to x.
'''

def go(x):
v = x
while True:
yield v
v = f(v)
return go

# take :: Int -> [a] -> [a]
def take(n):
'''The first n values of xs.
'''

return lambda xs: list(islice(xs, n))

# MAIN ---
if __name__ == '__main__':
main()
Output:
3^2 =             9
13^2 =           169
113^2 =         12769
1113^2 =       1238769
11113^2 =     123498769
111113^2 =   12346098769
1111113^2 = 1234572098769

## Quackery

[ char 1 swap of
char 3 join
\$->n drop ] is 1's+3 ( n -> n )

8 times
[ i^ 1's+3
dup echo
say " --> "
dup * echo cr ]
Output:
3 --> 9
13 --> 169
113 --> 12769
1113 --> 1238769
11113 --> 123498769
111113 --> 12346098769
1111113 --> 1234572098769
11111113 --> 123456832098769

## PARI/GP

Make13(n)=m=0;while(n>0,m=10*(m+1);n=n-1);m=3+m;return(m)
for(i=0,7,print(Make13(i)," ",Make13(i)^2))
Output:
3 9
13 169
113 12769
1113 1238769
11113 123498769
111113 12346098769
1111113 1234572098769
11111113 123456832098769

## Pascal

### Free Pascal

like Phix using string

program OnesAppend3AndSquare;
const
MAX = 10;//37

var
l,sum,carry : integer;
begin
l := length(n);
carry := 0;
repeat
sum := Ord(s[l+Offset])+Ord(n[l])-2*Ord('0')+carry;
If sum >= 10 then
begin
dec(sum,10);
carry := 1;
end
else
carry := 0;
s[l+Offset]:= chr(sum+Ord('0'));
dec(l)
until l <= 0;
//correct carry, never used for '3' but > '3' only once
while (Offset>0) AND(carry = 1) do
begin
sum := Ord(s[Offset])-Ord('0')+carry;
If sum >= 10 then
begin
dec(sum,10);
carry := 1;
end
else
carry := 0;
s[Offset]:= chr(sum+Ord('0'));
dec(Offset)
end;
end;

procedure OnesAppend3AndSquare(CntOfOnes:integer;var s:AnsiString);
var
fac : Ansistring;
i,l : integer;
begin
l := CntOfOnes+1;
setlength(fac,l);
FillChar(fac[1],l-1,'1');
fac[l]:= '3';
write(fac:MAX+1);
repeat
i := Ord(fac[l])-Ord('0');
if i > 0 then
repeat
dec(i)
until i<=0;
dec(l);
until l <=0;
end;

var
s : AnsiString;
i,j,l : integer;
Begin
For i := 0 to MAX do
begin
l := i+1;
inc(l,l);
setlength(s,l);
Fillchar(s[1],l,'0');
OnesAppend3AndSquare(i,s);
j := 1;
while (j < l) AND (s[j] = '0') do
begin
s[j]:= ' ';
inc(j);
end;
writeln(s:2*MAX+2);
end;
end.
@TIO.RUN:
3                     9
13                   169
113                 12769
1113               1238769
11113             123498769
111113           12346098769
1111113         1234572098769
11111113       123456832098769
111111113     12345679432098769
1111111113   1234567905432098769
11111111113 123456790165432098769
..37 '1'
11111111111111111111111111111111111113 123456790123456790123456790123456790165432098765432098765432098765432098769

## Perl

#!/usr/bin/perl

use strict; # https://rosettacode.org/wiki/Show_the_(decimal)_value_of_a_number_of_1s_appended_with_a_3,_then_squared
use warnings;
#use bignum; # uncomment for larger than 9 or 32-bit perls

for ( 0 .. 7 )
{
my \$number = 1 x \$_ . 3;
print "\$number ", \$number ** 2, "\n";
}
Output:
3  9
13  169
113  12769
1113  1238769
11113  123498769
111113  12346098769
1111113  1234572098769
11111113  123456832098769

## Phix

Perfect opportunity for a little string math, why not...

for n=0 to 37 do
string res = repeat('3',n)&'9'
for i=1 to n do
res = "0" & res
integer digit = 3
for j=length(res)-i to 1 by -1 do
digit += res[j]-'0'
res[j] = remainder(digit,10)+'0'
digit = floor(digit/10)+1
end for
end for
printf(1,"%38s %75s\n",{repeat('1',n)&'3',res})
end for
Output:
3                                                                           9
13                                                                         169
113                                                                       12769
1113                                                                     1238769
11113                                                                   123498769
111113                                                                 12346098769
1111113                                                               1234572098769
11111113                                                             123456832098769
111111113                                                           12345679432098769
1111111113                                                         1234567905432098769
11111111113                                                       123456790165432098769
111111111113                                                     12345679012765432098769
1111111111113                                                   1234567901238765432098769
11111111111113                                                 123456790123498765432098769
111111111111113                                               12345679012346098765432098769
1111111111111113                                             1234567901234572098765432098769
11111111111111113                                           123456790123456832098765432098769
111111111111111113                                         12345679012345679432098765432098769
1111111111111111113                                       1234567901234567905432098765432098769
11111111111111111113                                     123456790123456790165432098765432098769
111111111111111111113                                   12345679012345679012765432098765432098769
1111111111111111111113                                 1234567901234567901238765432098765432098769
11111111111111111111113                               123456790123456790123498765432098765432098769
111111111111111111111113                             12345679012345679012346098765432098765432098769
1111111111111111111111113                           1234567901234567901234572098765432098765432098769
11111111111111111111111113                         123456790123456790123456832098765432098765432098769
111111111111111111111111113                       12345679012345679012345679432098765432098765432098769
1111111111111111111111111113                     1234567901234567901234567905432098765432098765432098769
11111111111111111111111111113                   123456790123456790123456790165432098765432098765432098769
111111111111111111111111111113                 12345679012345679012345679012765432098765432098765432098769
1111111111111111111111111111113               1234567901234567901234567901238765432098765432098765432098769
11111111111111111111111111111113             123456790123456790123456790123498765432098765432098765432098769
111111111111111111111111111111113           12345679012345679012345679012346098765432098765432098765432098769
1111111111111111111111111111111113         1234567901234567901234567901234572098765432098765432098765432098769
11111111111111111111111111111111113       123456790123456790123456790123456832098765432098765432098765432098769
111111111111111111111111111111111113     12345679012345679012345679012345679432098765432098765432098765432098769
1111111111111111111111111111111111113   1234567901234567901234567901234567905432098765432098765432098765432098769
11111111111111111111111111111111111113 123456790123456790123456790123456790165432098765432098765432098765432098769

## Raku

In an attempt to stave of terminal ennui, Find the first 8 where a(n) is semiprime.

say "\$_, {.²}" for (^).map({ ( 1 x \$_ ~ 3)} ).grep({ .is-prime })[^8]
Output:
3, 9
13, 169
113, 12769
11113, 123498769
111111113, 12345679432098769
11111111113, 123456790165432098769
111111111111111111111113, 12345679012345679012346098765432098765432098769
111111111111111111111111111111111111111111111111111111111111111111111111111111111113, 12345679012345679012345679012345679012345679012345679012345679012345679012345679012765432098765432098765432098765432098765432098765432098765432098765432098765432098769

## REXX

A little extra code was added to pre-compute the biggest number to find the widths for output alignment.

/*REXX program appends a  "3"  to a number of  "1"s,  and  then squares that number.    */
numeric digits 1000 /*be able to handle huge numbers. */
parse arg n . /*obtain optional argument from the CL.*/
if n=='' | n=="," then n= 9 /*Not specified? Then use the default.*/
_= copies(1, n)3 /*compute largest index to get width. */
w1= length( commas(_) ) /*get the width of the largest index. */
w2= length( commas(_**2) ) /* " " " " " " number. */

do #=0 to n; _=copies(1, #)3 /*calculate prefix number for output. */
say right( commas(_), w1) right( commas(_**2), w2) /*show prefix, number. */
end /*#*/
exit 0 /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
commas: parse arg ?; do jc=length(?)-3 to 1 by -3; ?=insert(',', ?, jc); end; return ?
output   when using the input of:     37

(Shown at three-quarter size.)

3                                                                                                   9
13                                                                                                 169
113                                                                                              12,769
1,113                                                                                           1,238,769
11,113                                                                                         123,498,769
111,113                                                                                      12,346,098,769
1,111,113                                                                                   1,234,572,098,769
11,111,113                                                                                 123,456,832,098,769
111,111,113                                                                              12,345,679,432,098,769
1,111,111,113                                                                           1,234,567,905,432,098,769
11,111,111,113                                                                         123,456,790,165,432,098,769
111,111,111,113                                                                      12,345,679,012,765,432,098,769
1,111,111,111,113                                                                   1,234,567,901,238,765,432,098,769
11,111,111,111,113                                                                 123,456,790,123,498,765,432,098,769
111,111,111,111,113                                                              12,345,679,012,346,098,765,432,098,769
1,111,111,111,111,113                                                           1,234,567,901,234,572,098,765,432,098,769
11,111,111,111,111,113                                                         123,456,790,123,456,832,098,765,432,098,769
111,111,111,111,111,113                                                      12,345,679,012,345,679,432,098,765,432,098,769
1,111,111,111,111,111,113                                                   1,234,567,901,234,567,905,432,098,765,432,098,769
11,111,111,111,111,111,113                                                 123,456,790,123,456,790,165,432,098,765,432,098,769
111,111,111,111,111,111,113                                              12,345,679,012,345,679,012,765,432,098,765,432,098,769
1,111,111,111,111,111,111,113                                           1,234,567,901,234,567,901,238,765,432,098,765,432,098,769
11,111,111,111,111,111,111,113                                         123,456,790,123,456,790,123,498,765,432,098,765,432,098,769
111,111,111,111,111,111,111,113                                      12,345,679,012,345,679,012,346,098,765,432,098,765,432,098,769
1,111,111,111,111,111,111,111,113                                   1,234,567,901,234,567,901,234,572,098,765,432,098,765,432,098,769
11,111,111,111,111,111,111,111,113                                 123,456,790,123,456,790,123,456,832,098,765,432,098,765,432,098,769
111,111,111,111,111,111,111,111,113                              12,345,679,012,345,679,012,345,679,432,098,765,432,098,765,432,098,769
1,111,111,111,111,111,111,111,111,113                           1,234,567,901,234,567,901,234,567,905,432,098,765,432,098,765,432,098,769
11,111,111,111,111,111,111,111,111,113                         123,456,790,123,456,790,123,456,790,165,432,098,765,432,098,765,432,098,769
111,111,111,111,111,111,111,111,111,113                      12,345,679,012,345,679,012,345,679,012,765,432,098,765,432,098,765,432,098,769
1,111,111,111,111,111,111,111,111,111,113                   1,234,567,901,234,567,901,234,567,901,238,765,432,098,765,432,098,765,432,098,769
11,111,111,111,111,111,111,111,111,111,113                 123,456,790,123,456,790,123,456,790,123,498,765,432,098,765,432,098,765,432,098,769
111,111,111,111,111,111,111,111,111,111,113              12,345,679,012,345,679,012,345,679,012,346,098,765,432,098,765,432,098,765,432,098,769
1,111,111,111,111,111,111,111,111,111,111,113           1,234,567,901,234,567,901,234,567,901,234,572,098,765,432,098,765,432,098,765,432,098,769
11,111,111,111,111,111,111,111,111,111,111,113         123,456,790,123,456,790,123,456,790,123,456,832,098,765,432,098,765,432,098,765,432,098,769
111,111,111,111,111,111,111,111,111,111,111,113      12,345,679,012,345,679,012,345,679,012,345,679,432,098,765,432,098,765,432,098,765,432,098,769
1,111,111,111,111,111,111,111,111,111,111,111,113   1,234,567,901,234,567,901,234,567,901,234,567,905,432,098,765,432,098,765,432,098,765,432,098,769
11,111,111,111,111,111,111,111,111,111,111,111,113 123,456,790,123,456,790,123,456,790,123,456,790,165,432,098,765,432,098,765,432,098,765,432,098,769

## Ring

decimals(0)

see "working..." + nl

row = 0
limit = 8

str = "3"
for n = 1 to limit
if n = 1
strn = number(str)
res = pow(strn,2)
see "{" + strn + "," + res + "}" + nl
else
str = "1" + strn
strn = number(str)
res = pow(strn,2)
see "{" + strn + "," + res + "}" + nl
ok
next

see "done..." + nl

Output:
working...
{3,9}
{13,169}
{113,12769}
{1113,1238769}
{11113,123498769}
{111113,12346098769}
{1111113,1234572098769}
{11111113,123456832098769}
done...

## Seed7

\$ include "seed7_05.s7i";

const proc: main is func
local
var integer: a is 0;
var integer: n is 0;
begin
for n range 0 to 7 do
a := (10 ** (n + 1) - 1) div 9 + 2;
writeln(a <& " " <& a * a);
end for;
end func;
Output:
3 9
13 169
113 12769
1113 1238769
11113 123498769
111113 12346098769
1111113 1234572098769
11111113 123456832098769

## Sidef

0..^8 -> each {|n|
var k = ((10**(n+1) - 1)/9 + 2)
say [k, k**2]
}
Output:
[3, 9]
[13, 169]
[113, 12769]
[1113, 1238769]
[11113, 123498769]
[111113, 12346098769]
[1111113, 1234572098769]
[11111113, 123456832098769]

## Wren

Library: Wren-fmt
import "/fmt" for Fmt

var a = Fn.new { |n|
var s = Num.fromString("1" * n + "3")
var t = s * s
Fmt.print("\$d \$d", s, t)
}

for (n in 0..7) a.call(n)
Output:
3 9
13 169
113 12769
1113 1238769
11113 123498769
111113 12346098769
1111113 1234572098769
11111113 123456832098769

## XPL0

Only 32-bit integers are available, but the standard 64-bit floating point (real) provides 15 decimal digits.

int  N, M;
real X;
[Format(16, 0);
for N:= 0 to 8-1 do
[X:= 0.;
for M:= 0 to N-1 do
X:= X*10. + 1.;
X:= X*10. + 3.;
RlOut(0, X);
RlOut(0, X*X);
CrLf(0);
];
]
Output:
3               9
13             169
113           12769
1113         1238769
11113       123498769
111113     12346098769
1111113   1234572098769
11111113 123456832098769