Flatten a list: Difference between revisions

From Rosetta Code
Content added Content deleted
m (Added a Trith example.)
Line 844: Line 844:


There is no nesting of lists or other data structures in TI-89 BASIC, short of using variable names as pointers.
There is no nesting of lists or other data structures in TI-89 BASIC, short of using variable names as pointers.

=={{header|Trith}}==
<lang trith>[[1] 2 [[3 4] 5] [[[]]] [[[6]]] 7 8 []] flatten</lang>


=={{header|VBScript}}==
=={{header|VBScript}}==

Revision as of 16:44, 18 May 2010

Task
Flatten a list
You are encouraged to solve this task according to the task description, using any language you may know.

Write a function to flatten the nesting in an arbitrary list of values. Your program should work on the equivalent of this list:

  [[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8, []]

Where the correct result would be the list:

   [1, 2, 3, 4, 5, 6, 7, 8]

C.f. Tree traversal

ActionScript

<lang ActionScript>function flatten(input:Array):Array { var output:Array = new Array(); for (var i:uint = 0; i < input.length; i++) {

               //typeof returns "object" when applied to arrays. This line recursively evaluates nested arrays,
               // although it may break if the array contains objects that are not arrays.

if (typeof input[i]=="object") { output=output.concat(flatten(input[i])); } else { output.push(input[i]); } } return output; } </lang>

Aikido

<lang aikido> function flatten (list, result) {

   foreach item list {
       if (typeof(item) == "vector") {
           flatten (item, result)
       } else {
           result.append (item)
       }
   }

}

var l = [[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8, []] var newl = [] flatten (l, newl)

// print out the nicely formatted result list print ('[') var comma = "" foreach item newl {

   print (comma + item)
   comma = ", "

} println("]")

</lang> Output:

[1, 2, 3, 4, 5, 6, 7, 8]

C++

<lang cpp>#include <list>

  1. include <boost/any.hpp>

typedef std::list<boost::any> anylist;

void flatten(std::list<boost::any>& list) {

 typedef anylist::iterator iterator;
 iterator current = list.begin();
 while (current != list.end())
 {
   if (current->type() == typeid(anylist))
   {
     iterator next = current;
     ++next;
     list.splice(next, boost::any_cast<anylist&>(*current));
     next = current;
     ++next;
     list.erase(current);
     current = next;
   }
   else
     ++current;
 }

}</lang>

Use example:

Since C++ currently doesn't have nice syntax for initializing lists, this includes a simple parser to create lists of integers and sublists. Also, there's no standard way to output this type of list, so some output code is added as well. <lang cpp>#include <cctype>

  1. include <iostream>

// ******************* // * the list parser * // *******************

void skipwhite(char const** s) {

 while (**s && std::isspace((unsigned char)**s))
 {
   ++*s;
 }

}

anylist create_anylist_i(char const** s) {

 anylist result;
 skipwhite(s);
 if (**s != '[')
   throw "Not a list";
 ++*s;
 while (true)
 {
   skipwhite(s);
   if (!**s)
     throw "Error";
   else if (**s == ']')
   {
     ++*s;
     return result;
   }
   else if (**s == '[')
     result.push_back(create_anylist_i(s));
   else if (std::isdigit((unsigned char)**s))
   {
     int i = 0;
     while (std::isdigit((unsigned char)**s))
     {
       i = 10*i + (**s - '0');
       ++*s;
     }
     result.push_back(i);
   }
   else
     throw "Error";
   skipwhite(s);
   if (**s != ',' && **s != ']')
     throw "Error";
   if (**s == ',')
     ++*s;
 }

}

anylist create_anylist(char const* i) {

 return create_anylist_i(&i);

}

// ************************* // * printing nested lists * // *************************

void print_list(anylist const& list);

void print_item(boost::any const& a) {

 if (a.type() == typeid(int))
   std::cout << boost::any_cast<int>(a);
 else if (a.type() == typeid(anylist))
   print_list(boost::any_cast<anylist const&>(a));
 else
   std::cout << "???";

}

void print_list(anylist const& list) {

 std::cout << '[';
 anylist::const_iterator iter = list.begin();
 while (iter != list.end())
 {
   print_item(*iter);
   ++iter;
   if (iter != list.end())
     std::cout << ", ";
 }
 std::cout << ']';

}

// *************************** // * The actual test program * // ***************************

int main() {

 anylist list =
   create_anylist("[[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8, []]");
 print_list(list);
 std::cout << "\n";
 flatten(list);
 print_list(list);
 std::cout << "\n";

}</lang> The output of this program is

[[1], 2, [[3, 4], 5], [[[]]], [[[6]]], 7, 8, []]
[1, 2, 3, 4, 5, 6, 7, 8]

Clojure

The following returns a lazy sequence of the flattened data structure. <lang lisp>(defn flatten [coll]

 (lazy-seq
   (when-let [s  (seq coll)]
     (if (coll? (first s))
       (concat (flatten (first s)) (flatten (next s)))
       (cons (first s) (flatten (next s)))))))</lang>

An alternative approach (from clojure.contrib.seq-utils).

<lang lisp>(defn flatten [x]

 (filter (complement sequential?)
         (rest (tree-seq sequential? seq x))))</lang>

Common Lisp

<lang lisp>(defun flatten (tree)

 (let ((result '()))
   (labels ((scan (item)
              (if (listp item)
                (map nil #'scan item)
                (push item result))))
     (scan tree))
   (nreverse result)))</lang>

While this is a common homework problem in Common Lisp, it should be noted that it is typically a mistake to use it in a realistic program; it is almost always easier to rewrite the program such that it does not generate the deeply-nested lists in the first place. In particular, note that flattening means that none of the values stored in the nested-list-structure can be a list (a cons or nil) itself. For example, producing and flattening a tree of boolean values would not do the right thing, since false = nil, a list.

D

There are many ways to implement this in D. This version minimizes heap activity using a tagged union. A similar object-oriented version too is possible. D v.2. <lang d>import std.stdio: writeln; import std.conv: to;

struct TreeList(T) {

   bool isArr = true; // contains an arr on default
   union {
       TreeList!T[] arr;
       T data;
   }
   static TreeList!T opCall(Types...)(Types items) {
       TreeList!T result;
       foreach (i, el; items)
           static if (is(Types[i] == T)) {
               TreeList!T item;
               item.isArr = false;
               item.data = el;
               result.arr ~= item;
           } else
               result.arr ~= el;
       return result;
   }
   // this is better as a general free function
   TreeList!T flatten() {
       TreeList!T result;
       if (this.isArr)
           foreach (el; this.arr)
               result.arr ~= el.flatten().arr;
       else
           result.arr ~= this;
       return result;
   }
   string toString() {
       if (isArr)
           return to!string(arr, "[", ", ", "]");
       else
           return to!string(data);
   }

}

void main() {

   alias TreeList!(int) L; // 12 bytes if T is int
   auto list = L(L(1), 2, L(L(3,4), 5), L(L(L())), L(L(L(6))), 7, 8, L());
   writeln(list);
   writeln(list.flatten());

}</lang> Output:

[[1], 2, [[3, 4], 5], [[[]]], [[[6]]], 7, 8, []]
[1, 2, 3, 4, 5, 6, 7, 8]

E

<lang e>def flatten(nested) {

   def flat := [].diverge()
   def recur(x) {
       switch (x) {
           match list :List { for elem in list { recur(elem) } }
           match other      { flat.push(other) }
       }
   }
   recur(nested)
   return flat.snapshot()

}</lang>

<lang e>? flatten([[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8, []])

  1. value: [1, 2, 3, 4, 5, 6, 7, 8]</lang>

Erlang

There's a standard function (lists:flatten/2) that does it more efficiently, but this is the cleanest implementation you could have; <lang Erlang>flatten([]) -> []; flatten([H|T]) -> flatten(H) ++ flatten(T); flatten(H) -> [H].</lang>

Factor

   USE: sequences.deep
   ( scratchpad ) { { 1 } 2 { { 3 4 } 5 } { { { } } } { { { 6 } } } 7 8 { } } flatten .
   { 1 2 3 4 5 6 7 8 }

Groovy

List.flatten() is a Groovy built-in that returns a flattened copy of the source list:

<lang groovy>assert [[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8, []].flatten() == [1, 2, 3, 4, 5, 6, 7, 8]</lang>

Haskell

In Haskell we have to interpret this structure as an algebraic data type.

<lang Haskell>import Data.Tree

-- [[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8, []] -- implemented as multiway tree:

-- Data.Tree represents trees where nodes have values too, unlike the trees in our problem. -- so we use a list as that value, where a node will have an empty list value, -- and a leaf will have a one-element list value and no subtrees list :: Tree [Int] list = Node [] [

               Node [] [Node [1] []],
               Node [2] [],
               Node [] [
                        Node [] [ Node [3] [],Node [4] []],
                        Node [5] []
                       ],
               Node [] [Node [] [Node [] []]],
               Node [] [Node [] [Node [6] []]],
               Node [7] [],
               Node [8] [],
               Node [] []
               ]

flattenList = concat.flatten</lang> Flattening the list:

*Main> flattenList list
[1,2,3,4,5,6,7,8]

Alternately: <lang haskell>data Tree a = Leaf a | Node [Tree a]

flatten :: Tree a -> [a] flatten (Leaf x) = [x] flatten (Node xs) = concatMap flatten xs

main = print $ flatten $ Node [Node [Leaf 1],

                              Leaf 2,
                              Node [Node [Leaf 3, Leaf 4], Leaf 5],
                              Node [Node [Node []]],
                              Node [Node [Node [Leaf 6]]],
                              Leaf 7,
                              Leaf 8,
                              Node []]

-- output: [1,2,3,4,5,6,7,8]</lang>

Yet another choice, custom data structure, efficient lazy flattening:

<lang haskell>data NestedList a = NList [NestedList a] | Entry a

flatten :: NestedList a -> [a] flatten nl = flatten' nl []

 where
   -- By passing through a list which the results will be preprended to we allow efficient lazy evaluation
   flatten' :: NestedList a -> [a] -> [a]
   flatten' (Entry a) cont = a:cont
   flatten' (NList entries) cont = foldr flatten' cont entries

example :: NestedList Int example = NList [ NList [Entry 1], Entry 2, NList [NList [Entry 3, Entry 4], Entry 5], NList [NList [NList []]], NList [ NList [ NList [Entry 6]]], Entry 7, Entry 8, NList []]

main :: IO () main = print $ flatten example

-- output [1,2,3,4,5,6,7,8]</lang>

Icon and Unicon

Icon

The following procedure solves the task using a string representation of nested lists and cares not if the list is well formed or not. <lang Icon>link strings # for compress,deletec,pretrim

procedure sflatten(s) # uninteresting string solution return pretrim(trim(compress(deletec(s,'[ ]'),',') ,','),',') end</lang>

The solution uses several procedures from strings in the IPL

This procedure is more in the spirit of the task handling actual lists rather than representations. It uses a recursive approach using some of the built-in list manipulation functions and operators. <lang Icon>procedure flatten(L) # in the spirt of the problem a structure local l,x

l := [] every x := !L do

  if type(x) == "list" then l |||:= flatten(x)
  else put(l,x)

return l end</lang>

Finally a demo routine to drive these and a helper to show how it works. <lang Icon>procedure main() write(sflatten(" [[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8, []]")) writelist(flatten( [[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8, []])) end

procedure writelist(L) writes("[") every writes(" ",image(!L)) write(" ]") return end</lang>

Unicon

This Icon solution works in Unicon.

Ioke

<lang ioke>iik> [[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8, []] flatten [[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8, []] flatten +> [1, 2, 3, 4, 5, 6, 7, 8]</lang>

J

Solution: <lang j>flatten =: [: ; <S:0</lang>

Example: <lang j> NB. create and display nested noun li

  ]li =.  (<1) ; 2; ((<3;4); 5) ; ((<a:)) ; ((<(<6))) ; 7; 8; <a:

+---+-+-----------+----+-----+-+-+--+ |+-+|2|+-------+-+|+--+|+---+|7|8|++| ||1|| ||+-----+|5|||++|||+-+|| | |||| |+-+| |||+-+-+|| |||||||||6||| | |++| | | ||||3|4||| |||++|||+-+|| | | | | | |||+-+-+|| ||+--+|+---+| | | | | | ||+-----+| || | | | | | | | |+-------+-+| | | | | | +---+-+-----------+----+-----+-+-+--+

  flatten li

1 2 3 4 5 6 7 8</lang>

Java

Works with: Java version 1.5+

<lang java5>import java.util.LinkedList; import java.util.List; import java.util.Arrays;

public class Flatten {

 public static List<Object> flatten(List<?> list){
   List<Object> retVal = new LinkedList<Object>();
   for(Object item:list){
     if(item instanceof List){
       retVal.addAll(flatten((List)item));
     }else{
       retVal.add(item);
     }
   }
   return retVal;
 }
 public static void main(String[] args){
   List<Object> test = Arrays.<Object>asList(
                         Arrays.<Object>asList(1),
                         2,
                         Arrays.<Object>asList(
                           Arrays.<Object>asList(3,4),
                           5
                         ),
                         Arrays.<Object>asList(
                           Arrays.<Object>asList(
                             Arrays.<Object>asList()
                           )
                         ),
                         Arrays.<Object>asList(
                           Arrays.<Object>asList(
                             Arrays.<Object>asList(6)
                           )
                         ),
                         7,
                         8,
                         Arrays.<Object>asList()
                       );
   System.out.println(test);
   System.out.println(flatten(test));
 }

}</lang> Output:

[[1], 2, [[3, 4], 5], [[[]]], [[[6]]], 7, 8, []]
[1, 2, 3, 4, 5, 6, 7, 8]

JavaScript

Library: Prototype
Works with: a browser

<lang javascript><script type="text/javascript" src="/path/to/prototype.js"></script> <script type="text/javascript">

  var a = [[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8, []];

document.write("

before

"); a.each(function(e){document.write("

" + e + " " + typeof(e) + "

")});

  var f = a.flatten();

document.write("

after

"); f.each(function(e){document.write("

" + e + " " + typeof(e) + "

")});

</script></lang> output:

before

1 object
2 number
3,4,5 object
object
6 object
7 number
8 number
object

after

1 number
2 number
3 number
4 number
5 number
6 number
7 number
8 number

Lua

<lang lua>function flatten(list)

 if type(list) ~= "table" then return {list} end
 local flat_list = {}
 for _, elem in ipairs(list) do
   for _, val in ipairs(flatten(elem)) do
     flat_list[#flat_list + 1] = val
   end
 end
 return flat_list

end

test_list = {{1}, 2, {{3,4}, 5}, {{{}}}, {{{6}}}, 7, 8, {}}

print(table.concat(flatten(test_list), ","))</lang>

<lang logo>to flatten :l

 if not list? :l [output :l]
 if empty? :l [output []]
 output sentence flatten first :l flatten butfirst :l

end

using a template iterator (map combining results into a sentence)

to flatten :l

 output map.se [ifelse or not list? ? empty? ? [?] [flatten ?]] :l

end

make "a [[1] 2 [[3 4] 5] [[[]]] [[[6]]] 7 8 []] show flatten :a</lang>

OCaml

<lang ocaml># let flatten = List.concat ;; val flatten : 'a list list -> 'a list = <fun>

  1. let li = [[1]; 2; [[3;4]; 5]; [[[]]]; [[[6]]]; 7; 8; []] ;;
               ^^^

Error: This expression has type int but is here used with type int list

  1. (* use another data which can be accepted by the type system *)
 flatten [[1]; [2; 3; 4]; []; [5; 6]; [7]; [8]] ;;

- : int list = [1; 2; 3; 4; 5; 6; 7; 8]</lang>

Since OCaml is statically typed, it is not possible to have a value that could be both a list and a non-list. Instead, we can use an algebraic datatype:

<lang ocaml># type 'a tree = Leaf of 'a | Node of 'a tree list ;; type 'a tree = Leaf of 'a | Node of 'a tree list

  1. let rec flatten = function
    Leaf x -> [x]
  | Node xs -> List.concat (List.map flatten xs) ;;

val flatten : 'a tree -> 'a list = <fun>

  1. flatten (Node [Node [Leaf 1]; Leaf 2; Node [Node [Leaf 3; Leaf 4]; Leaf 5]; Node [Node [Node []]]; Node [Node [Node [Leaf 6]]]; Leaf 7; Leaf 8; Node []]) ;;

- : int list = [1; 2; 3; 4; 5; 6; 7; 8]</lang>

Oz

Oz has a standard library function "Flatten": <lang oz>{Show {Flatten [[1] 2 [[3 4] 5] nil [[[6]]] 7 8 nil]}}</lang> A simple, non-optimized implementation could look like this: <lang oz>fun {Flatten2 Xs}

  case Xs of nil then nil
  [] X|Xr then
     {Append {Flatten2 X} {Flatten2 Xr}}
  else [Xs]
  end

end </lang>

Perl

<lang perl>sub flatten {

   map { ref eq 'ARRAY' ? flatten(@$_) : $_ } @_

}

my @lst = ([1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8, []); print flatten(@lst), "\n";</lang>

Perl 6

Works with: Rakudo version #22 "Thousand Oaks"

<lang perl6>multi flatten (@a) { map { flatten $^x }, @a } multi flatten ($x) { $x }</lang>

PHP

<lang php>/* Note: This code is only for PHP 4.

  It won't work on PHP 5 due to the change in behavior of array_merge(). */

while (array_filter($lst, 'is_array'))

   $lst = call_user_func_array('array_merge', $lst);</lang>

Explanation: while $lst has any elements which are themselves arrays (i.e. $lst is not flat), we merge the elements all together (in PHP 4, array_merge() treated non-array arguments as if they were 1-element arrays; PHP 5 array_merge() no longer allows non-array arguments.), thus flattening the top level of any embedded arrays. Repeat this process until the array is flat.

Recursive

<lang php><?php function flatten($ary) {

   $result = array();
   foreach ($ary as $x) {
       if (is_array($x))
           // append flatten($x) onto $result
           array_splice($result, count($result), 0, flatten($x));
       else
           $result[] = $x;
   }
   return $result;

}

$lst = array(array(1), 2, array(array(3, 4), 5), array(array(array())), array(array(array(6))), 7, 8, array()); var_dump(flatten($lst)); ?></lang>

Non-recursive

Function flat is iterative and flattens the array in-place. <lang php><?php function flat(&$ary) { // argument must be by reference or array will just be copied

   for ($i = 0; $i < count($ary); $i++) {
       while (is_array($ary[$i])) {
           array_splice($ary, $i, 1, $ary[$i]);
       }
   }

}

$lst = array(array(1), 2, array(array(3, 4), 5), array(array(array())), array(array(array(6))), 7, 8, array()); flat($lst); var_dump($lst); ?></lang>

PicoLisp

<lang PicoLisp>(de flatten (X)

  (make                               # Build a list
     (recur (X)                       # recursively over 'X'
        (if (atom X)
           (link X)                   # Put atoms into the result
           (mapc recurse X) ) ) ) )   # or recurse on sub-lists</lang>

or a more succint way using fish:

<lang PicoLisp>(de flatten (X)

  (fish atom X) )</lang>

PL/I

<lang PL/I> list = translate (list, ' ', '[]' ); list = '[' || list || ']'; </lang>

Python

Recursive

Function flatten is recursive and preserves its argument: <lang python>>>> def flatten(lst): return sum( ([x] if isinstance(x, list) else flatten(x) for x in lst), [] )

>>> lst = [[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8, []] >>> flatten(lst) [1, 2, 3, 4, 5, 6, 7, 8]</lang>

Non-recursive

Function flat is iterative and flattens the list in-place. It follows the Python idiom of returning None when acting in-place: <lang python>>>> def flat(lst):

   i=0
   while i<len(lst):
       while True:
           try:
               lst[i:i+1] = lst[i]
           except (TypeError, IndexError):
               break
       i += 1
       

>>> lst = [[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8, []] >>> flat(lst) >>> lst [1, 2, 3, 4, 5, 6, 7, 8]</lang>

Generative

This method shows a solution using Python generators.

flatten is a generator that yields the non-list values of its input in order. The primary advantage of generators is that there are no temporary values needed. For large input, this can reduce memory usage dramatically.

The generator is converted back to a list before printing.

<lang python>>>> def flatten(lst):

    for x in lst:
        if isinstance(x, list):
            for x in flatten(x):
                yield x
        else:
            yield x


>>>lst = [[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8, []] >>>print list(flatten(lst)) [1, 2, 3, 4, 5, 6, 7, 8]</lang>

R

<lang R>x <- list(list(1), 2, list(list(3, 4), 5), list(list(list())), list(list(list(6))), 7, 8, list())

unlist(x)</lang>


REBOL

<lang rebol> flatten: func [

   "Flatten the block in place."
   block [any-block!]

][

   parse block [
       any [block: any-block! (change/part block first block 1) :block | skip]
   ]
   head block

] </lang>

Sample:

>> flatten [[1] 2 [[3 4] 5] [[[]]] [[[6]]] 7 8 []]
== [1 2 3 4 5 6 7 8]

Ruby

flatten is a built-in method of Arrays <lang ruby>flat = [[1], 2, [[3,4], 5], [[[]]], [[[6]]], 7, 8, []].flatten p flat # => [1, 2, 3, 4, 5, 6, 7, 8]</lang>

Scala

<lang scala>def flatList(l: List[_]): List[Any] = l match {

 case Nil => Nil
 case (head: List[_]) :: tail => flatList(head) ::: flatList(tail)
 case head :: tail => head :: flatList(tail)

}</lang>

Sample:

scala> List(List(1), 2, List(List(3, 4), 5), List(List(List())), List(List(List(6))), 7, 8, List())
res10: List[Any] = List(List(1), 2, List(List(3, 4), 5), List(List(List())), List(List(List(6))), 7, 8, List())

scala> flatList(res10)
res12: List[Any] = List(1, 2, 3, 4, 5, 6, 7, 8)

Scheme

<lang scheme>> (define (flatten x)

   (cond ((null? x) '())
         ((not (pair? x)) (list x))
         (else (append (flatten (car x))
                       (flatten (cdr x))))))

> (flatten '((1) 2 ((3 4) 5) ((())) (((6))) 7 8 ())) (1 2 3 4 5 6 7 8)</lang>

Slate

<lang slate>s@(Sequence traits) flatten [

 [| :out | s flattenOn: out] writingAs: s

].

s@(Sequence traits) flattenOn: w@(WriteStream traits) [

 s do: [| :value |
   (value is: s)
     ifTrue: [value flattenOn: w]
     ifFalse: [w nextPut: value]].

].</lang>

Smalltalk

Works with: GNU Smalltalk

<lang smalltalk>OrderedCollection extend [

 flatten [ |f|
   f := OrderedCollection new.
   self do: [ :i |
     i isNumber
       ifTrue: [ f add: i ]
       ifFalse: [ |t|
         t := (OrderedCollection withAll: i) flatten.
         f addAll: t
       ]
   ].
   ^ f
 ]

].


|list| list := OrderedCollection

         withAll: { {1} . 2 . { {3 . 4} . 5 } .
                    {{{}}} . {{{6}}} . 7 . 8 . {} }.

(list flatten) printNl.</lang>

Tcl

<lang tcl>proc flatten list {

   for {set old {}} {$old ne $list} {} {
       set old $list
       set list [join $list]
   }
   return $list

}

puts [flatten {{1} 2 {{3 4} 5} {{{}}} {{{6}}} 7 8 {}}]

  1. ===> 1 2 3 4 5 6 7 8</lang>

Note that because lists are not syntactically distinct from strings, it is probably a mistake to use this procedure with real (especially non-numeric) data. Also note that there are no parentheses around the outside of the list when printed; this is just a feature of how Tcl regards lists, and the value is a proper list (it can be indexed into with lindex, iterated over with foreach, etc.)

TI-89 BASIC

There is no nesting of lists or other data structures in TI-89 BASIC, short of using variable names as pointers.

Trith

<lang trith>[[1] 2 [[3 4] 5] [[[]]] [[[6]]] 7 8 []] flatten</lang>

VBScript

Working on embedded arrays as that's about the closest we get to lists.

Implementation

<lang vb> class flattener dim separator

sub class_initialize separator = "," end sub

private function makeflat( a ) dim i dim res for i = lbound( a ) to ubound( a ) if isarray( a( i ) ) then res = res & makeflat( a( i ) ) else res = res & a( i ) & separator end if next makeflat = res end function

public function flatten( a ) dim res res = makeflat( a ) res = left( res, len( res ) - len(separator)) res = split( res, separator ) flatten = res end function

public property let itemSeparator( c ) separator = c end property end class </lang>

Invocation

<lang vb> dim flat set flat = new flattener flat.itemSeparator = "~" wscript.echo join( flat.flatten( array( array( 1 ),2,array(array(3,4),5),array(array(array())),array(array(array(6))),7,8,array())), "!") </lang>

Output

<lang vb> 1!2!3!4!5!6!7!8 </lang>