Cholesky decomposition

From Rosetta Code
Task
Cholesky decomposition
You are encouraged to solve this task according to the task description, using any language you may know.

Every symmetric, positive definite matrix A can be decomposed into a product of a unique lower triangular matrix L and its transpose:

is called the Cholesky factor of , and can be interpreted as a generalized square root of , as described in Cholesky decomposition.

In a 3x3 example, we have to solve the following system of equations:

We can see that for the diagonal elements () of there is a calculation pattern:

or in general:

For the elements below the diagonal (, where ) there is also a calculation pattern:

which can also be expressed in a general formula:

Task description

The task is to implement a routine which will return a lower Cholesky factor for every given symmetric, positive definite nxn matrix . You should then test it on the following two examples and include your output.

Example 1:

25  15  -5                 5   0   0
15  18   0         -->     3   3   0
-5   0  11                -1   1   3

Example 2:

18  22   54   42           4.24264    0.00000    0.00000    0.00000
22  70   86   62   -->     5.18545    6.56591    0.00000    0.00000
54  86  174  134          12.72792    3.04604    1.64974    0.00000
42  62  134  106           9.89949    1.62455    1.84971    1.39262


Ada

Works with: Ada 2005

decomposition.ads: <lang Ada>with Ada.Numerics.Generic_Real_Arrays; generic

  with package Matrix is new Ada.Numerics.Generic_Real_Arrays (<>);

package Decomposition is

  -- decompose a square matrix A by A = L * Transpose (L)
  procedure Decompose (A : Matrix.Real_Matrix; L : out Matrix.Real_Matrix);

end Decomposition;</lang>

decomposition.adb: <lang Ada>with Ada.Numerics.Generic_Elementary_Functions;

package body Decomposition is

  package Math is new Ada.Numerics.Generic_Elementary_Functions
    (Matrix.Real);
  procedure Decompose (A : Matrix.Real_Matrix; L : out Matrix.Real_Matrix) is
     use type Matrix.Real_Matrix, Matrix.Real;
     Order : constant Positive := A'Length (1);
     S     : Matrix.Real;
  begin
     L := (others => (others => 0.0));
     for I in 0 .. Order - 1 loop
        for K in 0 .. I loop
           S := 0.0;
           for J in 0 .. K - 1 loop
              S := S +
                L (L'First (1) + I, L'First (2) + J) *
                L (L'First (1) + K, L'First (2) + J);
           end loop;
           -- diagonals
           if K = I then
              L (L'First (1) + K, L'First (2) + K) :=
                Math.Sqrt (A (A'First (1) + K, A'First (2) + K) - S);
           else
              L (L'First (1) + I, L'First (2) + K) :=
                1.0 / L (L'First (1) + K, L'First (2) + K) *
                (A (A'First (1) + I, A'First (2) + K) - S);
           end if;
        end loop;
     end loop;
  end Decompose;

end Decomposition;</lang>

Example usage: <lang Ada>with Ada.Numerics.Real_Arrays; with Ada.Text_IO; with Decomposition; procedure Decompose_Example is

  package Real_Decomposition is new Decomposition
    (Matrix => Ada.Numerics.Real_Arrays);
  package Real_IO is new Ada.Text_IO.Float_IO (Float);
  procedure Print (M : Ada.Numerics.Real_Arrays.Real_Matrix) is
  begin
     for Row in M'Range (1) loop
        for Col in M'Range (2) loop
           Real_IO.Put (M (Row, Col), 4, 3, 0);
        end loop;
        Ada.Text_IO.New_Line;
     end loop;
  end Print;
  Example_1 : constant Ada.Numerics.Real_Arrays.Real_Matrix :=
    ((25.0, 15.0, -5.0),
     (15.0, 18.0, 0.0),
     (-5.0, 0.0, 11.0));
  L_1 : Ada.Numerics.Real_Arrays.Real_Matrix (Example_1'Range (1),
                                              Example_1'Range (2));
  Example_2 : constant Ada.Numerics.Real_Arrays.Real_Matrix :=
    ((18.0, 22.0, 54.0, 42.0),
     (22.0, 70.0, 86.0, 62.0),
     (54.0, 86.0, 174.0, 134.0),
     (42.0, 62.0, 134.0, 106.0));
  L_2 : Ada.Numerics.Real_Arrays.Real_Matrix (Example_2'Range (1),
                                              Example_2'Range (2));

begin

  Real_Decomposition.Decompose (A => Example_1,
                                L => L_1);
  Real_Decomposition.Decompose (A => Example_2,
                                L => L_2);
  Ada.Text_IO.Put_Line ("Example 1:");
  Ada.Text_IO.Put_Line ("A:"); Print (Example_1);
  Ada.Text_IO.Put_Line ("L:"); Print (L_1);
  Ada.Text_IO.New_Line;
  Ada.Text_IO.Put_Line ("Example 2:");
  Ada.Text_IO.Put_Line ("A:"); Print (Example_2);
  Ada.Text_IO.Put_Line ("L:"); Print (L_2);

end Decompose_Example;</lang>

Output:

Example 1:
A:
  25.000  15.000  -5.000
  15.000  18.000   0.000
  -5.000   0.000  11.000
L:
   5.000   0.000   0.000
   3.000   3.000   0.000
  -1.000   1.000   3.000

Example 2:
A:
  18.000  22.000  54.000  42.000
  22.000  70.000  86.000  62.000
  54.000  86.000 174.000 134.000
  42.000  62.000 134.000 106.000
L:
   4.243   0.000   0.000   0.000
   5.185   6.566   0.000   0.000
  12.728   3.046   1.650   0.000
   9.899   1.625   1.850   1.393

ALGOL 68

Translation of: C

Note: This specimen retains the original C coding style. diff

Works with: ALGOL 68 version Revision 1 - no extensions to language used.
Works with: ALGOL 68G version Any - tested with release 1.18.0-9h.tiny.

<lang algol68>#!/usr/local/bin/a68g --script #

MODE FIELD=LONG REAL; PROC (FIELD)FIELD field sqrt = long sqrt; INT field prec = 5; FORMAT field fmt = $g(-(2+1+field prec),field prec)$;

MODE MAT = [0,0]FIELD;

PROC cholesky = (MAT a) MAT:(

   [UPB a, 2 UPB a]FIELD l;

   FOR i FROM LWB a TO UPB a DO
       FOR j FROM 2 LWB a TO i DO
           FIELD s := 0;
           FOR k FROM 2 LWB a TO j-1 DO
               s +:= l[i,k] * l[j,k]
           OD;
           l[i,j] := IF i = j 
                     THEN field sqrt(a[i,i] - s) 
                     ELSE 1.0 / l[j,j] * (a[i,j] - s) FI
       OD;
       FOR j FROM i+1 TO 2 UPB a DO 
           l[i,j]:=0 # Not required if matrix is declared as triangular #
       OD
   OD;
   l

);

PROC print matrix v1 =(MAT a)VOID:(

   FOR i FROM LWB a TO UPB a DO
       FOR j FROM 2 LWB a TO 2 UPB a DO
           printf(($g(-(2+1+field prec),field prec)$, a[i,j]))
       OD;
       printf($l$)
   OD

);

PROC print matrix =(MAT a)VOID:(

   FORMAT vector fmt = $"("f(field  fmt)n(2 UPB a-2 LWB a)(", " f(field  fmt))")"$;
   FORMAT matrix fmt = $"("f(vector fmt)n(  UPB a-  LWB a)(","lxf(vector fmt))")"$;
   printf((matrix fmt, a))

);

main: (

   MAT m1 = ((25, 15, -5),
             (15, 18,  0),
             (-5,  0, 11));
   MAT c1 = cholesky(m1);
   print matrix(c1);
   printf($l$);

   MAT m2 = ((18, 22,  54,  42),
             (22, 70,  86,  62),
             (54, 86, 174, 134),
             (42, 62, 134, 106));
   MAT c2 = cholesky(m2);
   print matrix(c2)

)</lang> Output:

(( 5.00000,  0.00000,  0.00000),
 ( 3.00000,  3.00000,  0.00000),
 (-1.00000,  1.00000,  3.00000))
(( 4.24264,  0.00000,  0.00000,  0.00000),
 ( 5.18545,  6.56591,  0.00000,  0.00000),
 (12.72792,  3.04604,  1.64974,  0.00000),
 ( 9.89949,  1.62455,  1.84971,  1.39262))

C

<lang c>#include <stdio.h>

  1. include <stdlib.h>
  2. include <math.h>

double *cholesky(double *A, int n) {

   double *L = (double*)calloc(n * n, sizeof(double));
   if (L == NULL)
       exit(EXIT_FAILURE);
   for (int i = 0; i < n; i++)
       for (int j = 0; j < (i+1); j++) {
           double s = 0;
           for (int k = 0; k < j; k++)
               s += L[i * n + k] * L[j * n + k];
           L[i * n + j] = (i == j) ?
                          sqrt(A[i * n + i] - s) :
                          (1.0 / L[j * n + j] * (A[i * n + j] - s));
       }
   return L;

}

void show_matrix(double *A, int n) {

   for (int i = 0; i < n; i++) {
       for (int j = 0; j < n; j++)
           printf("%2.5f ", A[i * n + j]);
       printf("\n");
   }

}

int main() {

   int n = 3;
   double m1[] = {25, 15, -5,
                  15, 18,  0,
                  -5,  0, 11};
   double *c1 = cholesky(m1, n);
   show_matrix(c1, n);
   printf("\n");
   free(c1);
   n = 4;
   double m2[] = {18, 22,  54,  42,
                  22, 70,  86,  62,
                  54, 86, 174, 134,
                  42, 62, 134, 106};
   double *c2 = cholesky(m2, n);
   show_matrix(c2, n);
   free(c2);
   return 0;

}</lang> Output:

5.00000 0.00000 0.00000
3.00000 3.00000 0.00000
-1.00000 1.00000 3.00000

4.24264 0.00000 0.00000 0.00000
5.18545 6.56591 0.00000 0.00000
12.72792 3.04604 1.64974 0.00000
9.89949 1.62455 1.84971 1.39262

Common Lisp

<lang lisp>;; Calculates the Cholesky decomposition matrix L

for a positive-definite, symmetric nxn matrix A.

(defun chol (A)

 (let* ((n (car (array-dimensions A)))
        (L (make-array `(,n ,n) :initial-element 0)))
   (do ((k 0 (incf k))) ((> k (- n 1)) nil)
       ;; First, calculate diagonal elements L_kk.
       (setf (aref L k k)
             (sqrt (- (aref A k k)
                      (do* ((j 0 (incf j))
                            (sum (expt (aref L k j) 2) 
                                 (incf sum (expt (aref L k j) 2))))
                           ((> j (- k 1)) sum)))))
       ;; Then, all elements below a diagonal element, L_ik, i=k+1..n.
       (do ((i (+ k 1) (incf i)))
           ((> i (- n 1)) nil)
           (setf (aref L i k)
                 (/ (- (aref A i k)
                       (do* ((j 0 (incf j))
                             (sum (* (aref L i j) (aref L k j))
                                  (incf sum (* (aref L i j) (aref L k j)))))
                            ((> j (- k 1)) sum)))
                    (aref L k k)))))
   ;; Return the calculated matrix L.
   L))</lang>

<lang lisp>;; Example 1: (setf A (make-array '(3 3) :initial-contents '((25 15 -5) (15 18 0) (-5 0 11)))) (chol A)

  1. 2A((5.0 0 0)
   (3.0 3.0 0)
   (-1.0 1.0 3.0))</lang>

<lang lisp>;; Example 2: (setf B (make-array '(4 4) :initial-contents '((18 22 54 42) (22 70 86 62) (54 86 174 134) (42 62 134 106)))) (chol B)

  1. 2A((4.2426405 0 0 0)
   (5.18545 6.565905 0 0)
   (12.727922 3.0460374 1.6497375 0)
   (9.899495 1.6245536 1.849715 1.3926151))</lang>

<lang lisp>;; case of matrix stored as a list of lists (inner lists are rows of matrix)

as above, returns the Cholesky decomposition matrix of a square positive-definite, symmetric matrix

(defun cholesky (m)

 (let ((l (list (list (sqrt (caar m))))) x (j 0) i)
   (dolist (cm (cdr m) (mapcar #'(lambda (x) (nconc x (make-list (- (length m) (length x)) :initial-element 0))) l))
     (setq x (list (/ (car cm) (caar l))) i 0)
     (dolist (cl (cdr l)) 
       (setf (cdr (last x)) (list (/ (- (elt cm (incf i)) (*v x cl)) (car (last cl))))))
     (setf (cdr (last l)) (list (nconc x (list (sqrt (- (elt cm (incf j)) (*v x x))))))))))
where *v is the scalar product defined as

(defun *v (v1 v2) (reduce #'+ (mapcar #'* v1 v2)))</lang>

<lang lisp>;; example 1 CL-USER> (setf a '((25 15 -5) (15 18 0) (-5 0 11))) ((25 15 -5) (15 18 0) (-5 0 11)) CL-USER> (cholesky a) ((5 0 0) (3 3 0) (-1 1 3)) CL-USER> (format t "~{~{~5d~}~%~}" (cholesky a))

   5    0    0
   3    3    0
  -1    1    3

NIL</lang>

<lang lisp>;; example 2 CL-USER> (setf a '((18 22 54 42) (22 70 86 62) (54 86 174 134) (42 62 134 106))) ((18 22 54 42) (22 70 86 62) (54 86 174 134) (42 62 134 106)) CL-USER> (cholesky a) ((4.2426405 0 0 0) (5.18545 6.565905 0 0) (12.727922 3.0460374 1.6497375 0) (9.899495 1.6245536 1.849715 1.3926151)) CL-USER> (format t "~{~{~10,5f~}~%~}" (cholesky a))

  4.24264   0.00000   0.00000   0.00000
  5.18545   6.56591   0.00000   0.00000
 12.72792   3.04604   1.64974   0.00000
  9.89950   1.62455   1.84971   1.39262

NIL</lang>

D

<lang d>import std.stdio, std.math, std.numeric;

T[][] cholesky(T)(in T[][] A) {

   auto L = new T[][](A.length, A.length);
   foreach (r, row; L)
       row[r+1 .. $] = 0;
   foreach (i; 0 .. A.length)
       foreach (j; 0 .. i+1) {
           T t = dotProduct(L[i][0..j], L[j][0..j]);
           L[i][j] = (i == j) ? (A[i][i] - t) ^^ 0.5 :
                                (1.0 / L[j][j] * (A[i][j] - t));
       }
   return L;

}

void main() {

   double[][] m1 = [[25, 15, -5],
                    [15, 18,  0],
                    [-5,  0, 11]];
   foreach (row; cholesky(m1))
       writeln(row);
   writeln();
   double[][] m2 = [[18, 22,  54,  42],
                    [22, 70,  86,  62],
                    [54, 86, 174, 134],
                    [42, 62, 134, 106]];
   foreach (row; cholesky(m2))
       writeln(row);

}</lang> Output:

[5, 0, 0]
[3, 3, 0]
[-1, 1, 3]

[4.24264, 0, 0, 0]
[5.18545, 6.56591, 0, 0]
[12.7279, 3.04604, 1.64974, 0]
[9.89949, 1.62455, 1.84971, 1.39262]

DWScript

Translation of: C

<lang delphi>function Cholesky(a : array of Float) : array of Float; var

  i, j, k, n : Integer;
  s : Float;

begin

  n:=Round(Sqrt(a.Length));
  Result:=new Float[n*n];
  for i:=0 to n-1 do begin
     for j:=0 to i do begin
        s:=0 ;
        for k:=0 to j-1 do
           s+=Result[i*n+k] * Result[j*n+k];
        if i=j then
           Result[i*n+j]:=Sqrt(a[i*n+i]-s)
        else Result[i*n+j]:=1/Result[j*n+j]*(a[i*n+j]-s);
     end;
  end;

end;

procedure ShowMatrix(a : array of Float); var

  i, j, n : Integer;

begin

  n:=Round(Sqrt(a.Length));
  for i:=0 to n-1 do begin
     for j:=0 to n-1 do
        Print(Format('%2.5f ', [a[i*n+j]]));
     PrintLn();
  end;

end;

var m1 := new Float[9]; m1 := [ 25.0, 15.0, -5.0,

       15.0, 18.0,  0.0, 
       -5.0,  0.0, 11.0 ];

var c1 := Cholesky(m1); ShowMatrix(c1);

PrintLn();

var m2 : array of Float := [ 18.0, 22.0, 54.0, 42.0,

                            22.0, 70.0,  86.0,  62.0,
                            54.0, 86.0, 174.0, 134.0,
                            42.0, 62.0, 134.0, 106.0 ];

var c2 := Cholesky(m2); ShowMatrix(c2);</lang>

Fantom

<lang fantom>

    • Cholesky decomposition

class Main {

 // create an array of Floats, initialised to 0.0
 Float[][] makeArray (Int i, Int j)
 {
   Float[][] result := [,]
   i.times { result.add ([,]) }
   i.times |Int x|
   {
     j.times
     { 
       result[x].add(0f)
     }
   }
   return result
 }
 // perform the Cholesky decomposition
 Float[][] cholesky (Float[][] array)
 {
   m := array.size
   Float[][] l := makeArray (m, m)
   m.times |Int i|
   {
     (i+1).times |Int k|
     {
       Float sum := (0..<k).toList.reduce (0f) |Float a, Int j -> Float| 
       { 
         a + l[i][j] * l[k][j] 
       }
       if (i == k)
         l[i][k] = (array[i][i]-sum).sqrt
       else
         l[i][k] = (1.0f / l[k][k]) * (array[i][k] - sum)
     }
   }
   return l
 }
 Void runTest (Float[][] array)
 {
   echo (array)
   echo (cholesky (array))
 }

 Void main ()
 {
   runTest ([[25f,15f,-5f],[15f,18f,0f],[-5f,0f,11f]])
   runTest ([[18f,22f,54f,42f],[22f,70f,86f,62f],[54f,86f,174f,134f],[42f,62f,134f,106f]])
 }

} </lang>

Output:

[[25.0, 15.0, -5.0], [15.0, 18.0, 0.0], [-5.0, 0.0, 11.0]]
[[5.0, 0.0, 0.0], [3.0, 3.0, 0.0], [-1.0, 1.0, 3.0]]
[[18.0, 22.0, 54.0, 42.0], [22.0, 70.0, 86.0, 62.0], [54.0, 86.0, 174.0, 134.0], [42.0, 62.0, 134.0, 106.0]]
[[4.242640687119285, 0.0, 0.0, 0.0], [5.185449728701349, 6.565905201197403, 0.0, 0.0], [12.727922061357857, 3.0460384954008553, 1.6497422479090704, 0.0], [9.899494936611667, 1.624553864213788, 1.8497110052313648, 1.3926212476456026]]

Haskell

We use the Cholesky–Banachiewicz algorithm described in the Wikipedia article.

For more serious numerical analysis there is a Cholesky decomposition function in the hmatrix package.

The Cholesky module: <lang haskell>module Cholesky (Arr, cholesky) where

import Data.Array.IArray import Data.Array.MArray import Data.Array.Unboxed import Data.Array.ST

type Idx = (Int,Int) type Arr = UArray Idx Double

-- Return the (i,j) element of the lower triangular matrix. (We assume the -- lower array bound is (0,0).) get :: Arr -> Arr -> Idx -> Double get a l (i,j) | i == j = sqrt $ a!(j,j) - dot

             | i  > j = (a!(i,j) - dot) / l!(j,j)
             | otherwise = 0
 where dot = sum [l!(i,k) * l!(j,k) | k <- [0..j-1]]

-- Return the lower triangular matrix of a Cholesky decomposition. We assume -- the input is a real, symmetric, positive-definite matrix, with lower array -- bounds of (0,0). cholesky :: Arr -> Arr cholesky a = let n = maxBnd a

            in runSTUArray $ do
              l <- thaw a
              mapM_ (update a l) [(i,j) | i <- [0..n], j <- [0..n]]
              return l
 where maxBnd = fst . snd . bounds
       update a l i = unsafeFreeze l >>= \l' -> writeArray l i (get a l' i)</lang>

The main module: <lang haskell>import Data.Array.IArray import Cholesky

ex1, ex2 :: Arr ex1 = listArray ((0,0),(2,2)) [25, 15, -5,

                              15, 18,  0, 
                              -5,  0, 11]

ex2 = listArray ((0,0),(3,3)) [18, 22, 54, 42,

                              22, 70,  86,  62, 
                              54, 86, 174, 134, 
                              42, 62, 134, 106]

main :: IO () main = do

 print $ elems $ cholesky ex1
 print $ elems $ cholesky ex2</lang>

The resulting matrices are printed as lists, as in the following output:

[5.0,0.0,0.0,3.0,3.0,0.0,-1.0,1.0,3.0]
[4.242640687119285,0.0,0.0,0.0,5.185449728701349,6.565905201197403,0.0,0.0,12.727922061357857,3.0460384954008553,1.6497422479090704,0.0,9.899494936611665,1.6245538642137891,1.849711005231382,1.3926212476455924]

Icon and Unicon

<lang Icon> procedure cholesky (array)

 result := make_square_array (*array)
 every (i := 1 to *array) do {
   every (k := 1 to i) do { 
     sum := 0
     every (j := 1 to (k-1)) do {
       sum +:= result[i][j] * result[k][j]
     }
     if (i = k) 
       then result[i][k] := sqrt(array[i][i] - sum)
       else result[i][k] := 1.0 / result[k][k] * (array[i][k] - sum)
   }
 }
 return result

end

procedure make_square_array (n)

 result := []
 every (1 to n) do push (result, list(n, 0))
 return result

end

procedure print_array (array)

 every (row := !array) do {
   every writes (!row || " ")
   write ()
 }

end

procedure do_cholesky (array)

 write ("Input:")
 print_array (array)
 result := cholesky (array)
 write ("Result:")
 print_array (result)

end

procedure main ()

 do_cholesky ([[25,15,-5],[15,18,0],[-5,0,11]])
 do_cholesky ([[18,22,54,42],[22,70,86,62],[54,86,174,134],[42,62,134,106]])

end </lang>

Output:

Input:
25 15 -5 
15 18 0 
-5 0 11 
Result:
5.0 0 0 
3.0 3.0 0 
-1.0 1.0 3.0 
Input:
18 22 54 42 
22 70 86 62 
54 86 174 134 
42 62 134 106 
Result:
4.242640687 0 0 0 
5.185449729 6.565905201 0 0 
12.72792206 3.046038495 1.649742248 0 
9.899494937 1.624553864 1.849711005 1.392621248

J

Solution: <lang j>mp=: +/ . * NB. matrix product h =: +@|: NB. conjugate transpose

cholesky=: 3 : 0

n=. #A=. y
if. 1>:n do.
 assert. (A=|A)>0=A  NB. check for positive definite
 %:A
else.
 p=. >.n%2 [ q=. <.n%2
 X=. (p,p) {.A [ Y=. (p,-q){.A [ Z=. (-q,q){.A
 L0=. cholesky X
 L1=. cholesky Z-(T=.(h Y) mp %.X) mp Y
 L0,(T mp L0),.L1
end.

)</lang> See Choleski Decomposition essay on the J Wiki.

Examples: <lang j> eg1=: 25 15 _5 , 15 18 0 ,: _5 0 11

  eg2=: 18 22 54 42 , 22 70 86 62 , 54 86 174 134 ,: 42 62 134 106
  cholesky eg1
5 0 0
3 3 0

_1 1 3

  cholesky eg2

4.24264 0 0 0 5.18545 6.56591 0 0 12.7279 3.04604 1.64974 0 9.89949 1.62455 1.84971 1.39262</lang>

Java

Works with: Java version 1.5+

<lang java5>import java.util.Arrays;

public class Cholesky { public static double[][] chol(double[][] a){ int m = a.length; double[][] l = new double[m][m]; //automatically initialzed to 0's for(int i = 0; i< m;i++){ for(int k = 0; k < (i+1); k++){ double sum = 0; for(int j = 0; j < k; j++){ sum += l[i][j] * l[k][j]; } l[i][k] = (i == k) ? Math.sqrt(a[i][i] - sum) : (1.0 / l[k][k] * (a[i][k] - sum)); } } return l; }

public static void main(String[] args){ double[][] test1 = {{25, 15, -5}, {15, 18, 0}, {-5, 0, 11}}; System.out.println(Arrays.deepToString(chol(test1))); double[][] test2 = {{18, 22, 54, 42}, {22, 70, 86, 62}, {54, 86, 174, 134}, {42, 62, 134, 106}}; System.out.println(Arrays.deepToString(chol(test2))); } }</lang> Output:

[[5.0, 0.0, 0.0], [3.0, 3.0, 0.0], [-1.0, 1.0, 3.0]]
[[4.242640687119285, 0.0, 0.0, 0.0], [5.185449728701349, 6.565905201197403, 0.0, 0.0], [12.727922061357857, 3.0460384954008553, 1.6497422479090704, 0.0], [9.899494936611667, 1.624553864213788, 1.8497110052313648, 1.3926212476456026]]

OCaml

<lang OCaml>let cholesky inp =

  let n = Array.length inp in
  let res = Array.make_matrix n n 0.0 in
  let factor i k =
     let rec sum j = if j = k then 0.0 else
     res.(i).(j)*.res.(k).(j) +. sum (j+1) in inp.(i).(k) -. sum 0 in
  for col = 0 to n-1 do
     res.(col).(col) <- sqrt (factor col col);
     for row = col+1 to n-1 do
        res.(row).(col) <- (factor row col) /. res.(col).(col)
     done
  done;
  res

let pr_vec v = Array.iter (Printf.printf " %9.5f") v; print_newline() let show a = Array.iter pr_vec a let test a = print_endline "\nin:"; show a;

  print_endline "out:"; show (cholesky a)

let _ =

  test [| [|25.0; 15.0; -5.0|];
          [|15.0; 18.0;  0.0|];
          [|-5.0;  0.0; 11.0|] |];
  test [| [|18.0; 22.0;  54.0;  42.0|];
          [|22.0; 70.0;  86.0;  62.0|];
          [|54.0; 86.0; 174.0; 134.0|];
          [|42.0; 62.0; 134.0; 106.0|] |];</lang>

Output:

in:
  25.00000  15.00000  -5.00000
  15.00000  18.00000   0.00000
  -5.00000   0.00000  11.00000
out:
   5.00000   0.00000   0.00000
   3.00000   3.00000   0.00000
  -1.00000   1.00000   3.00000

in:
  18.00000  22.00000  54.00000  42.00000
  22.00000  70.00000  86.00000  62.00000
  54.00000  86.00000 174.00000 134.00000
  42.00000  62.00000 134.00000 106.00000
out:
   4.24264   0.00000   0.00000   0.00000
   5.18545   6.56591   0.00000   0.00000
  12.72792   3.04604   1.64974   0.00000
   9.89949   1.62455   1.84971   1.39262

PicoLisp

<lang PicoLisp>(scl 9) (load "@lib/math.l")

(de cholesky (A)

  (let L (mapcar '(() (need (length A) 0)) A)
     (for (I . R) A
        (for J I
           (let S (get R J)
              (for K (inc J)
                 (dec 'S (*/ (get L I K) (get L J K) 1.0)) )
              (set (nth L I J)
                 (if (= I J)
                    (sqrt (* 1.0 S))
                    (*/ S 1.0 (get L J J)) ) ) ) ) )
     (for R L
        (for N R (prin (align 9 (round N 5))))
        (prinl) ) ) )</lang>

Test: <lang PicoLisp>(cholesky

  '((25.0 15.0 -5.0) (15.0 18.0 0) (-5.0 0 11.0)) )

(prinl)

(cholesky

  (quote
     (18.0  22.0   54.0   42.0)
     (22.0  70.0   86.0   62.0)
     (54.0  86.0  174.0  134.0)
     (42.0  62.0  134.0  106.0) ) )</lang>

Output:

  5.00000  0.00000  0.00000
  3.00000  3.00000  0.00000
 -1.00000  1.00000  3.00000

  4.24264  0.00000  0.00000  0.00000
  5.18545  6.56591  0.00000  0.00000
 12.72792  3.04604  1.64974  0.00000
  9.89949  1.62455  1.84971  1.39262

Python

<lang python>import math, pprint

def cholesky(A):

   L = [[0.0] * len(A) for _ in xrange(len(A))]
   for i in xrange(len(A)):
       for j in xrange(i+1):
           s = sum(L[i][k] * L[j][k] for k in xrange(j))
           L[i][j] = math.sqrt(A[i][i] - s) if (i == j) else \
                     (1.0 / L[j][j] * (A[i][j] - s))
   return L

m1 = [[25, 15, -5],

     [15, 18,  0],
     [-5,  0, 11]]

pprint.pprint(cholesky(m1)) print

m2 = [[18, 22, 54, 42],

     [22, 70,  86,  62],
     [54, 86, 174, 134],
     [42, 62, 134, 106]]

pprint.pprint(cholesky(m2))</lang> Output:

[[5.0, 0.0, 0.0], [3.0, 3.0, 0.0], [-1.0, 1.0, 3.0]]

[[4.2426406871192848, 0.0, 0.0, 0.0],
 [5.1854497287013492, 6.5659052011974026, 0.0, 0.0],
 [12.727922061357857, 3.0460384954008553, 1.6497422479090704, 0.0],
 [9.8994949366116671,
  1.624553864213788,
  1.8497110052313648,
  1.3926212476456026]]

Tcl

Translation of: Java

<lang tcl>proc cholesky a {

   set m [llength $a]
   set n [llength [lindex $a 0]]
   set l [lrepeat $m [lrepeat $n 0.0]]
   for {set i 0} {$i < $m} {incr i} {

for {set k 0} {$k < $i+1} {incr k} { set sum 0.0 for {set j 0} {$j < $k} {incr j} { set sum [expr {$sum + [lindex $l $i $j] * [lindex $l $k $j]}] } lset l $i $k [expr { $i == $k ? sqrt([lindex $a $i $i] - $sum) : (1.0 / [lindex $l $k $k] * ([lindex $a $i $k] - $sum)) }] }

   }
   return $l

}</lang> Demonstration code: <lang tcl>set test1 {

   {25 15 -5}
   {15 18  0}
   {-5  0 11}

} puts [cholesky $test1] set test2 {

   {18 22  54  42}
   {22 70  86  62}
   {54 86 174 134}
   {42 62 134 106}

} puts [cholesky $test2]</lang> Output:

{5.0 0.0 0.0} {3.0 3.0 0.0} {-1.0 1.0 3.0}
{4.242640687119285 0.0 0.0 0.0} {5.185449728701349 6.565905201197403 0.0 0.0} {12.727922061357857 3.0460384954008553 1.6497422479090704 0.0} {9.899494936611667 1.624553864213788 1.8497110052313648 1.3926212476456026}