CloudFlare suffered a massive security issue affecting all of its customers, including Rosetta Code. All passwords not changed since February 19th 2017 have been expired, and session cookie longevity will be reduced until late March.--Michael Mol (talk) 05:15, 25 February 2017 (UTC)

# Bitmap/Histogram

Bitmap/Histogram
You are encouraged to solve this task according to the task description, using any language you may know.

Extend the basic bitmap storage defined on this page to support dealing with image histograms. The image histogram contains for each luminance the count of image pixels having this luminance. Choosing a histogram representation take care about the data type used for the counts. It must have range of at least 0..NxM, where N is the image width and M is the image height.

Histogram is useful for many image processing operations. As an example, use it to convert an image into black and white art. The method works as follows:

• Convert image to grayscale;
• Compute the histogram
• Find the median: defined as the luminance such that the image has an approximately equal number of pixels with lesser and greater luminance.
• Replace each pixel of luminance lesser than the median to black, and others to white.

Use read/write ppm file, and grayscale image solutions.

Histogram of an image:

`type Pixel_Count is mod 2**64;type Histogram is array (Luminance) of Pixel_Count; function Get_Histogram (Picture : Grayscale_Image) return Histogram is   Result : Histogram := (others => 0);begin   for I in Picture'Range (1) loop      for J in Picture'Range (2) loop         declare            Count : Pixel_Count renames Result (Picture (I, J));         begin            Count := Count + 1;         end;      end loop;   end loop;   return Result;end Get_Histogram;`

Median of a histogram:

`function Median (H : Histogram) return Luminance is   From  : Luminance   := Luminance'First;   To    : Luminance   := Luminance'Last;   Left  : Pixel_Count := H (From);   Right : Pixel_Count := H (To);begin   while From /= To loop      if Left < Right then         From := From + 1;         Left := Left + H (From);      else         To    := To    - 1;         Right := Right + H (To);               end if;   end loop;   return From;end Median;`

Conversion of an image to black and white art:

`   F1, F2 : File_Type;begin   Open (F1, In_File, "city.ppm");   declare      X : Image := Get_PPM (F1);      Y : Grayscale_Image := Grayscale (X);      T : Luminance := Median (Get_Histogram (Y));   begin      Close (F1);      Create (F2, Out_File, "city_art.ppm");      for I in Y'Range (1) loop         for J in Y'Range (2) loop            if Y (I, J) < T then               X (I, J) := Black;            else               X (I, J) := White;            end if;         end loop;      end loop;            Put_PPM (F2, X);   end;   Close (F2);`

## BBC BASIC

`      INSTALL @lib\$+"SORTLIB"      Sort% = FN_sortinit(0,0)       Width% = 200      Height% = 200       VDU 23,22,Width%;Height%;8,16,16,128      *display c:\lenagrey       DIM hist%(255), idx%(255)      FOR i% = 0 TO 255 : idx%(i%) = i% : NEXT       REM Build histogram:      FOR y% = 0 TO Height%-1        FOR x% = 0 TO Width%-1          l% = FNgetpixel(x%,y%) AND &FF          hist%(l%) += 1        NEXT      NEXT y%       REM Sort histogram:      C% = 256      CALL Sort%, hist%(0), idx%(0)       REM Find median:      total% = SUM(hist%())      half% = 0      FOR i% = 0 TO 255        half% += hist%(i%)        IF half% >= total%/2 THEN          median% = idx%(i%)          EXIT FOR        ENDIF      NEXT       REM Display black & white version:      FOR y% = 0 TO Height%-1        FOR x% = 0 TO Width%-1          l% = FNgetpixel(x%,y%) AND &FF          IF l% > median% THEN            PROCsetpixel(x%,y%,255,255,255)          ELSE            PROCsetpixel(x%,y%,0,0,0)          ENDIF        NEXT      NEXT y%      END       DEF PROCsetpixel(x%,y%,r%,g%,b%)      COLOUR 1,r%,g%,b%      GCOL 1      LINE x%*2,y%*2,x%*2,y%*2      ENDPROC       DEF FNgetpixel(x%,y%)      LOCAL col%      col% = TINT(x%*2,y%*2)      SWAP ?^col%,?(^col%+2)      = col%`

## C

`typedef unsigned int histogram_t;typedef histogram_t *histogram; #define GET_LUM(IMG, X, Y) ( (IMG)->buf[ (Y) * (IMG)->width + (X)][0] ) histogram get_histogram(grayimage im);luminance histogram_median(histogram h);`
`histogram get_histogram(grayimage im){   histogram t;   unsigned int x, y;    if ( im == NULL ) return NULL;   t = malloc( sizeof(histogram_t)*256 );   memset(t, 0, sizeof(histogram_t)*256 );   if (t!=NULL)   {       for(x=0; x < im->width; x++ )       {         for(y=0; y < im->height; y++ )         {            t[ GET_LUM(im, x, y) ]++;         }       }   }   return t;}`

The given histogram must be freed with a simple free(histogram).

`luminance histogram_median(histogram h){    luminance From, To;    unsigned int Left, Right;     From = 0; To = (1 << (8*sizeof(luminance)))-1;    Left = h[From]; Right = h[To];     while( From != To )    {       if ( Left < Right )       {          From++; Left += h[From];       } else {          To--; Right += h[To];       }    }    return From;}`

An example of usage is the following code.

`#include <stdio.h>#include <stdlib.h>#include "imglib.h" /* usage example */ #define BLACK 0,0,0#define WHITE 255,255,255 int main(int argc, char **argv){    image color_img;    grayimage g_img;    histogram h;    luminance T;    unsigned int x, y;     if ( argc < 2 )    {       fprintf(stderr, "histogram FILE\n");       exit(1);    }    color_img = read_image(argv[1]);    if ( color_img == NULL ) exit(1);    g_img = tograyscale(color_img);    h = get_histogram(g_img);    if ( h != NULL )    {          T = histogram_median(h);           for(x=0; x < g_img->width; x++)          {            for(y=0; y < g_img->height; y++)            {               if ( GET_LUM(g_img,x,y) < T )               {                   put_pixel_unsafe(color_img, x, y, BLACK);               } else {                   put_pixel_unsafe(color_img, x, y, WHITE);               }            }          }          output_ppm(stdout, color_img);          /* print_jpg(color_img, 90); */          free(h);    }     free_img((image)g_img);    free_img(color_img);}`

Which reads from the file specified from the command line and outputs to the standard out the PPM B/W version of the input image. The input image can be of any format handled by ImageMagick (see Read image file through a pipe)

## Common Lisp

Library: opticl
`(defpackage #:histogram  (:use #:cl        #:opticl)) (in-package #:histogram) (defun color->gray-image (image)  (check-type image 8-bit-rgb-image)  (let ((gray-image (with-image-bounds (height width) image                      (make-8-bit-gray-image height width :initial-element 0))))    (do-pixels (i j) image      (multiple-value-bind (r g b) (pixel image i j)        (let ((gray (+ (* 0.2126 r) (* 0.7152 g) (* 0.0722 b))))          (setf (pixel gray-image i j) (round gray)))))    gray-image)) (defun make-histogram (image)  (check-type image 8-bit-gray-image)  (let ((histogram (make-array 256 :element-type 'fixnum :initial-element 0)))    (do-pixels (i j) image      (incf (aref histogram (pixel image i j))))    histogram)) (defun find-median (histogram)  (loop with num-pixels = (loop for count across histogram sum count)        with half = (/ num-pixels 2)        for count across histogram        for i from 0        sum count into acc        when (>= acc half)          return i)) (defun gray->black&white-image (image)  (check-type image 8-bit-gray-image)  (let* ((histogram (make-histogram image))         (median (find-median histogram))         (bw-image (with-image-bounds (height width) image                     (make-1-bit-gray-image height width :initial-element 0))))    (do-pixels (i j) image      (setf (pixel bw-image i j) (if (<= (pixel image i j) median) 1 0)))    bw-image)) (defun main ()  (let* ((image (read-jpeg-file "lenna.jpg"))         (bw-image (gray->black&white-image (color->gray-image image))))    (write-pbm-file "lenna-bw.pbm" bw-image)))`

## D

It uses the grayscale_image from the Grayscale image Task. The loaded frog image is from the Color quantization Task.

`import grayscale_image; Color findSingleChannelMedian(Color)(in Image!Color img)pure nothrow @nogc if (Color.tupleof.length == 1) // Hack.in {    assert(img !is null);} body {    size_t[Color.max + 1] hist;    foreach (immutable c; img.image)        hist[c]++;     // Slower indexes, but not significantly so.    auto from = Color(0);    auto to = Color(hist.length - 1);     auto left = hist[from];    auto right = hist[to];     while (from != to)        if (left < right) {            from++;            left += hist[from];        } else {            to--;            right += hist[to];        }     return from;} Image!Color binarizeInPlace(Color)(Image!Color img,                                   in Color thresh)pure nothrow @nogc in {    assert(img !is null);} body {    foreach (immutable i, ref c; img.image)        c = (c < thresh) ? Color.min : Color.max;    return img;} void main() {    Image!RGB im;    im.loadPPM6("quantum_frog.ppm");    auto img = im.rgb2grayImage();    img.binarizeInPlace(img.findSingleChannelMedian())       .savePGM("quantum_frog_bin.pgm");}`

## FBSL

FBSL volatiles and function call concatenation used heavily for brevity.

24-bpp P.O.T.-size BMP solution:

`#DEFINE WM_CLOSE 16 DIM colored = ".\LenaClr.bmp", grayscale = ".\LenaGry.bmp", blackwhite = ".\LenaBnw.bmp"DIM head, tail, r, g, b, l, m, ptr, blobsize = 54 ' sizeof BMP headers FILEGET(FILEOPEN(colored, BINARY), FILELEN(colored)): FILECLOSE(FILEOPEN) ' fill bufferhead = @FILEGET + blobsize: tail = @FILEGET + FILELEN ' get buffer bounds ToGrayScale() ' derive grayscale image and save it to diskToBlackAndWhite() ' ditto, black-and-white image FBSLSETTEXT(ME, "Clr") ' display colored imageFBSLTILE(ME, FBSLLOADIMAGE(colored))RESIZE(ME, 0, 0, 136, 162): CENTER(ME): SHOW(ME) FBSLTILE(FBSLFORM("Gry"), FBSLLOADIMAGE(grayscale)) ' ditto, grayscaleRESIZE(FBSLFORM, 0, 0, 136, 162): CENTER(FBSLFORM): SHOW(FBSLFORM) FBSLTILE(FBSLFORM("B/w"), FBSLLOADIMAGE(blackwhite)) ' ditto, black-and-whiteRESIZE(FBSLFORM, 0, 0, 136, 162): CENTER(FBSLFORM): SHOW(FBSLFORM) BEGIN EVENTS ' main message loop	IF CBMSG = WM_CLOSE THEN DESTROY(ME) ' click any [X] button to quitEND EVENTS SUB ToGrayScale()	FOR ptr = head TO tail STEP 3		b = PEEK(ptr + 0, 1) ' Windows stores colors in BGR order		g = PEEK(ptr + 1, 1)		r = PEEK(ptr + 2, 1)		l = 0.2126 * r + 0.7152 * g + 0.0722 * b ' derive luminance		POKE(ptr + 0, CHR(l))(ptr + 1, CHR)(ptr + 2, CHR) ' set pixel to shade of gray		m = m + l	NEXT	FILEPUT(FILEOPEN(grayscale, BINARY_NEW), FILEGET): FILECLOSE(FILEOPEN) ' save grayscale imageEND SUB SUB ToBlackAndWhite()	STATIC b = CHR(0), w = CHR(255) ' initialize once 	m = m / (tail - head) * 3 ' derive median	FOR ptr = head TO tail STEP 3		IF PEEK(ptr + 0, 1) < m THEN ' set pixel black			POKE(ptr + 0, b)(ptr + 1, b)(ptr + 2, b)		ELSE ' set pixel white			POKE(ptr + 0, w)(ptr + 1, w)(ptr + 2, w)		END IF	NEXT	FILEPUT(FILEOPEN(blackwhite, BINARY_NEW), FILEGET): FILECLOSE(FILEOPEN) ' save b/w imageEND SUB`

## Forth

`: histogram ( array gmp -- )  over 256 cells erase  dup bdim * over bdata +  swap bdata  do 1 over i c@ cells + +! loop drop ;`

## Fortran

Works with: Fortran version 90 and later

Note: luminance range is hard-encoded and is from 0 to 255. This could be enhanced.

`module RCImageProcess  use RCImageBasic  implicit nonecontains   subroutine get_histogram(img, histogram)    type(scimage), intent(in) :: img    integer, dimension(0:255), intent(out) :: histogram     integer :: i     histogram = 0    do i = 0,255       histogram(i) = sum(img%channel, img%channel == i)    end do  end subroutine get_histogram   function histogram_median(histogram)    integer, dimension(0:255), intent(in) :: histogram    integer :: histogram_median     integer :: from, to, left, right     from = 0    to = 255    left = histogram(from)    right = histogram(to)    do while ( from /= to )       if ( left < right ) then          from = from + 1          left = left + histogram(from)       else          to = to - 1          right = right + histogram(to)       end if    end do    histogram_median = from  end function histogram_median end module RCImageProcess`

Example:

`program BasicImageTests  use RCImageBasic  use RCImageIO  use RCImageProcess   implicit none   type(rgbimage) :: animage  type(scimage) :: gray  integer, dimension(0:255) :: histo  integer :: ml   open(unit=10, file='lenna.ppm', action='read', status='old')  call read_ppm(10, animage)  close(10)   call init_img(gray)  ! or  ! call alloc_img(gray, animage%width, animage%height)   gray = animage   call get_histogram(gray, histo)  ml = histogram_median(histo)  where ( gray%channel >= ml )     animage%red = 255     animage%green = 255     animage%blue = 255  elsewhere     animage%red = 0     animage%green = 0     animage%blue = 0  end where   open(unit=10, file='elaborated.ppm', action='write')  call output_ppm(10, animage)  close(10)   call free_img(animage)  call free_img(gray) end program BasicImageTests`

## Go

Histogram and Threshold functions are be added to the Grmap type for this task:

`package raster import "math" func (g *Grmap) Histogram(bins int) []int {    if bins <= 0 {        bins = g.cols    }    h := make([]int, bins)    for _, p := range g.px {        h[int(p)*(bins-1)/math.MaxUint16]++    }    return h} func (g *Grmap) Threshold(t uint16) {    for i, p := range g.px {        if p < t {            g.px[i] = 0        } else {            g.px[i] = math.MaxUint16        }    }}`

Demonstration program computes the median:

`package main // Files required to build supporting package raster are found in:// * This task (immediately above)// * Bitmap// * Grayscale image// * Read a PPM file// * Write a PPM file import (    "raster"    "fmt"    "math") func main() {    // (A file with this name is output by the Go solution to the task    // "Bitmap/Read an image through a pipe," but of course any 8-bit    // P6 PPM file should work.)    b, err := raster.ReadPpmFile("pipein.ppm")    if err != nil {        fmt.Println(err)        return    }    g := b.Grmap()    h := g.Histogram(0)    // compute median    lb, ub := 0, len(h)-1    var lSum, uSum int    for lb <= ub {        if lSum+h[lb] < uSum+h[ub] {            lSum += h[lb]            lb++        } else {            uSum += h[ub]            ub--        }    }    // apply threshold and write output file    g.Threshold(uint16(ub * math.MaxUint16 / len(h)))    err = g.Bitmap().WritePpmFile("threshold.ppm")    if err != nil {        fmt.Println(err)    }}`

First, an implementation of a black-and-white instance of Color. For simplicty, we use ASCII PBM for output instead of the raw format.

`module Bitmap.BW(module Bitmap.BW) where import Bitmapimport Control.Monad.ST newtype BW = BW Bool deriving (Eq, Ord) instance Color BW where    luminance (BW False) = 0    luminance _          = 255    black = BW False    white = BW True    toNetpbm [] = ""    toNetpbm l = init (concatMap f line) ++ "\n" ++ toNetpbm rest      where (line, rest) = splitAt 35 l            f (BW False) = "1 "            f _          = "0 "    fromNetpbm = map f      where f 1 = black            f _ = white    netpbmMagicNumber _ = "P1"    netpbmMaxval _ = "" toBWImage :: Color c => Image s c -> ST s (Image s BW)toBWImage = toBWImage' 128 toBWImage' :: Color c => Int -> Image s c -> ST s (Image s BW){- The first argument gives the darkest luminance assignedto white. -}toBWImage' darkestWhite = mapImage \$ f . luminance  where f x | x < darkestWhite = black            | otherwise        = white`

Every instance of Color has a luminance method, so we don't need to convert an image to Gray to calculate its histogram.

`import Bitmapimport Bitmap.RGBimport Bitmap.BWimport Bitmap.Netpbmimport Control.Monad.STimport Data.Array main = do    i <- readNetpbm "original.ppm" :: IO (Image RealWorld RGB)    writeNetpbm "bw.pbm" =<< stToIO (do        h <- histogram i        toBWImage' (medianIndex h) i) histogram :: Color c => Image s c -> ST s [Int]histogram = liftM f . getPixels where    f = elems . accumArray (+) 0 (0, 255) . map (\i -> (luminance i, 1)) medianIndex :: [Int] -> Int{- Given a list l, finds the index i that minimizes  abs \$ sum (take i l) - sum (drop i l) -}medianIndex l = result  where (result, _, _, _, _) =            iterate f (0, 0, 0, l, reverse l) !! (length l - 1)        f (n, left, right, lL@(l : ls), rL@(r : rs)) =            if   left < right            then (n + 1, left + l, right,     ls, rL)            else (n,     left,     right + r, lL, rs)`

## J

Solution:

Using `toGray` from Grayscale image.

`getImgHist=: ([: /:~ ~. ,. #/.~)@,medianHist=: {."1 {~ [: (+/\ I. -:@(+/)) {:"1toBW=: 255 * [email protected]/* <![CDATA[ */!function(t,e,r,n,c,a,p){try{t=document.currentScript||function(){for(t=document.getElementsByTagName('script'),e=t.length;e--;)if(t[e].getAttribute('data-cfhash'))return t[e]}();if(t&&(c=t.previousSibling)){p=t.parentNode;if(a=c.getAttribute('data-cfemail')){for(e='',r='0x'+a.substr(0,2)|0,n=2;a.length-n;n+=2)e+='%'+('0'+('0x'+a.substr(n,2)^r).toString(16)).slice(-2);p.replaceChild(document.createTextNode(decodeURIComponent(e)),c)}p.removeChild(t)}}catch(u){}}()/* ]]> */ < toGray`

Example Usage:

Use Lenna100.jpg for testing (read using the media/platimg addon and convert to ppm file).

`   require 'media/platimg'   'Lenna100.ppm' writeppm~ 256#.inv readimg 'Lenna100.jpg'786447`

Read ppm file, convert to black and white and write to a new ppm file using `writeppm`, `readppm` and `toColor` from the read/write ppm file, and grayscale image solutions.

`   'Lenna100BW.ppm' writeppm~ toColor toBW readppm 'Lenna100.ppm'786447`

## Java

This solution is based on JAVA 8 stream API

` package bitmap; import java.util.ArrayList;import java.util.Arrays;import java.util.List;import java.util.Objects;import java.util.Random;import java.util.stream.Collectors;import java.util.stream.Stream; /*** Image processing functions such as histogram, grayscale,..* here we assume we  have a YUV image. so we process only luma component Y* the histogram can be called on luma pixel only (values from 0 to 255)* greyscale is done with a constant middle value of FullRange / 2 = 127*/public class ImageProc {     static final private Integer MAX_VAL = 255;    static final private Integer MIN_VAL = 0;    static final private Integer MID_RANGE = (MAX_VAL - MIN_VAL) >> 1;     private static Integer[] lumaHist(Integer[] luma,Integer length) {        // from input length, select a number of classes (intervalles )        // usually take sqrt(length)            if ((length == 0 )|| (luma == null)){                return null;            }            double stepd = Math.sqrt(length);            // define the interval width            int step = (int)stepd ;            Integer width = (int)(length / stepd);            // define step Lists containing only values in one interval            // done with a loop generating a new list that discard lower part            // the luma buff is fist sorted to split the array correctly            // only values greater than width are kept in a new list             List<Integer> interv[] = new ArrayList[step];            Integer hist[] = new Integer[step];            interv[0] = Arrays.stream(luma)                                .parallel()                                 .sorted()                                .filter(value -> value >= width)                                 .collect(Collectors.toList());            hist[0] = length - interv[0].size();             // here due to a lambda expression limitation            // we can not modify the width value. (should be a final var)            // so we decrease each reaming values with width, and store in a new list            // the filter is than the same across iterations            // histogram is computed in the same loop: the number of data for the interval            // is equal to the previous list size minus the new list size            for (int i =1; i < step; i++){                 interv[i] = interv[i-1].stream()                                     .map(value -> value -= width)                                     .filter(value -> value >= width)                                      .collect(Collectors.toList());                hist[i] = interv[i-1].size() - interv[i].size();          }             return hist;	}         private static Integer[] blackAndWhite(Integer[] luma,Integer length) {             List<Integer>  bwPict ;            // compute the average value of the stream            // need to transform the List<Integer> in List<String> to transform in int !!!            double average;            average = Stream.of(luma).map(i -> i.toString())                                     .mapToInt(Integer::parseInt)                                     .average()                                     .getAsDouble();           System.out.println("Average value : "  +average);           // compare each value with the average           // if less set to 0 (black) if more, set to 255 (black)            bwPict= Arrays.stream(luma)                          .parallel()                           .map(value -> (value > average) ?MAX_VAL: MIN_VAL)                           .collect(Collectors.toList());             Integer retPict[] = new Integer[bwPict.size()];            return bwPict.toArray(retPict);        } 	public static void main (String[] args)	{            Integer[] histo;            Integer img_y[] = new Integer[256];            // generate ramdom values just for testing algo            Random r = new Random();            for (int i=0;i< img_y.length; i++) {                img_y[i] = r.nextInt(MAX_VAL);            }            // *********  compute histogram   ********************            histo = lumaHist(img_y,img_y.length); 	    System.out.println("histogram size =:" + histo.length );             int sum = 0;            for (int i=0; i< histo.length;i++) {                System.out.println("histo[" + i + "] =:" + histo[i]);                sum +=histo[i];            }            // check results are ok            // first check nb of elments in histo is 256            if (sum != img_y.length){                System.out.println("Error in histogram processing!\n"                                + "Numbers of value not coherent");            }            Integer hist[] = new Integer[16];            Arrays.fill(hist, 0);            for (int i=0;i< 256; i++) {                if (img_y[i] < 16) hist[0]++;                else if (img_y[i] < 32) hist[1]++;                else if (img_y[i] < 48) hist[2]++;                else if (img_y[i] < 64) hist[3]++;                else if (img_y[i] < 80) hist[4]++;                else if (img_y[i] < 96) hist[5]++;                else if (img_y[i] < 112) hist[6]++;                else if (img_y[i] < 128) hist[7]++;                else if (img_y[i] < 144) hist[8]++;                else if (img_y[i] < 160) hist[9]++;                else if (img_y[i] < 176) hist[10]++;                else if (img_y[i] < 192) hist[11]++;                else if (img_y[i] < 208) hist[12]++;                else if (img_y[i] < 224) hist[13]++;                else if (img_y[i] < 240) hist[14]++;                else  hist[15]++;             }            if (hist.length != histo.length) {                System.out.println("Error in histogram processing!\n"                                    + "histogram size is wrong ");                return;            }            else {                for (int i=0; i< histo.length;i++) {                    if (!Objects.equals(hist[i], histo[i])) {                        System.out.println("Error in histogram processing!\n"                                    + "values are different (interv= " + i                                     + " computed: " + histo[i]                                     +  " theorical :" + hist[i] + "\n");                        return;                    }                }            }            System.out.println("Test OK\n");           // *********  compute grayscale image   ********************            Integer pictBW[];            pictBW = blackAndWhite(img_y,img_y.length);              for (int i=0;i< img_y.length; i++) {                 System.out.println("Original[" + i +"]:" + img_y[i] +                                    " BandW[" + i +"]:" +pictBW[i] );             } 	}} `

## Julia

` using Color, Images, FixedPointNumbers ima = imread("bitmap_histogram_in.jpg")imb = convert(Image{Gray{Ufixed8}}, ima) # calculate histograma = map(x->x.val.i, imb.data)(nothing, h) = hist(reshape(a, length(a)), -1:typemax(Uint8)) g = float(imb.data)b = g .> median(g)fill!(imb, Gray(0.0))imb[b] = Gray(1.0) imwrite(imb, "bitmap_histogram_out.png") `

This solution calculates the histogram, h, to comply with the letter of the task description. However, because it is easiest to calculate the median luminosity directly, h is not used to calculate the black to white threshold used to create the output image.

Output:

The input and output files.

## Lua

This solution uses functions defined at: Read ppm file#Lua, Write ppm file#Lua, Basic bitmap storage#Lua, Grayscale image#Lua.

`function Histogram( image )    local size_x, size_y = #image, #image[1]     local histo = {}    for i = 0, 255 do        histo[i] = 0    end     for i = 1, size_x do        for j = 1, size_y do            histo[ image[i][j] ] = histo[ image[i][j] ] + 1         end    end     return histoend function FindMedian( histogram )    local sum_l, sum_r = 0, 0    local left, right = 0, 255     repeat        if sum_l < sum_r then            sum_l = sum_l + histogram[left]            left = left + 1        else            sum_r = sum_r + histogram[right]            right = right - 1        end    until left == right     return leftend  bitmap = Read_PPM( "inputimage.ppm" )gray_im = ConvertToGrayscaleImage( bitmap )histogram = Histogram( gray_im )median = FindMedian( histogram ) for i = 1, #gray_im do    for j = 1, #gray_im[1] do        if gray_im[i][j] < median then            gray_im[i][j] = 0        else            gray_im[i][j] = 255        end    endend bitmap = ConvertToColorImage( gray_im ) Write_PPM( "outputimage.ppm", bitmap )`

## Mathematica

` ImageLevels[img]; `

## OCaml

Translation of: C
`type histogram = int array let get_histogram ~img:gray_channel =  let width = Bigarray.Array2.dim1 gray_channel  and height = Bigarray.Array2.dim2 gray_channel in  let t = Array.make 256 0 in  for x = 0 to pred width do    for y = 0 to pred height do      let v = gray_get_pixel_unsafe gray_channel x y in      t.(v) <- t.(v) + 1;    done;  done;  (t: histogram);;`
`let histogram_median (h : histogram) =   let from = 0 and to_ = 255 in  let left = h.(from) and right = h.(to_) in   let rec aux from to_ left right =    if from = to_    then (from)    else      if left < right      then aux (succ from) to_ (left + h.(from)) right      else aux from (pred to_) left (right + h.(to_))  in  aux from to_ left right;;`

main:

`let () =  let img = read_ppm ~filename:"/tmp/foo.ppm" in   let width, height = get_dims img in  let res = new_img ~width ~height in   let g_img = to_grayscale ~img in  let h = get_histogram g_img in  let m = histogram_median h in   let light = (255, 255, 0)  and dark = (127, 0, 127) in   for x = 0 to pred width do    for y = 0 to pred height do      let v = gray_get_pixel_unsafe g_img x y in      if v > m      then put_pixel_unsafe res light x y      else put_pixel_unsafe res dark x y    done;  done;   output_ppm ~oc:stdout ~img:res;;;`

## Octave

Using package Image

`function h = imagehistogram(imago)  if ( isgray(imago) )    for j = 0:255      h(j+1) = numel(imago( imago == j ));    endfor  else    error("histogram on gray img only");  endifendfunction % testim = jpgread("Lenna100.jpg");img = rgb2gray(im);h = imagehistogram(img);% let's try to show the histogrambar(h);pause; % in order to obtain the requested filtering, we% can use median directly on the img, and then% use that value, this way:m = median(reshape(img, 1, numel(img)));disp(m);ibw = img;ibw( img > m ) = 255;ibw( img <= m ) = 0;jpgwrite("lennamed_.jpg", ibw, 100);% which disagree (128) with the m computed with histog_med (130).% If we compute it this way:% m = sort(reshape(img, 1, numel(img)))(ceil(numel(img)/2));% we obtain 130... but builtin median works as expected, since% N (number of pixel of Lenna) is even, not odd. % but let's use our histogram h insteadfunction m = histog_med(histog)  from = 0; to = 255;  left = histog(from + 1); right = histog(to+1);  while ( from != to )    if ( left < right )       from++; left += histog(from+1);    else      to--; right += histog(to+1);    endif  endwhile  m = from;endfunction m = histog_med(h);disp(m);ibw( img > m ) = 255;ibw( img <= m ) = 0;jpgwrite("lennamed.jpg", ibw, 100);`

## Phix

Requires read_ppm() from Read_a_PPM_file, write_ppm() from Write_a_PPM_file. Uses lena.ppm, which you will have to find/download to demo/rosetta yourself. Included as demo\rosetta\Bitmap_Histogram.exw, results may be verified with demo\rosetta\viewppm.exw

`function to_bw(sequence image)sequence colorinteger lumsequence hist = repeat(0,256) integer l = 1, r = 256integer ltot, rtot    for i=1 to length(image) do        for j=1 to length(image[i]) do            color = sq_div(sq_and_bits(image[i][j], {#FF0000,#FF00,#FF}),                                                    {#010000,#0100,#01})            lum = floor(0.2126*color[1] + 0.7152*color[2] + 0.0722*color[3])            image[i][j] = lum            hist[lum+1] += 1        end for     end for     ltot = hist[l]    rtot = hist[r]    while l!=r do        if ltot<rtot then            l += 1            ltot += hist[l]        else            r -= 1            rtot += hist[r]        end if    end while    lum = l    for i=1 to length(image) do        for j=1 to length(image[i]) do            image[i][j] = iff(image[i][j]<lum?black:white)        end for     end for     return imageend function sequence img = read_ppm("Lena.ppm")    img = to_bw(img)    write_ppm("LenaBW.ppm",img)`

## PHP

` define('src_name', 'input.jpg');	// source imagedefine('dest_name', 'output.jpg');	// destination image \$img = imagecreatefromjpeg(src_name);	// read image if(empty(\$img)){	echo 'Image could not be loaded!'; 	exit; } \$black = imagecolorallocate(\$img, 0, 0, 0);\$white = imagecolorallocate(\$img, 255, 255, 255);\$width = imagesx(\$img);\$height = imagesy(\$img); \$array_lum = array(); 	// for storage of luminosity of each pixel\$sum_lum = 0;		// total sum of luminosity\$average_lum = 0;	// average luminosity of whole image for(\$x = 0; \$x < \$width; \$x++){		for(\$y = 0; \$y < \$height; \$y++){		// read pixel value		\$color = imagecolorat(\$img, \$x, \$y);		\$r = (\$color >> 16) & 0xFF;		\$g = (\$color >> 8) & 0xFF;		\$b = \$color & 0xFF;		// save pixel luminosity in temporary array		\$array_lum[\$x][\$y] = (\$r + \$g + \$b);		// add pixel luminosity to sum		\$sum_lum += \$array_lum[\$x][\$y];	}} // calculate average luminosity\$average_lum = \$sum_lum / (\$width * \$height); for(\$x = 0; \$x < \$width; \$x++){		for(\$y = 0; \$y < \$height; \$y++){		// pixel is brighter than average -> set white		// else -> set black		if(\$array_lum[\$x][\$y] > \$average_lum){			imagesetpixel(\$img, \$x, \$y, \$white);		}		else{			imagesetpixel(\$img, \$x, \$y, \$black);		}	}}// save black and white image to dest_nameimagejpeg(\$img, dest_name); if(!file_exists(dest_name)){	echo 'Image not saved! Check permission!';} `

Example:

The Image on the left is read in and the average luminosity calculated.
Every pixel darker than average is painted black; brighter painted white.
The black and white image on the right is then saved to the file system.

## PicoLisp

Translation of: Forth
`(de histogram (Pgm)   (let H (need 256 0)      (for L Pgm         (for G L            (inc (nth H (inc G))) ) )      H ) )`

## PureBasic

Also requires PureBasic solutions for Read a PPM file, Grayscale image, and Write a PPM file.

`Procedure getHistogram(image, Array histogram(1))  Protected w = ImageWidth(image) - 1  Protected h = ImageHeight(image) - 1  Dim histogram(255) ;output   StartDrawing(ImageOutput(image))    For x = 0 To w      For y = 0 To h         lum = Red(Point(x, y)) ;the Green or Blue color components could be used also        histogram(lum) + 1      Next    Next  StopDrawing()EndProcedure Procedure median(Array histogram(1))  Protected low, high = 255, left, right   While low <> high    If left < right      low + 1      left + histogram(low)    Else      high - 1      right + histogram(high)             EndIf  Wend  ProcedureReturn lowEndProcedure Procedure blackAndWhite(image, median)  Protected w = ImageWidth(image) - 1  Protected h = ImageHeight(image) - 1  CallDebugger  StartDrawing(ImageOutput(image))    For x = 0 To w      For y = 0 To h        If Red(Point(x, y)) < median ;the Green or Blue color components could be used also          Plot(x, y, \$000000) ;black        Else          Plot(x, y, \$FFFFFF) ;white        EndIf      Next    Next  StopDrawing()EndProcedure Define sourceFile.s, outputFile.s, image = 3, mDim histogram(255) sourceFile = OpenFileRequester("Select source image file", "*.ppm", "PPM image (*.ppm)|PPM", 0) If sourceFile And LCase(GetExtensionPart(sourceFile)) = "ppm"  LoadImagePPM(image, sourceFile)  ImageGrayout(image)   getHistogram(image,histogram())  m = median(histogram())  blackAndWhite(image, m)   outputFile = Left(sourceFile, Len(sourceFile) - Len(GetExtensionPart(sourceFile))) + "_bw." + GetExtensionPart(sourceFile)  SaveImageAsPPM(image, outputFile, 1)EndIf`

## Racket

` #lang racket(require racket/draw math/statistics racket/require         (filtered-in          (lambda (name) (regexp-replace #rx"unsafe-" name ""))          racket/unsafe/ops)) ;; CIE formula as discussed in "Greyscale image" task(define (L r g b)  ;; In fact there is no need, statistically for L to be divided by 10000  (fx+ (fx* r 2126) (fx+ (fx* g 7152) (fx* b 722)))) (define (prepare-bytes bm depth load-content?)  (define w (send bm get-width))  (define h (send bm get-height))  (define rv (make-bytes (* w h depth)))  (define just-alpha? #f)  (define pre-multiply? #t); let racket cope with alpha-ness  (when load-content? (send bm get-argb-pixels 0 0 w h rv just-alpha? pre-multiply?))  rv) (define (bitmap-histogram bm)  (unless (send bm is-color?) (error 'bitmap->histogram "bitmap must be colour"))  (define pxls (prepare-bytes bm 4 #t))  (define l# (make-hash))  (for ((r (in-bytes pxls 1 #f 4)) (g (in-bytes pxls 2 #f 4)) (b (in-bytes pxls 3 #f 4)))    (hash-update! l# (L r g b) add1 0))  (define xs (hash-keys l#))   ; the colour values  (define ws (hash-values l#)) ; the "weights" i.e. counts for median  (values xs ws)) (define (bitmap-quantile q bm (hist-xs #f) (hist-ws #f))  (define-values (xs ws) (if (and hist-xs hist-ws)                             (values hist-xs hist-ws)                             (bitmap-histogram bm)))  (quantile q < xs ws)) ;; we don't return a 1-depth bitmap, so we can do more interesting things with colour(define (bitmap->monochrome q bm (hist-xs #f) (hist-ws #f))  (define Q (bitmap-quantile q bm hist-xs hist-ws))  (define pxls (prepare-bytes bm 4 #t))  (for ((r (in-bytes pxls 1 #f 4))        (g (in-bytes pxls 2 #f 4))        (b (in-bytes pxls 3 #f 4))        (i (sequence-map (curry fx* 4) (in-naturals))))    (define l (L r g b))    (define rgb+ (cond [(fx< l Q) 0] [else 255]))    (bytes-set! pxls (fx+ i 1) rgb+)    (bytes-set! pxls (fx+ i 2) rgb+)    (bytes-set! pxls (fx+ i 3) rgb+))  (define w (send bm get-width))  (define h (send bm get-height))  (define rv (make-bitmap w h #f))  (send rv set-argb-pixels 0 0 w h pxls)  rv) (module+ main  (define bm (read-bitmap "271px-John_Constable_002.jpg"))  (define-values (xs ws) (bitmap-histogram bm))  (void   (send (bitmap->monochrome 1/4 bm) save-file "histogram-racket-0.25.png" 'png)   (send (bitmap->monochrome 1/2 bm) save-file "histogram-racket-0.50.png" 'png) ; median   (send (bitmap->monochrome 3/4 bm xs ws) save-file "histogram-racket-0.75.png" 'png)))`
Output:

Sorry guys... I just give up on linking/displaying these images any other way!

## Ruby

`class Pixmap  def histogram    histogram = Hash.new(0)    @height.times do |y|      @width.times do |x|        histogram[self[x,y].luminosity] += 1      end    end    histogram   end   def to_blackandwhite    hist = histogram     # find the median luminosity    median = nil    sum = 0    hist.keys.sort.each do |lum|      sum += hist[lum]      if sum > @height * @width / 2        median = lum        break      end    end     # create the black and white image    bw = self.class.new(@width, @height)    @height.times do |y|      @width.times do |x|        bw[x,y] = self[x,y].luminosity < median ? RGBColour::BLACK : RGBColour::WHITE      end    end    bw  end   def save_as_blackandwhite(filename)    to_blackandwhite.save(filename)  endend Pixmap.open('file.ppm').save_as_blackandwhite('file_bw.ppm')`

## Scala

`object BitmapOps {   def histogram(bm:RgbBitmap)={      val hist=new Array[Int](255)      for(x <- 0 until bm.width; y <- 0 until bm.height; l=luminosity(bm.getPixel(x,y)))         hist(l)+=1      hist   }    def histogram_median(hist:Array[Int])={      var from=0      var to=hist.size-1      var left=hist(from)      var right=hist(to)       while(from!=to){         if (left<right)            {from+=1; left+=hist(from)}         else            {to-=1; right+=hist(to)}      }      from   }    def monochrom(bm:RgbBitmap, threshold:Int)={      val image=new RgbBitmap(bm.width, bm.height)      val c1=Color.BLACK      val c2=Color.WHITE      for(x <- 0 until bm.width; y <- 0 until bm.height; l=luminosity(bm.getPixel(x,y)))         image.setPixel(x, y, if(l>threshold) c2 else c1)      image		   }}`

Usage:

`val img=Pixmap.load("image.ppm").getval hist=BitmapOps.histogram(img)val mid=BitmapOps.histogram_median(hist); val mainframe=new MainFrame(){   title="Test"   visible=true   contents=new Label(){      icon=new ImageIcon(BitmapOps.monochrom(img, mid).image)   }}`

## Tcl

Library: Tk

Uses readPPM, grayscale and output_ppm from other pages.

`package require Tcl 8.5package require Tk proc convert_to_blackandwhite {filename} {    set img [image create photo]    readPPM \$img \$filename    grayscale \$img    set hist [histogram \$img]    set median [median \$img \$hist]    blackandwhite \$img \$median    output_ppm \$img bw_\$filename} proc histogram {image} {    set hist [dict create]    for {set x 0} {\$x < [image width \$image]} {incr x} {        for {set y 0} {\$y < [image height \$image]} {incr y} {            dict incr hist [luminance {*}[\$image get \$x \$y]]        }    }    return \$hist} proc luminance {r g b} {    expr {        int(0.2126*\$r + 0.7152*\$g + 0.0722*\$b)    }} proc median {img hist} {    set sum [expr {[image width \$img] * [image height \$img]}]    set total 0    foreach luminance [lsort -integer [dict keys \$hist]] {        incr total [dict get \$hist \$luminance]        if {\$total > \$sum / 2} break    }    return \$luminance} proc blackandwhite {image median} {    for {set x 0} {\$x < [image width \$image]} {incr x} {        for {set y 0} {\$y < [image height \$image]} {incr y} {            if {[luminance {*}[\$image get \$x \$y]] < \$median} {                \$image put black -to \$x \$y            } else {                \$image put white -to \$x \$y            }        }    }}`

## Vedit macro language

The input image is in edit buffer pointed by numeric register #15. On return, #30 points to buffer containing histogram data. The histogram data is given as ASCII decimal values, one value per line.

`:HISTOGRAM:#30 = Buf_Free			     // #30 = buffer to store histogram datafor (#9=0; #9<256; #9++) {    Out_Reg(21) TC(#9) Out_Reg(Clear)		// @21 = intensity value to be counted    Buf_Switch(#15)				// switch to image buffer    #8 = Search(@21, CASE+BEGIN+ALL+NOERR)	// count intensity values    Buf_Switch(#30)				// switch to histogram buffer    Num_Ins(#8, FILL)				// store count}Return`

## zkl

Translation of: C

Uses the PPM class from http://rosettacode.org/wiki/Bitmap/Bresenham%27s_line_algorithm#zkl

`fcn histogram(image){   hist:=List.createLong(256,0);	// array[256] of zero   image.data.howza(0).pump(Void,'wrap(c){ hist[c]+=1 });  // byte by byte loop   hist;}fcn histogramMedian(hist){   from,to:=0,(2).pow(8) - 1; // 16 bits of luminance   left,right:=hist[from],hist[to];   while(from!=to){      if(left<right){ from+=1; left +=hist[from]; }      else 	    { to  -=1; right+=hist[to];   }   }   from}`
`img:=PPM.readPPMFile("lenaGrey.ppm"); // a grey scale imagemedian:=histogramMedian(histogram(img));median.println(); bw:=PPM(img.w,img.h);  // stream bytes from orginal, convert to black/white, write to new image  // each pixel is 24 bit RGBimg.data.pump(bw.data.clear(),'wrap(c){ if(c>median) 0xff else 0  }); bw.write(File("foo.ppm","wb"));`
Output:
`101`

See the BBC Basic entry or: http://www.zenkinetic.com/Images/RosettaCode/lenaBW.jpg