LU decomposition
You are encouraged to solve this task according to the task description, using any language you may know.
Every square matrix can be decomposed into a product of a lower triangular matrix and a upper triangular matrix , as described in LU decomposition.
It is a modified form of Gaussian elimination. While the Cholesky decomposition only works for symmetric, positive definite matrices, the more general LU decomposition works for any square matrix.
There are several algorithms for calculating L and U. To derive Crout's algorithm for a 3x3 example, we have to solve the following system:
We now would have to solve 9 equations with 12 unknowns. To make the system uniquely solvable, usually the diagonal elements of are set to 1
so we get a solvable system of 9 unknowns and 9 equations.
Solving for the other and , we get the following equations:
and for :
We see that there is a calculation pattern, which can be expressed as the following formulas, first for
and then for
We see in the second formula that to get the below the diagonal, we have to divide by the diagonal element (pivot) , so we get problems when is either 0 or very small, which leads to numerical instability.
The solution to this problem is pivoting , which means rearranging the rows of , prior to the decomposition, in a way that the largest element of each column gets onto the diagonal of . Rearranging the columns means to multiply by a permutation matrix :
Example:
The decomposition algorithm is then applied on the rearranged matrix so that
Task description
The task is to implement a routine which will take a square nxn matrix and return a lower triangular matrix , a upper triangular matrix and a permutation matrix , so that the above equation is fullfilled. You should then test it on the following two examples and include your output.
Example 1:
A 1 3 5 2 4 7 1 1 0 L 1.00000 0.00000 0.00000 0.50000 1.00000 0.00000 0.50000 -1.00000 1.00000 U 2.00000 4.00000 7.00000 0.00000 1.00000 1.50000 0.00000 0.00000 -2.00000 P 0 1 0 1 0 0 0 0 1
Example 2:
A 11 9 24 2 1 5 2 6 3 17 18 1 2 5 7 1 L 1.00000 0.00000 0.00000 0.00000 0.27273 1.00000 0.00000 0.00000 0.09091 0.28750 1.00000 0.00000 0.18182 0.23125 0.00360 1.00000 U 11.00000 9.00000 24.00000 2.00000 0.00000 14.54545 11.45455 0.45455 0.00000 0.00000 -3.47500 5.68750 0.00000 0.00000 0.00000 0.51079 P 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1
Ada
decomposition.ads: <lang Ada>with Ada.Numerics.Generic_Real_Arrays; generic
with package Matrix is new Ada.Numerics.Generic_Real_Arrays (<>);
package Decomposition is
-- decompose a square matrix A by PA = LU procedure Decompose (A : Matrix.Real_Matrix; P, L, U : out Matrix.Real_Matrix);
end Decomposition;</lang>
decomposition.adb: <lang Ada>package body Decomposition is
procedure Swap_Rows (M : in out Matrix.Real_Matrix; From, To : Natural) is Temporary : Matrix.Real; begin if From = To then return; end if; for I in M'Range (2) loop Temporary := M (M'First (1) + From, I); M (M'First (1) + From, I) := M (M'First (1) + To, I); M (M'First (1) + To, I) := Temporary; end loop; end Swap_Rows;
function Pivoting_Matrix (M : Matrix.Real_Matrix) return Matrix.Real_Matrix is use type Matrix.Real; Order : constant Positive := M'Length (1); Result : Matrix.Real_Matrix := Matrix.Unit_Matrix (Order); Max : Matrix.Real; Row : Natural; begin for J in 0 .. Order - 1 loop Max := M (M'First (1) + J, M'First (2) + J); Row := J; for I in J .. Order - 1 loop if M (M'First (1) + I, M'First (2) + J) > Max then Max := M (M'First (1) + I, M'First (2) + J); Row := I; end if; end loop; if J /= Row then -- swap rows J and Row Swap_Rows (Result, J, Row); end if; end loop; return Result; end Pivoting_Matrix;
procedure Decompose (A : Matrix.Real_Matrix; P, L, U : out Matrix.Real_Matrix) is use type Matrix.Real_Matrix, Matrix.Real; Order : constant Positive := A'Length (1); A2 : Matrix.Real_Matrix (A'Range (1), A'Range (2)); S : Matrix.Real; begin L := (others => (others => 0.0)); U := (others => (others => 0.0)); P := Pivoting_Matrix (A); A2 := P * A; for J in 0 .. Order - 1 loop L (L'First (1) + J, L'First (2) + J) := 1.0; for I in 0 .. J loop S := 0.0; for K in 0 .. I - 1 loop S := S + U (U'First (1) + K, U'First (2) + J) * L (L'First (1) + I, L'First (2) + K); end loop; U (U'First (1) + I, U'First (2) + J) := A2 (A2'First (1) + I, A2'First (2) + J) - S; end loop; for I in J + 1 .. Order - 1 loop S := 0.0; for K in 0 .. J loop S := S + U (U'First (1) + K, U'First (2) + J) * L (L'First (1) + I, L'First (2) + K); end loop; L (L'First (1) + I, L'First (2) + J) := (A2 (A2'First (1) + I, A2'First (2) + J) - S) / U (U'First (1) + J, U'First (2) + J); end loop; end loop; end Decompose;
end Decomposition;</lang>
Example usage: <lang Ada>with Ada.Numerics.Real_Arrays; with Ada.Text_IO; with Decomposition; procedure Decompose_Example is
package Real_Decomposition is new Decomposition (Matrix => Ada.Numerics.Real_Arrays);
package Real_IO is new Ada.Text_IO.Float_IO (Float); procedure Print (M : Ada.Numerics.Real_Arrays.Real_Matrix) is begin for Row in M'Range (1) loop for Col in M'Range (2) loop Real_IO.Put (M (Row, Col), 3, 2, 0); end loop; Ada.Text_IO.New_Line; end loop; end Print;
Example_1 : constant Ada.Numerics.Real_Arrays.Real_Matrix := ((1.0, 3.0, 5.0), (2.0, 4.0, 7.0), (1.0, 1.0, 0.0)); P_1, L_1, U_1 : Ada.Numerics.Real_Arrays.Real_Matrix (Example_1'Range (1), Example_1'Range (2)); Example_2 : constant Ada.Numerics.Real_Arrays.Real_Matrix := ((11.0, 9.0, 24.0, 2.0), (1.0, 5.0, 2.0, 6.0), (3.0, 17.0, 18.0, 1.0), (2.0, 5.0, 7.0, 1.0)); P_2, L_2, U_2 : Ada.Numerics.Real_Arrays.Real_Matrix (Example_2'Range (1), Example_2'Range (2));
begin
Real_Decomposition.Decompose (A => Example_1, P => P_1, L => L_1, U => U_1); Real_Decomposition.Decompose (A => Example_2, P => P_2, L => L_2, U => U_2); Ada.Text_IO.Put_Line ("Example 1:"); Ada.Text_IO.Put_Line ("A:"); Print (Example_1); Ada.Text_IO.Put_Line ("L:"); Print (L_1); Ada.Text_IO.Put_Line ("U:"); Print (U_1); Ada.Text_IO.Put_Line ("P:"); Print (P_1); Ada.Text_IO.New_Line; Ada.Text_IO.Put_Line ("Example 2:"); Ada.Text_IO.Put_Line ("A:"); Print (Example_2); Ada.Text_IO.Put_Line ("L:"); Print (L_2); Ada.Text_IO.Put_Line ("U:"); Print (U_2); Ada.Text_IO.Put_Line ("P:"); Print (P_2);
end Decompose_Example;</lang>
Output:
Example 1: A: 1.00 3.00 5.00 2.00 4.00 7.00 1.00 1.00 0.00 L: 1.00 0.00 0.00 0.50 1.00 0.00 0.50 -1.00 1.00 U: 2.00 4.00 7.00 0.00 1.00 1.50 0.00 0.00 -2.00 P: 0.00 1.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 Example 2: A: 11.00 9.00 24.00 2.00 1.00 5.00 2.00 6.00 3.00 17.00 18.00 1.00 2.00 5.00 7.00 1.00 L: 1.00 0.00 0.00 0.00 0.27 1.00 0.00 0.00 0.09 0.29 1.00 0.00 0.18 0.23 0.00 1.00 U: 11.00 9.00 24.00 2.00 0.00 14.55 11.45 0.45 0.00 0.00 -3.47 5.69 0.00 0.00 0.00 0.51 P: 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00
C
Compiled with gcc -std=gnu99 -Wall -lm -pedantic
. Demonstrating how to do LU decomposition, and how (not) to use macros. <lang C>#include <stdio.h>
- include <stdlib.h>
- include <math.h>
- define foreach(a, b, c) for (int a = b; a < c; a++)
- define for_i foreach(i, 0, n)
- define for_j foreach(j, 0, n)
- define for_k foreach(k, 0, n)
- define for_ij for_i for_j
- define for_ijk for_ij for_k
- define _dim int n
- define _swap(x, y) { typeof(x) tmp = x; x = y; y = tmp; }
- define _sum_k(a, b, c, s) { s = 0; foreach(k, a, b) s+= c; }
typedef double **mat;
- define _zero(a) mat_zero(a, n)
void mat_zero(mat x, int n) { for_ij x[i][j] = 0; }
- define _new(a) a = mat_new(n)
mat mat_new(_dim) { mat x = malloc(sizeof(double*) * n); x[0] = malloc(sizeof(double) * n * n);
for_i x[i] = x[0] + n * i; _zero(x);
return x; }
- define _copy(a) mat_copy(a, n)
mat mat_copy(void *s, _dim) { mat x = mat_new(n); for_ij x[i][j] = ((double (*)[n])s)[i][j]; return x; }
- define _del(x) mat_del(x)
void mat_del(mat x) { free(x[0]); free(x); }
- define _QUOT(x) #x
- define QUOTE(x) _QUOT(x)
- define _show(a) printf(QUOTE(a)" =");mat_show(a, 0, n)
void mat_show(mat x, char *fmt, _dim) { if (!fmt) fmt = "%8.4g"; for_i { printf(i ? " " : " [ "); for_j { printf(fmt, x[i][j]); printf(j < n - 1 ? " " : i == n - 1 ? " ]\n" : "\n"); } } }
- define _mul(a, b) mat_mul(a, b, n)
mat mat_mul(mat a, mat b, _dim) { mat c = _new(c); for_ijk c[i][j] += a[i][k] * b[k][j]; return c; }
- define _pivot(a, b) mat_pivot(a, b, n)
void mat_pivot(mat a, mat p, _dim) { for_ij { p[i][j] = (i == j); } for_i { int max_j = i; foreach(j, i, n) if (fabs(a[j][i]) > fabs(a[max_j][i])) max_j = j;
if (max_j != i) for_k { _swap(p[i][k], p[max_j][k]); } } }
- define _LU(a, l, u, p) mat_LU(a, l, u, p, n)
void mat_LU(mat A, mat L, mat U, mat P, _dim) { _zero(L); _zero(U); _pivot(A, P);
mat Aprime = _mul(P, A);
for_i { L[i][i] = 1; } for_ij { double s; if (j <= i) { _sum_k(0, j, L[j][k] * U[k][i], s) U[j][i] = Aprime[j][i] - s; } if (j >= i) { _sum_k(0, i, L[j][k] * U[k][i], s); L[j][i] = (Aprime[j][i] - s) / U[i][i]; } }
_del(Aprime); }
double A3[][3] = {{ 1, 3, 5 }, { 2, 4, 7 }, { 1, 1, 0 }}; double A4[][4] = {{11, 9, 24, 2}, {1, 5, 2, 6}, {3, 17, 18, 1}, {2, 5, 7, 1}};
int main() { int n = 3; mat A, L, P, U;
_new(L); _new(P); _new(U); A = _copy(A3); _LU(A, L, U, P); _show(A); _show(L); _show(U); _show(P); _del(A); _del(L); _del(U); _del(P);
printf("\n");
n = 4;
_new(L); _new(P); _new(U); A = _copy(A4); _LU(A, L, U, P); _show(A); _show(L); _show(U); _show(P); _del(A); _del(L); _del(U); _del(P);
return 0; }</lang>
Common Lisp
Uses the routine (mmul A B) from Matrix multiplication.
<lang lisp>;; Creates a nxn identity matrix. (defun eye (n)
(let ((I (make-array `(,n ,n) :initial-element 0))) (loop for j from 0 to (- n 1) do (setf (aref I j j) 1)) I))
- Swap two rows l and k of a mxn matrix A, which is a 2D array.
(defun swap-rows (A l k)
(let* ((n (cadr (array-dimensions A))) (row (make-array n :initial-element 0))) (loop for j from 0 to (- n 1) do (setf (aref row j) (aref A l j)) (setf (aref A l j) (aref A k j)) (setf (aref A k j) (aref row j)))))
- Creates the pivoting matrix for A.
(defun pivotize (A)
(let* ((n (car (array-dimensions A))) (P (eye n))) (loop for j from 0 to (- n 1) do (let ((max (aref A j j)) (row j)) (loop for i from j to (- n 1) do (if (> (aref A i j) max) (setq max (aref A i j) row i))) (if (not (= j row)) (swap-rows P j row))))
;; Return P. P))
- Decomposes a square matrix A by PA=LU and returns L, U and P.
(defun lu (A)
(let* ((n (car (array-dimensions A))) (L (make-array `(,n ,n) :initial-element 0)) (U (make-array `(,n ,n) :initial-element 0)) (P (pivotize A)) (A (mmul P A)))
(loop for j from 0 to (- n 1) do (setf (aref L j j) 1) (loop for i from 0 to j do (setf (aref U i j) (- (aref A i j) (loop for k from 0 to (- i 1) sum (* (aref U k j) (aref L i k)))))) (loop for i from j to (- n 1) do (setf (aref L i j) (/ (- (aref A i j) (loop for k from 0 to (- j 1) sum (* (aref U k j) (aref L i k)))) (aref U j j)))))
;; Return L, U and P. (values L U P)))</lang>
Example 1:
<lang lisp>(setf g (make-array '(3 3) :initial-contents '((1 3 5) (2 4 7)(1 1 0))))
- 2A((1 3 5) (2 4 7) (1 1 0))
(lu g)
- 2A((1 0 0) (1/2 1 0) (1/2 -1 1))
- 2A((2 4 7) (0 1 3/2) (0 0 -2))
- 2A((0 1 0) (1 0 0) (0 0 1))</lang>
Example 2:
<lang lisp>(setf h (make-array '(4 4) :initial-contents '((11 9 24 2)(1 5 2 6)(3 17 18 1)(2 5 7 1))))
- 2A((11 9 24 2) (1 5 2 6) (3 17 18 1) (2 5 7 1))
(lup h)
- 2A((1 0 0 0) (3/11 1 0 0) (1/11 23/80 1 0) (2/11 37/160 1/278 1))
- 2A((11 9 24 2) (0 160/11 126/11 5/11) (0 0 -139/40 91/16) (0 0 0 71/139))
- 2A((1 0 0 0) (0 0 1 0) (0 1 0 0) (0 0 0 1))</lang>
D
<lang d>import std.stdio, std.algorithm, std.typecons, std.numeric,
std.array, std.conv;
bool isRectangular(T)(in T[][] m) pure /*nothrow*/ {
return !canFind!((r){ return r.length != m[0].length; })(m);
}
bool isSquare(T)(in T[][] m) pure /*nothrow*/ {
return isRectangular(m) && m[0].length == m.length;
}
immutable(T[][]) matrixMul(T)(immutable T[][] A,
immutable T[][] B) pure nothrow in { assert(A.length && B.length && isRectangular(A) && isRectangular(B) && A[0].length == B.length); } body { auto result = new T[][](A.length, B[0].length); auto aux = new T[B.length]; foreach (j; 0 .. B[0].length) { foreach (k, row; B) aux[k] = row[j]; foreach (i, ai; A) result[i][j] = dotProduct(ai, aux); } return result; }
/// Creates a nxn identity matrix. T[][] identityMatrix(T)(in int n) pure nothrow
in { assert(n >= 0); } out(result) { assert(isSquare(result)); } body { auto m = new typeof(return)(n, n); foreach (i, row; m) { row[] = 0; row[i] = 1; } return m; }
/// Creates the pivoting matrix for m. immutable(T[][]) pivotize(T)(immutable T[][] m) pure nothrow
in { assert(isSquare(m)); } body { immutable n = m.length; auto P = identityMatrix!T(n);
foreach (i; 0 .. n) { T max = m[i][i]; auto row = i; foreach (j; i .. n) if (m[j][i] > max) { max = m[j][i]; row = j; } if (i != row) swap(P[i], P[row]); }
return P; }
/// Decomposes a square matrix A by PA=LU and returns L, U and P. Tuple!(T[][],"L", T[][],"U", const T[][],"P") lu(T)(immutable T[][] A) pure nothrow
in { assert(isSquare(A)); } body { immutable n = A.length; auto L = new T[][](n, n); auto U = new T[][](n, n); foreach (i; 0 .. n) { L[i][i .. $] = 0; U[i][0 .. i] = 0; }
immutable P = pivotize!T(A); immutable A2 = matrixMul!T(P, A);
foreach (j; 0 .. n) { L[j][j] = 1; foreach (i; 0 .. j+1) { T s1 = 0; foreach (k; 0 .. i) s1 += U[k][j] * L[i][k]; U[i][j] = A2[i][j] - s1; } foreach (i; j .. n) { T s2 = 0; foreach (k; 0 .. j) s2 += U[k][j] * L[i][k]; L[i][j] = (A2[i][j] - s2) / U[j][j]; } }
return typeof(return)(L, U, P); }
void main() {
immutable a = [[1., 3, 5], [2., 4, 7], [1., 1, 0]]; foreach (part; lu(a)) writeln("[", join(map!text(part), ",\n "), "]\n"); writeln();
immutable b = [[11., 9, 24, 2], [1., 5, 2, 6], [3., 17, 18, 1], [2., 5, 7, 1]]; foreach (part; lu(b)) writeln("[", join(map!text(part), ",\n "), "]\n");
}</lang> Output:
[[1, 0, 0], [0.5, 1, 0], [0.5, -1, 1]] [[2, 4, 7], [0, 1, 1.5], [0, 0, -2]] [[0, 1, 0], [1, 0, 0], [0, 0, 1]] [[1, 0, 0, 0], [0.272727, 1, 0, 0], [0.090909, 0.2875, 1, 0], [0.181818, 0.23125, 0.00359712, 1]] [[11, 9, 24, 2], [0, 14.5455, 11.4545, 0.454545], [0, 0, -3.475, 5.6875], [0, 0, 0, 0.510791]] [[1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1]]
Go
2D representation
<lang go>package main
import "fmt"
type matrix [][]float64
func zero(n int) matrix {
r := make([][]float64, n) a := make([]float64, n*n) for i := range r { r[i] = a[n*i : n*(i+1)] } return r
}
func eye(n int) matrix {
r := zero(n) for i := range r { r[i][i] = 1 } return r
}
func (m matrix) print(label string) {
if label > "" { fmt.Printf("%s:\n", label) } for _, r := range m { for _, e := range r { fmt.Printf(" %9.5f", e) } fmt.Println() }
}
func (a matrix) pivotize() matrix {
p := eye(len(a)) for j, r := range a { max := r[j] row := j for i := j; i < len(a); i++ { if a[i][j] > max { max = a[i][j] row = i } } if j != row { // swap rows p[j], p[row] = p[row], p[j] } } return p
}
func (m1 matrix) mul(m2 matrix) matrix {
r := zero(len(m1)) for i, r1 := range m1 { for j := range m2 { for k := range m1 { r[i][j] += r1[k] * m2[k][j] } } } return r
}
func (a matrix) lu() (l, u, p matrix) {
l = zero(len(a)) u = zero(len(a)) p = a.pivotize() a = p.mul(a) for j := range a { l[j][j] = 1 for i := 0; i <= j; i++ { sum := 0. for k := 0; k < i; k++ { sum += u[k][j] * l[i][k] } u[i][j] = a[i][j] - sum } for i := j; i < len(a); i++ { sum := 0. for k := 0; k < j; k++ { sum += u[k][j] * l[i][k] } l[i][j] = (a[i][j] - sum) / u[j][j] } } return
}
func main() {
showLU(matrix{ {1, 3, 5}, {2, 4, 7}, {1, 1, 0}}) showLU(matrix{ {11, 9, 24, 2}, {1, 5, 2, 6}, {3, 17, 18, 1}, {2, 5, 7, 1}})
}
func showLU(a matrix) {
a.print("\na") l, u, p := a.lu() l.print("l") u.print("u") p.print("p")
}</lang> Output:
a: 1.00000 3.00000 5.00000 2.00000 4.00000 7.00000 1.00000 1.00000 0.00000 l: 1.00000 0.00000 0.00000 0.50000 1.00000 0.00000 0.50000 -1.00000 1.00000 u: 2.00000 4.00000 7.00000 0.00000 1.00000 1.50000 0.00000 0.00000 -2.00000 p: 0.00000 1.00000 0.00000 1.00000 0.00000 0.00000 0.00000 0.00000 1.00000 a: 11.00000 9.00000 24.00000 2.00000 1.00000 5.00000 2.00000 6.00000 3.00000 17.00000 18.00000 1.00000 2.00000 5.00000 7.00000 1.00000 l: 1.00000 0.00000 0.00000 0.00000 0.27273 1.00000 0.00000 0.00000 0.09091 0.28750 1.00000 0.00000 0.18182 0.23125 0.00360 1.00000 u: 11.00000 9.00000 24.00000 2.00000 0.00000 14.54545 11.45455 0.45455 0.00000 0.00000 -3.47500 5.68750 0.00000 0.00000 0.00000 0.51079 p: 1.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000 0.00000 1.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000
Flat representation
<lang go>package main
import "fmt"
type matrix struct {
ele []float64 stride int
}
func matrixFromRows(rows [][]float64) *matrix {
if len(rows) == 0 { return &matrix{nil, 0} } m := &matrix{make([]float64, len(rows)*len(rows[0])), len(rows[0])} for rx, row := range rows { copy(m.ele[rx*m.stride:(rx+1)*m.stride], row) } return m
}
func (m *matrix) print(heading string) {
if heading > "" { fmt.Print("\n", heading, "\n") } for e := 0; e < len(m.ele); e += m.stride { fmt.Printf("%8.5f ", m.ele[e:e+m.stride]) fmt.Println() }
}
func (m1 *matrix) mul(m2 *matrix) (m3 *matrix, ok bool) {
if m1.stride*m2.stride != len(m2.ele) { return nil, false } m3 = &matrix{make([]float64, (len(m1.ele)/m1.stride)*m2.stride), m2.stride} for m1c0, m3x := 0, 0; m1c0 < len(m1.ele); m1c0 += m1.stride { for m2r0 := 0; m2r0 < m2.stride; m2r0++ { for m1x, m2x := m1c0, m2r0; m2x < len(m2.ele); m2x += m2.stride { m3.ele[m3x] += m1.ele[m1x] * m2.ele[m2x] m1x++ } m3x++ } } return m3, true
}
func zero(rows, cols int) *matrix {
return &matrix{make([]float64, rows*cols), cols}
}
func eye(n int) *matrix {
m := zero(n, n) for ix := 0; ix < len(m.ele); ix += n + 1 { m.ele[ix] = 1 } return m
}
func (a *matrix) pivotize() *matrix {
pv := make([]int, a.stride) for i := range pv { pv[i] = i } for j, dx := 0, 0; j < a.stride; j++ { row := j max := a.ele[dx] for i, ixcj := j, dx; i < a.stride; i++ { if a.ele[ixcj] > max { max = a.ele[ixcj] row = i } ixcj += a.stride } if j != row { pv[row], pv[j] = pv[j], pv[row] } dx += a.stride + 1 } p := zero(a.stride, a.stride) for r, c := range pv { p.ele[r*a.stride+c] = 1 } return p
}
func (a *matrix) lu() (l, u, p *matrix) {
l = zero(a.stride, a.stride) u = zero(a.stride, a.stride) p = a.pivotize() a, _ = p.mul(a) for j, jxc0 := 0, 0; j < a.stride; j++ { l.ele[jxc0+j] = 1 for i, ixc0 := 0, 0; ixc0 <= jxc0; i++ { sum := 0. for k, kxcj := 0, j; k < i; k++ { sum += u.ele[kxcj] * l.ele[ixc0+k] kxcj += a.stride } u.ele[ixc0+j] = a.ele[ixc0+j] - sum ixc0 += a.stride } for ixc0 := jxc0; ixc0 < len(a.ele); ixc0 += a.stride { sum := 0. for k, kxcj := 0, j; k < j; k++ { sum += u.ele[kxcj] * l.ele[ixc0+k] kxcj += a.stride } l.ele[ixc0+j] = (a.ele[ixc0+j] - sum) / u.ele[jxc0+j] } jxc0 += a.stride } return
}
func main() {
showLU(matrixFromRows([][]float64{ {1, 3, 5}, {2, 4, 7}, {1, 1, 0}})) showLU(matrixFromRows([][]float64{ {11, 9, 24, 2}, {1, 5, 2, 6}, {3, 17, 18, 1}, {2, 5, 7, 1}}))
}
func showLU(a *matrix) {
a.print("\na") l, u, p := a.lu() l.print("l") u.print("u") p.print("p")
}</lang>
J
Taken with slight modification from [1].
Solution: <lang j> mp=: +/ .*
LU=: 3 : 0
'm n'=. $ A=. y if. 1=m do.
p ; (=1) ; p{"1 A [ p=. C. (n-1);~.0,(0~:,A)i.1
else.
m2=. >.m%2 'p1 L1 U1'=. LU m2{.A D=. (/:p1) {"1 m2}.A F=. m2 {."1 D E=. m2 {."1 U1 FE1=. F mp %. E G=. m2}."1 D - FE1 mp U1 'p2 L2 U2'=. LU G p3=. (i.m2),m2+p2 H=. (/:p3) {"1 U1 (p1{p3) ; (L1,FE1,.L2) ; H,(-n){."1 U2
end. )
permtomat=. 1 {.~"0 -@>:@:/: LUdecompose=: (permtomat&.>@{. , }.)@:LU</lang>
Example use: <lang j> A=.3 3$1 3 5 2 4 7 1 1 0
LUdecompose A
┌─────┬─────┬───────┐ │1 0 0│1 0 0│1 3 5│ │0 1 0│2 1 0│0 _2 _3│ │0 0 1│1 1 1│0 0 _2│ └─────┴─────┴───────┘
mp/> LUdecompose A
1 3 5 2 4 7 1 1 0
A=.4 4$11 9 24 2 1 5 2 6 3 17 18 1 2 5 7 1 LUdecompose A
┌───────┬─────────────────────────────┬─────────────────────────────┐ │1 0 0 0│ 1 0 0 0│11 9 24 2│ │0 1 0 0│0.0909091 1 0 0│ 0 4.18182 _0.181818 5.81818│ │0 0 1 0│ 0.272727 3.47826 1 0│ 0 0 12.087 _19.7826│ │0 0 0 1│ 0.181818 0.804348 0.230216 1│ 0 0 0 0.510791│ └───────┴─────────────────────────────┴─────────────────────────────┘
mp/> LUdecompose A
11 9 24 2
1 5 2 6 3 17 18 1 2 5 7 1</lang>
Mathematica
<lang Mathematica>(*Ex1*)a = {{1, 3, 5}, {2, 4, 7}, {1, 1, 0}}; {lu, p, c} = LUDecomposition[a]; l = LowerTriangularize[lu, -1] + IdentityMatrix[Length[p]]; u = UpperTriangularize[lu]; P = Part[IdentityMatrix[Length[p]], p] ; MatrixForm /@ {P.a , P, l, u, l.u}
(*Ex2*)a = {{11, 9, 24, 2}, {1, 5, 2, 6}, {3, 17, 18, 1}, {2, 5, 7, 1}}; {lu, p, c} = LUDecomposition[a]; l = LowerTriangularize[lu, -1] + IdentityMatrix[Length[p]]; u = UpperTriangularize[lu]; P = Part[IdentityMatrix[Length[p]], p] ; MatrixForm /@ {P.a , P, l, u, l.u} </lang> Outputs:
MATLAB / Octave
LU decomposition is part of language
<lang Matlab> A = [
1 3 5 2 4 7 1 1 0];
[L,U,P] = lu(A)</lang>
gives the output:
L = 1.00000 0.00000 0.00000 0.50000 1.00000 0.00000 0.50000 -1.00000 1.00000 U = 2.00000 4.00000 7.00000 0.00000 1.00000 1.50000 0.00000 0.00000 -2.00000 P = 0 1 0 1 0 0 0 0 1
2nd example: <lang Matlab> A = [
11 9 24 2 1 5 2 6 3 17 18 1 2 5 7 1 ];
[L,U,P] = lu(A)</lang>
gives the output:
L = 1.00000 0.00000 0.00000 0.00000 0.27273 1.00000 0.00000 0.00000 0.09091 0.28750 1.00000 0.00000 0.18182 0.23125 0.00360 1.00000 U = 11.00000 9.00000 24.00000 2.00000 0.00000 14.54545 11.45455 0.45455 0.00000 0.00000 -3.47500 5.68750 0.00000 0.00000 0.00000 0.51079 P = 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1
Python
<lang python>from pprint import pprint
def matrixMul(A, B):
TB = zip(*B) return [[sum(ea*eb for ea,eb in zip(a,b)) for b in TB] for a in A]
def pivotize(m):
"""Creates the pivoting matrix for m.""" n = len(m) ID = [[float(i == j) for i in xrange(n)] for j in xrange(n)] for j in xrange(n): row = max(xrange(j, n), key=lambda i: m[i][j]) if j != row: ID[j], ID[row] = ID[row], ID[j] return ID
def lu(A):
"""Decomposes a nxn matrix A by PA=LU and returns L, U and P.""" n = len(A) L = [[0.0] * n for i in xrange(n)] U = [[0.0] * n for i in xrange(n)] P = pivotize(A) A2 = matrixMul(P, A) for j in xrange(n): L[j][j] = 1.0 for i in xrange(j+1): s1 = sum(U[k][j] * L[i][k] for k in xrange(i)) U[i][j] = A2[i][j] - s1 for i in xrange(j, n): s2 = sum(U[k][j] * L[i][k] for k in xrange(j)) L[i][j] = (A2[i][j] - s2) / U[j][j] return (L, U, P)
a = [[1, 3, 5], [2, 4, 7], [1, 1, 0]] for part in lu(a):
pprint(part, width=19) print
print b = [[11,9,24,2],[1,5,2,6],[3,17,18,1],[2,5,7,1]] for part in lu(b):
pprint(part) print</lang>
Output:
[[1.0, 0.0, 0.0], [0.5, 1.0, 0.0], [0.5, -1.0, 1.0]] [[2.0, 4.0, 7.0], [0.0, 1.0, 1.5], [0.0, 0.0, -2.0]] [[0.0, 1.0, 0.0], [1.0, 0.0, 0.0], [0.0, 0.0, 1.0]] [[1.0, 0.0, 0.0, 0.0], [0.27272727272727271, 1.0, 0.0, 0.0], [0.090909090909090912, 0.28749999999999998, 1.0, 0.0], [0.18181818181818182, 0.23124999999999996, 0.0035971223021580693, 1.0]] [[11.0, 9.0, 24.0, 2.0], [0.0, 14.545454545454547, 11.454545454545455, 0.45454545454545459], [0.0, 0.0, -3.4749999999999996, 5.6875], [0.0, 0.0, 0.0, 0.51079136690647597]] [[1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], [0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 1.0]]
Ruby
<lang ruby>require 'matrix'
class Matrix
def lu_decomposition p = get_pivot tmp = p * self u = Matrix.zero(row_size).to_a l = Matrix.identity(row_size).to_a (0 ... row_size).each do |i| (0 ... row_size).each do |j| if j >= i # upper u[i][j] = tmp[i,j] - (0 .. i-1).inject(0.0) {|sum, k| sum + u[k][j] * l[i][k]} else # lower l[i][j] = (tmp[i,j] - (0 .. j-1).inject(0.0) {|sum, k| sum + u[k][j] * l[i][k]}) / u[j][j] end end end [ Matrix[*l], Matrix[*u], p ] end
def get_pivot raise ArgumentError, "must be square" unless square? id = Matrix.identity(row_size).to_a (0 ... row_size).each do |i| max = self[i,i] row = i (i ... row_size).each do |j| if self[j,i] > max max = self[j,i] row = j end end id[i], id[row] = id[row], id[i] end Matrix[*id] end
def pretty_print(format) each_with_index do |val, i, j| print "#{format} " % val puts "" if j==column_size-1 end end
end
a = Matrix[[1, 3, 5],
[2, 4, 7], [1, 1, 0]]
puts "A"; a.pretty_print("%2d") l, u, p = a.lu_decomposition puts "U"; u.pretty_print("%8.5f") puts "L"; l.pretty_print("%8.5f") puts "P"; p.pretty_print("%d")
a = Matrix[[11, 9,24,2],
[ 1, 5, 2,6], [ 3,17,18,1], [ 2, 5, 7,1]]
puts "A"; a.pretty_print("%2d") l, u, p = a.lu_decomposition puts "U"; u.pretty_print("%8.5f") puts "L"; l.pretty_print("%8.5f") puts "P"; p.pretty_print("%d")</lang>
output
A 1 3 5 2 4 7 1 1 0 U 2.00000 4.00000 7.00000 0.00000 1.00000 1.50000 0.00000 0.00000 -2.00000 L 1.00000 0.00000 0.00000 0.50000 1.00000 0.00000 0.50000 -1.00000 1.00000 P 0 1 0 1 0 0 0 0 1 A 11 9 24 2 1 5 2 6 3 17 18 1 2 5 7 1 U 11.00000 9.00000 24.00000 2.00000 0.00000 14.54545 11.45455 0.45455 0.00000 0.00000 -3.47500 5.68750 0.00000 0.00000 0.00000 0.51079 L 1.00000 0.00000 0.00000 0.00000 0.27273 1.00000 0.00000 0.00000 0.09091 0.28750 1.00000 0.00000 0.18182 0.23125 0.00360 1.00000 P 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1
Tcl
<lang tcl>package require Tcl 8.5 namespace eval matrix {
namespace path {::tcl::mathfunc ::tcl::mathop}
# Construct an identity matrix of the given size proc identity {order} {
set m [lrepeat $order [lrepeat $order 0]] for {set i 0} {$i < $order} {incr i} { lset m $i $i 1 } return $m
}
# Produce the pivot matrix for a given matrix proc pivotize {matrix} {
set n [llength $matrix] set p [identity $n] for {set j 0} {$j < $n} {incr j} { set max [lindex $matrix $j $j] set row $j for {set i $j} {$i < $n} {incr i} { if {[lindex $matrix $i $j] > $max} { set max [lindex $matrix $i $j] set row $i } } if {$j != $row} { # Row swap inlined; too trivial to have separate procedure set tmp [lindex $p $j] lset p $j [lindex $p $row] lset p $row $tmp } } return $p
}
# Decompose a square matrix A by PA=LU and return L, U and P proc luDecompose {A} {
set n [llength $A] set L [lrepeat $n [lrepeat $n 0]] set U $L set P [pivotize $A] set A [multiply $P $A]
for {set j 0} {$j < $n} {incr j} { lset L $j $j 1 for {set i 0} {$i <= $j} {incr i} { lset U $i $j [- [lindex $A $i $j] [SumMul $L $U $i $j $i]] } for {set i $j} {$i < $n} {incr i} { set sum [SumMul $L $U $i $j $j] lset L $i $j [/ [- [lindex $A $i $j] $sum] [lindex $U $j $j]] } }
return [list $L $U $P]
}
# Helper that makes inner loop nicer; multiplies column and row, # possibly partially... proc SumMul {A B i j kmax} {
set s 0.0 for {set k 0} {$k < $kmax} {incr k} { set s [+ $s [* [lindex $A $i $k] [lindex $B $k $j]]] } return $s
}
}</lang> Support code: <lang tcl># Code adapted from Matrix_multiplication and Matrix_transposition tasks namespace eval matrix {
# Get the size of a matrix; assumes that all rows are the same length, which # is a basic well-formed-ness condition... proc size {m} {
set rows [llength $m] set cols [llength [lindex $m 0]] return [list $rows $cols]
}
# Matrix multiplication implementation proc multiply {a b} {
lassign [size $a] a_rows a_cols lassign [size $b] b_rows b_cols if {$a_cols != $b_rows} { error "incompatible sizes: a($a_rows, $a_cols), b($b_rows, $b_cols)" } set temp [lrepeat $a_rows [lrepeat $b_cols 0]] for {set i 0} {$i < $a_rows} {incr i} { for {set j 0} {$j < $b_cols} {incr j} { lset temp $i $j [SumMul $a $b $i $j $a_cols] } } return $temp
}
# Pretty printer for matrices proc print {matrix {fmt "%g"}} {
set max [Widest $matrix $fmt] lassign [size $matrix] rows cols foreach row $matrix { foreach val $row width $max { puts -nonewline [format "%*s " $width [format $fmt $val]] } puts "" }
} proc Widest {m fmt} {
lassign [size $m] rows cols set max [lrepeat $cols 0] foreach row $m { for {set j 0} {$j < $cols} {incr j} { set s [format $fmt [lindex $row $j]] lset max $j [max [lindex $max $j] [string length $s]] } } return $max
}
}</lang> Demonstrating: <lang tcl># This does the decomposition and prints it out nicely proc demo {A} {
lassign $A L U P foreach v {A L U P} {
upvar 0 $v matrix puts "${v}:" matrix::print $matrix %.5g if {$v ne "P"} {puts "---------------------------------"}
}
} demo {{1 3 5} {2 4 7} {1 1 0}} puts "=================================" demo {{11 9 24 2} {1 5 2 6} {3 17 18 1} {2 5 7 1}}</lang> Output:
A: 1 3 5 2 4 7 1 1 0 --------------------------------- L: 1 0 0 0.5 1 0 0.5 -1 1 --------------------------------- U: 2 4 7 0 1 1.5 0 0 -2 --------------------------------- P: 0 1 0 1 0 0 0 0 1 ================================= A: 11 9 24 2 1 5 2 6 3 17 18 1 2 5 7 1 --------------------------------- L: 1 0 0 0 0.27273 1 0 0 0.090909 0.2875 1 0 0.18182 0.23125 0.0035971 1 --------------------------------- U: 11 9 24 2 0 14.545 11.455 0.45455 0 0 -3.475 5.6875 0 0 0 0.51079 --------------------------------- P: 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1