Total circles area/Racket
<img src="timb.net/images/RC/Total-circles-area/TCA-all-circles.png" alt="All the circles"/>
<img src="timb.net/images/RC/Total-circles-area/TCA-split-circles.png" alt="Showing the path edge from split-circles"/>
[All the circles] [Showing the path edge from split-circles]
Below are an analytical solution in TCA-analytical.rkt
, and a Monte-carlo solution in
TCA-monte-carlo.rkt
. Common code (notably types) is in TCA-types.rkt
, and
TCA-task.rkt
(we don't need to list the circle coordinates more than once).
In order to get my head around the algorithm, I have also thrown together a TCA-draw.rkt
which (if I can get RC to let me upload piccies) produces the attached images (otherwise you'll have
to go to timb.net for them).
TCA-types.rkt
[edit]
This solution (with the exception of TCA-draw.rkt
) is in typed/racket. This file
defines the types, and geometrical arithmetic. In fact it encroaches on the analytical solution's
magic -- but it's not so easy to separate concerns here.
<lang racket>#lang typed/racket
- TCA-types
- basic geometric types, and some basic geometric operations upon them
- Arguably even the split circles / other path operations are general enough to
(provide (all-defined-out)) ; to external "drawing" module
(struct Vec ((x : Real) (y : Real))) (struct Angle2 ((a0 : Angle) (a1 : Angle))) ; Angles of the start and end points of the circle arc. (struct Circle ((c : Vec) (r : Real))) (struct Arc ((c : Circle) (a2 : Angle2)))
(define-type Angle Real) (define-type Vecs (Listof Vec)) (define-type Arcs (Listof Arc)) (define-type Angles (Listof Angle)) (define-type Circles (Listof Circle))
(define-type Geometric (U Vec Circle Arc))
(: v-cross : Vec Vec -> Real) (: v-dot : Vec Vec -> Real) (: v+ : Vec Vec -> Vec) (: v- : Vec Vec -> Vec) (: v-len : Vec -> Real) (: v-dist : Vec Vec -> Real) (: v-scale : Vec Real -> Vec) (: v-norm : Vec -> Vec)
(define/match (v-cross v0 v1)
[((Vec a b) (Vec c d)) (- (* a d) (* b c))])
(define/match (v-dot v0 v1)
[((Vec a b) (Vec c d)) (+ (* a c) (* b d))])
(define/match (v+ v0 v1)
[((Vec a b) (Vec c d)) (Vec (+ a c) (+ b d))])
(define/match (v- v0 v1)
[((Vec a b) (Vec c d)) (Vec (- a c) (- b d))])
(define (v-len v)
(cast (sqrt (v-dot v v)) Real))
(define (v-dist a b)
(v-len (v- a b)))
(define/match (v-scale v s)
[((Vec x y) s) (Vec (* x s) (* y s))])
(define/match (v-norm v)
[((and (Vec x y) (app v-len l))) (Vec (/ x l) (/ y l))])
(: v-angle : Vec -> Angle) (: a-norm : Angle -> Angle)
(define/match (v-angle v)
[((Vec x y)) (atan y x)])
(define (a-norm a)
(cond [(> a pi) (- a (* 2 pi))] [(< a (- pi)) (+ a (* 2 pi))] [else a]))
(: circle-cross : Circle -> (Circle -> Angles)) (define/match ((circle-cross C0) C1)
[((Circle c0 r0) (Circle c1 r1)) (define d (v-dist c0 c1)) (cond [(>= d (+ r0 r1)) null] [(<= d (abs (- r0 r1))) null] [else (define s (/ (+ r0 r1 d) 2)) (define a (sqrt (* s (- s d) (- s r0) (- s r1)))) (define h (* 2 (/ a d))) (define dr (v- c1 c0)) (define r0^2 (sqr r0)) (define dr-ang (v-angle dr)) (define ang (+ dr-ang (if (> (+ r0^2 (sqr d)) (sqr r1)) 0 pi))) (define da (cast (asin (/ h r0)) Real)) (map a-norm (list (- ang da) (+ ang da)))])])
(: arc-point : Circle Angle -> Vec) (: arc-start : Arc -> Vec) (: arc-mid : Arc -> Vec) (: arc-end : Arc -> Vec) (: arc-centre : Arc -> Vec) (: arc-area : Arc -> Real)
(define/match (arc-point crc arc)
[((Circle c r) a) (v+ c (Vec (* r (cos a)) (* r (sin a))))])
(define/match (arc-start arc) [((Arc c (Angle2 a0 _))) (arc-point c a0)]) (define/match (arc-mid arc) [((Arc c (Angle2 a0 a1))) (arc-point c (/ (+ a0 a1) 2))]) (define/match (arc-end arc) [((Arc c (Angle2 _ a1))) (arc-point c a1)]) (define/match (arc-centre arc) [((Arc (Circle c _) _)) c])
(define arc-area
(match-lambda [(Arc (Circle _ r) (Angle2 a0 a1)) (* (sqr r) (- a1 a0) 1/2)]))
(: tri-area : Vec Vec Vec -> Real) (define (tri-area a b c) (/ (v-cross (v- b a) (v- c b)) 2))
- Boundaries -- needed both for drawing and monte-carlo
(: x-min : Any -> Real) (: x-max : Any -> Real) (: y-min : Any -> Real) (: y-max : Any -> Real)
- values is too general for the type checker... so (argmin values l) is not possible
(: real-min : (Listof Real) -> Real) (: real-max : (Listof Real) -> Real)
(define (real-min l)
(foldl min +Inf.0 l))
(define (real-max l)
(foldl max -Inf.0 l))
(define/match (x-min o)
[((list os ...)) (real-min (map x-min os))] [((Vec x y)) x] [((Circle (Vec x y) r)) (- x r)] [((Arc c _)) (x-min c)] [(else) +Inf.0])
(define/match (x-max o)
[((list os ...)) (real-max (map x-max os))] [((Vec x y)) x] [((Circle (Vec x y) r)) (+ x r)] [((Arc c _)) (x-max c)] [(else) -Inf.0])
(define/match (y-min o)
[((list os ...)) (real-min (map y-min os))] [((Vec x y)) y] [((Circle (Vec x y) r)) (- y r)] [((Arc c _)) (y-min c)] [(else) +Inf.0])
(define/match (y-max o)
[((list os ...)) (real-max (map y-max os))] [((Vec x y)) y] [((Circle (Vec x y) r)) (+ y r)] [((Arc c _)) (y-max c)] [(else) -Inf.0])</lang>
TCA-draw.rkt
[edit]
This does not depend on any algorithms, and allows visualisation of the geometrical objects (in fact scenarios composed of lists of said objects)
<lang racket>#lang racket (require "TCA-types.rkt") (require pict) (provide (all-defined-out)) (define/match (draw-object dc o)
[(dc (list o ot ...)) (draw-object dc o) (draw-object dc ot)] [(dc (list)) (void)] [(dc (Vec x y)) (send dc draw-point x y)] [(dc (? string? s)) (send* dc (set-pen s 0 'solid) (set-brush s 'transparent))] [(dc (Circle (Vec cx cy) r)) (send dc draw-ellipse (- cx r) (- cy r) (* 2 r) (* 2 r))] [(dc (and arc (Arc (Circle (Vec cx cy) r) (Angle2 start end)))) (send dc draw-arc (- cx r) (- cy r) (* 2 r) (* 2 r) (- end) (- start))])
(define (draw-situation #:fill-first? (fill-first? #f) pict-w pict-h o0 . os)
(define o* (cons o0 os)) (define x* (x-min o*)) (define y* (y-min o*)) (define w* (- (x-max o*) x*)) (define h* (- (y-max o*) y*)) (dc (λ (dc dx dy) (define-values (canvas-w canvas-h) (send dc get-size)) (define scl-x (/ canvas-w w*)) (define scl-y (/ canvas-h h*)) (define scl (min scl-x scl-y)) (send* dc (set-initial-matrix (vector scl 0 0 (- scl) 0 0)) (translate (- x*) (- (+ y* h*))) ;; outline (set-pen "red" 0 'solid) (set-brush "red" 'transparent) (draw-rectangle x* y* w* h*) ;; colour of tail objects (set-pen "green" 0 'solid) (set-brush "green" (if fill-first? 'solid 'transparent))) ;; drawn in reverse, so last in list is most background (for ((o (reverse os))) (draw-object dc o)) ;; colour of first object -- drawn last, so on top (send* dc (set-pen "cyan" 0 'solid) (set-brush "cyan" 'transparent)) (draw-object dc o0)) pict-w pict-h))
(define (show-situation #:fill-first? (f-1st? #f) #:width (w 600) #:height (h 400) o0 . os)
(show-pict (apply draw-situation w h o0 os #:fill-first? f-1st?)))
- Saves image of situation to file
(define (file-situation file-name #:fill-first? (f-1st? #f) #:width (w 600) #:height (h 400) o0 . os)
(define bmp (pict->bitmap (apply draw-situation w h o0 os #:fill-first? f-1st?))) (send bmp save-file file-name 'png))</lang>
TCA-monte-carlo.rkt
[edit]
- If
deeper
is ≤ 0, then this does a plain old Monte Carlo approximation. - If
deeper
> 0, then the sample space is divided into 4 (2x2), and circles
that cannot possibly affect each subsample are discarded. This allows for more focussed "inside?" testing.
Nothing more sophisticated is attempted. That would be verging on analytical.
<lang racket>#lang typed/racket (require "TCA-types.rkt") (provide circles-area)
(: circles-area :
Circles [#:samples Nonnegative-Integer] [#:bounds (U #f (List Real Real Real Real))] [#:deeper Nonnegative-Integer] -> Real)
- Provides naive sub-sampling when deeper > 0
(define (circles-area all-cs #:samples (samples 1000) #:bounds (bounds #f) #:deeper (deeper 6))
(when (>= deeper 3) (eprintf "[~a/~a]" deeper (length all-cs)) (flush-output)) (define x (or (and bounds (first bounds)) (x-min all-cs))) (define y (or (and bounds (second bounds)) (y-min all-cs))) (define w (or (and bounds (third bounds)) (- (x-max all-cs) x))) (define h (or (and bounds (fourth bounds)) (- (y-max all-cs) y))) (define w/2 (/ w 2)) (define h/2 (/ h 2)) (define x+ (+ x w/2)) (define y+ (+ y h/2)) (define bounds-c (Vec x+ y+)) (define bounds-diagonal (v-dist (Vec x y) bounds-c)) ;; we won't go into the detail of "circles that intersect the area", ;; just circles that can't possibly overlap ;; (their radius is further than the diagonal of the bounds) ;; if we want more analysis on this, then we'll use the TCA-analytical solution. No? (: circle-threatens? : Circle -> Boolean) (define (circle-threatens? c) (< (v-dist (Circle-c c) bounds-c) (+ (Circle-r c) bounds-diagonal))) (define cs (filter circle-threatens? all-cs)) (cond [(null? cs) 0] [(not (positive? deeper)) (: in-circle? : Vec -> (Circle -> Boolean)) (define ((in-circle? v) c) (< (v-dist v (Circle-c c)) (Circle-r c))) (: in-any-circle? : Vec -> Boolean) (define (in-any-circle? v) (list? (memf (in-circle? v) cs))) (: rand-vec : -> Vec) (define (rand-vec) (Vec (+ x (* w (random))) (+ y (* h (random))))) (define hits (for/sum : Real ((i (in-range samples)) #:when (in-any-circle? (rand-vec))) 1)) (* hits (* w h) (/ samples))] [else (+ (circles-area cs #:samples samples #:bounds (list x y w/2 h/2) #:deeper (sub1 deeper)) (circles-area cs #:samples samples #:bounds (list x+ y w/2 h/2) #:deeper (sub1 deeper)) (circles-area cs #:samples samples #:bounds (list x y+ w/2 h/2) #:deeper (sub1 deeper)) (circles-area cs #:samples samples #:bounds (list x+ y+ w/2 h/2) #:deeper (sub1 deeper)))]))</lang>
TCA-analytical.rkt
[edit]
This provides an analytical solution. Much of the Haskell heavy lifting is rewitten in
TCA-types.rkt
.
<lang racket>#lang typed/racket (require "TCA-types.rkt") (provide circles-area
split-circles ;; I want to be able to draw this )
(: split-1-circle : (Pair Circle Angles) -> Arcs) (define/match (split-1-circle c.angs)
[((cons c angs)) (for/list : Arcs ((a1 (in-list angs)) (a2 (in-list (cdr angs)))) (Arc c (Angle2 a1 a2)))])
(: split-circles : Circles -> Arcs) (define (split-circles cs)
(: in-circle? (Arc Circle -> Boolean)) (define/match (in-circle? a c) [((and arc (Arc (? Circle? c1) _)) (and c2 (Circle cen2 r2))) (and (not (equal? c1 c2)) (< (v-dist (arc-mid arc) cen2) r2))]) ;; If an arc that was part of one circle is inside *another* circle, ;; it will not be part of the zero-winding path, so reject it. (: not-in-any-circle? : Arc -> Boolean) (define/match (not-in-any-circle? arc) [(arc) (not (memf (curry in-circle? arc) cs))]) (: f : Circle -> (Pair Circle Angles)) (define (f c) (cons c (sort (list* (- pi) pi (apply append (map (circle-cross c) cs))) <))) (define c-angs (map f cs)) (define arcs (apply append (map split-1-circle c-angs))) (filter not-in-any-circle? arcs))
- |
Given a list of arcs, build sets of closed paths from them. If one arc's end point is no more than 1e-4 from another's start point, they are considered connected. Since these start/end points resulted from intersecting circles earlier, they *should* be exactly the same, but floating point precision may cause small differences, hence the 1e-4 error margin. When there are genuinely different intersections closer than this margin, the method will backfire, badly. |#
(: arc-dist-quantum Real) (define arc-dist-quantum 1e-12)
(: make-paths : Arcs -> (Listof Arcs)) (define (make-paths arcs)
(: join-arcs : Arcs Arcs -> (Listof Arcs)) (define join-arcs (match-lambda** [(a (list)) (list a)] [((list) (cons x xs)) (join-arcs (list x) xs)] [(a X) #:when (< (v-dist (arc-start (first a)) (arc-end (last a))) arc-dist-quantum) (cons a (join-arcs null X))] [(a (cons x xs)) #:when (< (v-dist (arc-end (last a)) (arc-start x)) arc-dist-quantum) (join-arcs (append a (list x)) xs)] [(a (cons x xs)) (join-arcs a (append xs (list x)))])) (join-arcs null arcs))
- Slice N-polygon into N-2 triangles.
(: polyline-area : Vecs -> Real) (define (polyline-area v.vs)
(match-define (cons v vs) v.vs) (for/sum : Real ((v0 : Vec (in-list vs)) (v1 : Vec (in-list (cdr vs)))) (tri-area v v0 v1)))
(: path-area : Arcs -> Real) (define (path-area arcs)
(define-values (a e) (for/fold ((a : Real 0) (e : Vecs null)) ((arc : Arc (in-list arcs))) (values (+ a (arc-area arc)) (append e (list (arc-centre arc) (arc-end arc)))))) (+ a (polyline-area e)))
(: circles-area : Circles -> Real) (define (circles-area cs)
(apply + (map path-area (make-paths (split-circles cs)))))</lang>
TCA-task.rkt
[edit]
This file does the business of showing results and whatnot. <lang racket>#lang typed/racket
(require "TCA-types.rkt")
(require (prefix-in analytical: "TCA-analytical.rkt")) (require (prefix-in monte-carlo: "TCA-monte-carlo.rkt"))
(provide (all-defined-out)) ; to external "drawing" module
(: circles Circles) (define circles
(list (Circle (Vec 1.6417233788 1.6121789534) 0.0848270516) (Circle (Vec -1.4944608174 1.2077959613) 1.1039549836) (Circle (Vec 0.6110294452 -0.6907087527) 0.9089162485) (Circle (Vec 0.3844862411 0.2923344616) 0.2375743054) (Circle (Vec -0.2495892950 -0.3832854473) 1.0845181219) (Circle (Vec 1.7813504266 1.6178237031) 0.8162655711) (Circle (Vec -0.1985249206 -0.8343333301) 0.0538864941) (Circle (Vec -1.7011985145 -0.1263820964) 0.4776976918) (Circle (Vec -0.4319462812 1.4104420482) 0.7886291537) (Circle (Vec 0.2178372997 -0.9499557344) 0.0357871187) (Circle (Vec -0.6294854565 -1.3078893852) 0.7653357688) (Circle (Vec 1.7952608455 0.6281269104) 0.2727652452) (Circle (Vec 1.4168575317 1.0683357171) 1.1016025378) (Circle (Vec 1.4637371396 0.9463877418) 1.1846214562) (Circle (Vec -0.5263668798 1.7315156631) 1.4428514068) (Circle (Vec -1.2197352481 0.9144146579) 1.0727263474) (Circle (Vec -0.1389358881 0.1092805780) 0.7350208828) (Circle (Vec 1.5293954595 0.0030278255) 1.2472867347) (Circle (Vec -0.5258728625 1.3782633069) 1.3495508831) (Circle (Vec -0.1403562064 0.2437382535) 1.3804956588) (Circle (Vec 0.8055826339 -0.0482092025) 0.3327165165) (Circle (Vec -0.6311979224 0.7184578971) 0.2491045282) (Circle (Vec 1.4685857879 -0.8347049536) 1.3670667538) (Circle (Vec -0.6855727502 1.6465021616) 1.0593087096) (Circle (Vec 0.0152957411 0.0638919221) 0.9771215985)))
(define exact-value 21.5650366038563989590842249288781480183977) (: run-task : (Circles -> Real) -> Void) (define (run-task f)
(define a (f circles)) (printf "circles-area (~s): ~a [error:~a]~%" f a (- a exact-value)))
(run-task analytical:circles-area) (run-task monte-carlo:circles-area)
(define-type file-situation-drawer-t
(->* (String (Pairof (U Geometric String) (Listof (U Geometric String)))) (#:width Nonnegative-Integer #:height Nonnegative-Integer #:fill-first? Boolean) Void))
(require/typed "TCA-draw.rkt" [file-situation file-situation-drawer-t]) (require "TCA-analytical.rkt")
(file-situation "TCA-all-circles.png" (cons (car circles) (cdr circles))) (file-situation "TCA-split-circles.png"
(cons (car circles) (append (cdr circles) (list "black") (split-circles circles))))</lang>
- Output:
As well as this output, there are also two image files (whether or not you see them depends on my permissions at the moment!)
circles-area (#<procedure:circles-area>): 21.5650366038564 [error:0.0] circles-area (#<procedure:circles-area>): 21.564722220577558 [error:-0.000314383278841035]