Tonelli-Shanks algorithm: Difference between revisions

Content added Content deleted
m (→‎{{header|Sidef}}: code simplifications)
m (→‎{{header|Perl 6}}: Minor code simplifications, add missing failing test)
Line 410: Line 410:


<lang perl6># Legendre operator (𝑛│𝑝)
<lang perl6># Legendre operator (𝑛│𝑝)
sub infix:<│> (Int \𝑛, Int \𝑝 where (𝑝.is-prime and ?(𝑝 != 2))) {
sub infix:<│> (Int \𝑛, Int \𝑝 where 𝑝.is-prime && (𝑝 != 2)) {
given 𝑛.expmod( (𝑝-1) div 2, 𝑝 ) {
given 𝑛.expmod( (𝑝-1) div 2, 𝑝 ) {
when 0 { 0 }
when 0 { 0 }
Line 418: Line 418:
}
}


sub tonelli-shanks ( \𝑛, \𝑝 where ((𝑛│𝑝) > 0 )) {
sub tonelli-shanks ( \𝑛, \𝑝 where (𝑛│𝑝) > 0 ) {
my $𝑄 = 𝑝 - 1;
my $𝑄 = 𝑝 - 1;
my $𝑆 = 0;
my $𝑆 = 0;
$𝑄 +>= 1 and $𝑆++ while $𝑄 %% 2;
$𝑄 +>= 1 and $𝑆++ while $𝑄 %% 2;
return 𝑛.expmod((𝑝+1) div 4, 𝑝) if $𝑆 == 1;
return 𝑛.expmod((𝑝+1) div 4, 𝑝) if $𝑆 == 1;
my $𝑐 = ((2..𝑝).first: (*│𝑝) < 0).expmod($𝑄, 𝑝);
my $𝑐;
for 2 .. 𝑝 {
$𝑐 = .expmod($𝑄, 𝑝) and last if ($_│𝑝) < 0;
}
my $𝑅 = 𝑛.expmod( ($𝑄+1) +> 1, 𝑝 );
my $𝑅 = 𝑛.expmod( ($𝑄+1) +> 1, 𝑝 );
my $𝑡 = 𝑛.expmod( $𝑄, 𝑝 );
my $𝑡 = 𝑛.expmod( $𝑄, 𝑝 );
my $𝑀 = $𝑆;
while ($𝑡-1) % 𝑝 {
my $b;
my $b;
while (($𝑡-1) % 𝑝) {
my $𝑡2 = $𝑡² % 𝑝;
my $𝑡2 = $𝑡² % 𝑝;
for 1 .. $𝑀 {
for 1 .. $𝑆 {
if ($𝑡2-1) %% 𝑝 {
if ($𝑡2-1) %% 𝑝 {
$b = $𝑐.expmod( 1 +< ( $𝑀 - 1 - $_ ), 𝑝 );
$b = $𝑐.expmod(1 +< ($𝑆-1-$_), 𝑝);
$𝑀 = $_;
$𝑆 = $_;
last;
last;
}
}
Line 452: Line 448:
(56, 101),
(56, 101),
(1030, 10009),
(1030, 10009),
(1032, 10009),
(44402, 100049),
(44402, 100049),
(665820697, 1000000009),
(665820697, 1000000009),
Line 460: Line 457:


for @tests -> ($n, $p) {
for @tests -> ($n, $p) {
my $t = tonelli-shanks($n, $p);
try my $t = tonelli-shanks($n, $p);
die if ($t² - $n) % $p;
say "No solution for ({$n}, {$p})." and next if !$t or ($t² - $n) % $p;
say "Roots of $n are ($t, {$p-$t}) mod $p";
say "Roots of $n are ($t, {$p-$t}) mod $p";
}</lang>
}</lang>
Line 468: Line 465:
Roots of 56 are (37, 64) mod 101
Roots of 56 are (37, 64) mod 101
Roots of 1030 are (1632, 8377) mod 10009
Roots of 1030 are (1632, 8377) mod 10009
No solution for (1032, 10009).
Roots of 44402 are (30468, 69581) mod 100049
Roots of 44402 are (30468, 69581) mod 100049
Roots of 665820697 are (378633312, 621366697) mod 1000000009
Roots of 665820697 are (378633312, 621366697) mod 1000000009