Test integerness: Difference between revisions

Added Easylang
(→‎{{header|Go}}: fixed so Inf is not reported as an integer. Also added functions on other numeric types for completeness, a few more comments, and a couple of test cases.)
(Added Easylang)
 
(104 intermediate revisions by 41 users not shown)
Line 1:
{{draft task}}
 
Mathematically,
Given a numeric, possibly complex value, test whether or not it is an [[wp:integer|integer]].
* the [[wp:Integer|integers]] '''Z''' are included in the [[wp:Rational number|rational numbers]] '''Q''',
* which are included in the [[wp:Real number|real numbers]] '''R''',
* which can be generalized to the [[wp:Complex number|complex numbers]] '''C'''.
 
 
To be clear, we're not talking about whether the number is stored with the specific data type for integers, but instead we want to test whether there exists an integer with the exact same value. In other words, we want to test for integerness in the mathematical sense, not as a data type.
This means that each of those larger sets, and the data types used to represent them, include some integers.
 
{{task heading}}
 
Given a rational, real, or complex number of any type, test whether it is mathematically an integer.
 
Your code should handle all numeric data types commonly used in your programming language.
 
Discuss any limitations of your code.
 
{{task heading|Definition}}
 
For the purposes of this task, integerness means that a number could theoretically be represented as an integer at no loss of precision ''<small>(given an infinitely wide integer type)</small>''.<br>
In other words:
 
{| class="wikitable"
|-
! Set
! Common representation
! C++ type
! Considered an integer...
|-
| rational numbers '''Q'''
| [[wp:Rational data type|fraction]]
| <code>std::ratio</code>
| ...if its denominator is 1 (in reduced form)
|-
| rowspan=2 | real numbers '''Z'''<br><small>''(approximated)''</small>
| [[wp:Fixed-point arithmetic|fixed-point]]
|
| ...if it has no non-zero digits after the decimal point
|-
| [[wp:Floating point|floating-point]]
| <code>float</code>, <code>double</code>
| ...if the number of significant decimal places of its mantissa isn't greater than its exponent
|-
| complex numbers '''C'''
| [[wp:Complex data type|pair of real numbers]]
| <code>std::complex</code>
| ...if its real part is considered an integer and its imaginary part is zero
|}
 
{{task heading|Extra credit}}
 
Optionally, make your code accept a <code>tolerance</code> parameter for fuzzy testing. The tolerance is the maximum amount by which the number may differ from the nearest integer, to still be considered an integer.
 
This is useful in practice, because when dealing with approximate numeric types (such as floating point), there may already be [[wp:Round-off error|round-off errors]] from previous calculations. For example, a float value of <code>0.9999999998</code> might actually be intended to represent the integer <code>1</code>.
 
{{task heading|Test cases}}
 
{| class="wikitable"
|-
! colspan=2 | Input
! colspan=2 | Output
! rowspan=2 | Comment
|-
! <small>Type</small>
! <small>Value</small>
! <small><tt>exact</tt></small>
! <small><tt>tolerance = 0.00001</tt></small>
|-
| rowspan=3 | decimal
| <code>25.000000</code>
| colspan=2 | true
|
|-
| <code>24.999999</code>
| false
| true
|
|-
| <code>25.000100</code>
| colspan=2 | false
|
|-
| rowspan=4 | floating-point
| <code>-2.1e120</code>
| colspan=2 | true
| This one is tricky, because in most languages it is too large to fit into a native integer type.<br>It is, nonetheless, mathematically an integer, and your code should identify it as such.
|-
| <code>-5e-2</code>
| colspan=2 | false
|
|-
| <code>NaN</code>
| colspan=2 | false
|
|-
| <code>Inf</code>
| colspan=2 | false
| This one is debatable. If your code considers it an integer, that's okay too.
|-
| rowspan=2 | complex
| <code>5.0+0.0i</code>
| colspan=2 | true
|
|-
| <code>5-5i</code>
| colspan=2 | false
|
|}
 
(The types and notations shown in these tables are merely examples &ndash; you should use the native data types and number literals of your programming language and standard library. Use a different set of test-cases, if this one doesn't demonstrate all relevant behavior.)
 
<hr>
 
=={{header|11l}}==
{{trans|Python}}
 
<syntaxhighlight lang="11l">F isint(f)
R Complex(f).imag == 0 & fract(Complex(f).real) == 0
 
print([Complex(1.0), 2, (3.0 + 0.0i), 4.1, (3 + 4i), (5.6 + 0i)].map(f -> isint(f)))
print(isint(25.000000))
print(isint(24.999999))
print(isint(25.000100))
print(isint(-5e-2))
print(isint(Float.infinity))
print(isint(5.0 + 0.0i))
print(isint(5 - 5i))</syntaxhighlight>
 
{{out}}
<pre>
[1B, 1B, 1B, 0B, 0B, 0B]
1B
0B
0B
0B
0B
1B
0B
</pre>
 
=={{header|ALGOL 68}}==
{{works with|ALGOL 68G|Any - tested with release 2.8.3.win32}}
Uses LONG LONG values which in Algol 68 have a programmer specifiable number of digits. As with the C version, we need only handle the complex case directly, as Algol 68 will automatically coerce integer and real values to complex as required.
<syntaxhighlight lang="algol68"># set the required precision of LONG LONG values using #
# "PR precision n PR" if required #
PR precision 24 PR
 
# returns TRUE if v has an integer value, FALSE otherwise #
OP ISINT = ( LONG LONG COMPL v )BOOL:
IF im OF v /= 0 THEN
# v has an imaginary part #
FALSE
ELSE
# v has a real part only #
ENTIER re OF v = v
FI; # ISINT #
 
# test ISINT #
 
PROC test is int = ( LONG LONG COMPLEX v )VOID:
print( ( re OF v, "_", im OF v, IF ISINT v THEN " is " ELSE " is not " FI, "integral", newline ) );
 
 
test is int( 1 );
test is int( 1.00000001 );
test is int( 4 I 3 );
test is int( 4.0 I 0 );
test is int( 123456789012345678901234 )
</syntaxhighlight>
{{out}}
<pre>
+1.0000000000000000000000000000000000e +0_+0.0000000000000000000000000000000000e +0 is integral
+1.0000000100000000000000000000000000e +0_+0.0000000000000000000000000000000000e +0 is not integral
+4.0000000000000000000000000000000000e +0_+3.0000000000000000000000000000000000e +0 is not integral
+4.0000000000000000000000000000000000e +0_+0.0000000000000000000000000000000000e +0 is integral
+1.2345678901234567890123400000000000e +23_+0.0000000000000000000000000000000000e +0 is integral
</pre>
 
=={{header|AWK}}==
<syntaxhighlight lang="awk">
# syntax: GAWK -f TEST_INTEGERNESS.AWK
BEGIN {
n = split("25.000000,24.999999,25.000100,-2.1e120,-5e-2,NaN,Inf,-0.05",arr,",")
for (i=1; i<=n; i++) {
s = arr[i]
x = (s == int(s)) ? 1 : 0
printf("%d %s\n",x,s)
}
exit(0)
}
</syntaxhighlight>
{{out}}
<pre>
1 25.000000
0 24.999999
0 25.000100
1 -2.1e120
0 -5e-2
0 NaN
0 Inf
0 -0.05
</pre>
 
=={{header|BQN}}==
<syntaxhighlight lang="bqn">IsInt ← ⊢(0=|˜)⍟⊢1=•Type
 
IsInt¨⊸≍˘ ⟨+, 0, ∞, ⊘, ¯∞, 'q', ¯42, ∞-∞, "BQN", 1e¯300, 9e15, π⟩</syntaxhighlight>
{{out}}
<pre>┌─
╵ 0 +
1 0
0 ∞
0 ⊘
0 ¯∞
0 'q'
1 ¯42
0 NaN
0 "BQN"
0 1e¯300
1 9000000000000000
0 3.141592653589793
┘</pre>
 
=={{header|C}}==
The main function that checks a numeric value is actually quite short. Because of C's weak types and implicit casting we can get away with making a function which checks long double complex types only.
 
<syntaxhighlight lang="c">
#include <stdio.h>
#include <complex.h>
#include <math.h>
 
/* Testing macros */
#define FMTSPEC(arg) _Generic((arg), \
float: "%f", double: "%f", \
long double: "%Lf", unsigned int: "%u", \
unsigned long: "%lu", unsigned long long: "%llu", \
int: "%d", long: "%ld", long long: "%lld", \
default: "(invalid type (%p)")
 
#define CMPPARTS(x, y) ((long double complex)((long double)(x) + \
I * (long double)(y)))
 
#define TEST_CMPL(i, j)\
printf(FMTSPEC(i), i), printf(" + "), printf(FMTSPEC(j), j), \
printf("i = %s\n", (isint(CMPPARTS(i, j)) ? "true" : "false"))
 
#define TEST_REAL(i)\
printf(FMTSPEC(i), i), printf(" = %s\n", (isint(i) ? "true" : "false"))
 
/* Main code */
static inline int isint(long double complex n)
{
return cimagl(n) == 0 && nearbyintl(creall(n)) == creall(n);
}
 
int main(void)
{
TEST_REAL(0);
TEST_REAL(-0);
TEST_REAL(-2);
TEST_REAL(-2.00000000000001);
TEST_REAL(5);
TEST_REAL(7.3333333333333);
TEST_REAL(3.141592653589);
TEST_REAL(-9.223372036854776e18);
TEST_REAL(5e-324);
TEST_REAL(NAN);
TEST_CMPL(6, 0);
TEST_CMPL(0, 1);
TEST_CMPL(0, 0);
TEST_CMPL(3.4, 0);
 
/* Demonstrating that we can use the same function for complex values
* constructed in the standard way */
double complex test1 = 5 + 0*I,
test2 = 3.4f,
test3 = 3,
test4 = 0 + 1.2*I;
 
printf("Test 1 (5+i) = %s\n", isint(test1) ? "true" : "false");
printf("Test 2 (3.4+0i) = %s\n", isint(test2) ? "true" : "false");
printf("Test 3 (3+0i) = %s\n", isint(test3) ? "true" : "false");
printf("Test 4 (0+1.2i) = %s\n", isint(test4) ? "true" : "false");
}
</syntaxhighlight>
 
{{out}}
Note: Some of the printed results are truncated and look incorrect. See the actual code if you wish to verify the actual value.
<pre>
0 = true
0 = true
-2 = true
-2.000000 = false
5 = true
7.333333 = false
3.141593 = false
-9223372036854775808.000000 = true
0.000000 = false
nan = false
6 + 0i = true
0 + 1i = false
0 + 0i = true
3.400000 + 0i = false
Test 1 (5+i) = true
Test 2 (3.4+0i) = false
Test 3 (3+0i) = true
Test 4 (0+1.2i) = false
</pre>
 
=={{header|C sharp|C#}}==
 
 
Length and precision of entered numbers in this solution,
are limited by the limitations of variables type of [https://en.wikipedia.org/wiki/Double-precision_floating-point_format Double].
 
 
<syntaxhighlight lang="c sharp">
namespace Test_integerness
{
class Program
{
public static void Main(string[] args)
{
Console.Clear();
Console.WriteLine();
Console.WriteLine(" ***************************************************");
Console.WriteLine(" * *");
Console.WriteLine(" * Integerness test *");
Console.WriteLine(" * *");
Console.WriteLine(" ***************************************************");
Console.WriteLine();
ConsoleKeyInfo key = new ConsoleKeyInfo('Y',ConsoleKey.Y,true,true,true);
while(key.Key == ConsoleKey.Y)
{
// Get number value from keyboard
Console.Write(" Enter number value : ");
string LINE = Console.ReadLine();
// Get tolerance value from keyboard
Console.Write(" Enter tolerance value : ");
double TOLERANCE = double.Parse(Console.ReadLine());
// Resolve entered number format and set NUMBER value
double NUMBER = 0;
string [] N;
// Real number value
if(!double.TryParse(LINE, out NUMBER))
{
// Rational number value
if(LINE.Contains("/"))
{
N = LINE.Split('/');
NUMBER = double.Parse(N[0]) / double.Parse(N[1]);
}
// Inf value
else if(LINE.ToUpper().Contains("INF"))
{
NUMBER = double.PositiveInfinity;
}
// Complex value
else if(LINE.ToUpper().Contains("I"))
{
// Delete letter i
LINE = LINE.ToUpper().Replace("I","");
string r = string.Empty; // real part
string i = string.Empty; // imaginary part
int s = 1; // sign offset
// Get sign
if(LINE[0]=='+' || LINE[0]=='-')
{
r+=LINE[0].ToString();
LINE = LINE.Remove(0,1);
s--;
}
// Get real part
foreach (char element in LINE)
{
if(element!='+' && element!='-')
r+=element.ToString();
else
break;
}
// get imaginary part
i = LINE.Substring(LINE.Length-(r.Length+s));
NUMBER = double.Parse(i);
if(NUMBER==0)
NUMBER = double.Parse(r);
else
NUMBER = double.NaN;
}
// NaN value
else
NUMBER = double.NaN;
}
// Test
bool IS_INTEGER = false;
bool IS_INTEGER_T = false;
if(double.IsNaN(NUMBER))
IS_INTEGER=false;
else if(Math.Round(NUMBER,0).ToString() == NUMBER.ToString())
IS_INTEGER = true;
else if((decimal)TOLERANCE >= (decimal)Math.Abs( (decimal)Math.Round(NUMBER,0) - (decimal)NUMBER ))
IS_INTEGER_T = true;
 
if(IS_INTEGER)
Console.WriteLine(" Is exact integer " + IS_INTEGER);
else
{
Console.WriteLine( " Is exact integer " + IS_INTEGER );
Console.WriteLine( " Is integer with tolerance " + IS_INTEGER_T );
}
Console.WriteLine();
Console.Write(" Another test < Y /N > . . . ");
key = Console.ReadKey(true);
Console.WriteLine();
Console.WriteLine();
}
}
}
}
 
</syntaxhighlight>
{{out| Program Input and Output :}}
<pre>
 
***************************************************
* *
* Integerness test *
* *
***************************************************
 
Enter number value : 25,000000
Enter tolerance value : 0,00001
Is exact integer True
 
Another test < Y /N > . . .
 
Enter number value : 24,999999
Enter tolerance value : 0,00001
Is exact integer False
Is integer with tolerance True
 
Another test < Y /N > . . .
 
Enter number value : 25,000100
Enter tolerance value : 0,00001
Is exact integer False
Is integer with tolerance False
 
Another test < Y /N > . . .
 
Enter number value : -2.1e120
Enter tolerance value : 0,00001
Is exact integer True
 
Another test < Y /N > . . .
 
Enter number value : -5e-2
Enter tolerance value : 0,00001
Is exact integer False
Is integer with tolerance False
 
Another test < Y /N > . . .
 
Enter number value : NaN
Enter tolerance value : 0,00001
Is exact integer False
Is integer with tolerance False
 
Another test < Y /N > . . .
 
Enter number value : Inf
Enter tolerance value : 0,00001
Is exact integer True
 
Another test < Y /N > . . .
 
Enter number value : 5,0+0,0i
Enter tolerance value : 0,00001
Is exact integer True
 
Another test < Y /N > . . .
 
Enter number value : 5-5i
Enter tolerance value : 0,00001
Is exact integer False
Is integer with tolerance False
 
Another test < Y /N > . . .
 
Enter number value : 1,1
Enter tolerance value : 0,1
Is exact integer False
Is integer with tolerance True
 
Another test < Y /N > . . .
 
Enter number value : 15/7
Enter tolerance value : 0,15
Is exact integer False
Is integer with tolerance True
 
Another test < Y /N > . . .
 
</pre>
 
=={{header|C++}}==
<syntaxhighlight lang="cpp">
#include <complex>
#include <math.h>
#include <iostream>
 
template<class Type>
struct Precision
{
public:
static Type GetEps()
{
return eps;
}
 
static void SetEps(Type e)
{
eps = e;
}
 
private:
static Type eps;
};
 
template<class Type> Type Precision<Type>::eps = static_cast<Type>(1E-7);
 
template<class DigType>
bool IsDoubleEqual(DigType d1, DigType d2)
{
return (fabs(d1 - d2) < Precision<DigType>::GetEps());
}
 
template<class DigType>
DigType IntegerPart(DigType value)
{
return (value > 0) ? floor(value) : ceil(value);
}
 
template<class DigType>
DigType FractionPart(DigType value)
{
return fabs(IntegerPart<DigType>(value) - value);
}
 
template<class Type>
bool IsInteger(const Type& value)
{
return false;
}
 
#define GEN_CHECK_INTEGER(type) \
template<> \
bool IsInteger<type>(const type& value) \
{ \
return true; \
}
 
#define GEN_CHECK_CMPL_INTEGER(type) \
template<> \
bool IsInteger<std::complex<type> >(const std::complex<type>& value) \
{ \
type zero = type(); \
return value.imag() == zero; \
}
 
#define GEN_CHECK_REAL(type) \
template<> \
bool IsInteger<type>(const type& value) \
{ \
type zero = type(); \
return IsDoubleEqual<type>(FractionPart<type>(value), zero); \
}
 
#define GEN_CHECK_CMPL_REAL(type) \
template<> \
bool IsInteger<std::complex<type> >(const std::complex<type>& value) \
{ \
type zero = type(); \
return IsDoubleEqual<type>(value.imag(), zero); \
}
 
#define GEN_INTEGER(type) \
GEN_CHECK_INTEGER(type) \
GEN_CHECK_CMPL_INTEGER(type)
 
#define GEN_REAL(type) \
GEN_CHECK_REAL(type) \
GEN_CHECK_CMPL_REAL(type)
 
 
GEN_INTEGER(char)
GEN_INTEGER(unsigned char)
GEN_INTEGER(short)
GEN_INTEGER(unsigned short)
GEN_INTEGER(int)
GEN_INTEGER(unsigned int)
GEN_INTEGER(long)
GEN_INTEGER(unsigned long)
GEN_INTEGER(long long)
GEN_INTEGER(unsigned long long)
 
GEN_REAL(float)
GEN_REAL(double)
GEN_REAL(long double)
 
template<class Type>
inline void TestValue(const Type& value)
{
std::cout << "Value: " << value << " of type: " << typeid(Type).name() << " is integer - " << std::boolalpha << IsInteger(value) << std::endl;
}
 
int main()
{
char c = -100;
unsigned char uc = 200;
short s = c;
unsigned short us = uc;
int i = s;
unsigned int ui = us;
long long ll = i;
unsigned long long ull = ui;
 
std::complex<unsigned int> ci1(2, 0);
std::complex<int> ci2(2, 4);
std::complex<int> ci3(-2, 4);
std::complex<unsigned short> cs1(2, 0);
std::complex<short> cs2(2, 4);
std::complex<short> cs3(-2, 4);
 
std::complex<double> cd1(2, 0);
std::complex<float> cf1(2, 4);
std::complex<double> cd2(-2, 4);
 
float f1 = 1.0;
float f2 = -2.0;
float f3 = -2.4f;
float f4 = 1.23e-5f;
float f5 = 1.23e-10f;
double d1 = f5;
 
TestValue(c);
TestValue(uc);
TestValue(s);
TestValue(us);
TestValue(i);
TestValue(ui);
TestValue(ll);
TestValue(ull);
 
TestValue(ci1);
TestValue(ci2);
TestValue(ci3);
TestValue(cs1);
TestValue(cs2);
TestValue(cs3);
 
TestValue(cd1);
TestValue(cd2);
TestValue(cf1);
 
TestValue(f1);
TestValue(f2);
TestValue(f3);
TestValue(f4);
TestValue(f5);
std::cout << "Set float precision: 1e-15f\n";
Precision<float>::SetEps(1e-15f);
TestValue(f5);
TestValue(d1);
return 0;
}
</syntaxhighlight>
 
{{out}}
<pre>
Value: Ь of type: char is integer - true
Value: ╚ of type: unsigned char is integer - true
Value: -100 of type: short is integer - true
Value: 200 of type: unsigned short is integer - true
Value: -100 of type: int is integer - true
Value: 200 of type: unsigned int is integer - true
Value: -100 of type: __int64 is integer - true
Value: 200 of type: unsigned __int64 is integer - true
Value: (2,0) of type: class std::complex<unsigned int> is integer - true
Value: (2,4) of type: class std::complex<int> is integer - false
Value: (-2,4) of type: class std::complex<int> is integer - false
Value: (2,0) of type: class std::complex<unsigned short> is integer - true
Value: (2,4) of type: class std::complex<short> is integer - false
Value: (-2,4) of type: class std::complex<short> is integer - false
Value: (2,0) of type: class std::complex<double> is integer - true
Value: (-2,4) of type: class std::complex<double> is integer - false
Value: (2,4) of type: class std::complex<float> is integer - false
Value: 1 of type: float is integer - true
Value: -2 of type: float is integer - true
Value: -2.4 of type: float is integer - false
Value: 1.23e-05 of type: float is integer - false
Value: 1.23e-10 of type: float is integer - true
Set float precision: 1e-15f
Value: 1.23e-10 of type: float is integer - false
Value: 1.23e-10 of type: double is integer - true
</pre>
 
=={{header|COBOL}}==
COBOL likes to work with fixed-point decimal numbers. For the sake of argument, this program tests the "integerness" of values that have up to nine digits before the decimal point and up to nine digits after. It can therefore be "tricked", as in the third of the four tests below, by computing a result that differs from an integer by less than 0.000000001; if there is any likelihood of such results arising, it would be a good idea to allow more digits of precision after the decimal point. Support for complex numbers (in a sense) is included, because the specification calls for it—but it adds little of interest.
<syntaxhighlight lang="cobol">IDENTIFICATION DIVISION.
PROGRAM-ID. INTEGERNESS-PROGRAM.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 INTEGERS-OR-ARE-THEY.
05 POSSIBLE-INTEGER PIC S9(9)V9(9).
05 DEFINITE-INTEGER PIC S9(9).
01 COMPLEX-NUMBER.
05 REAL-PART PIC S9(9)V9(9).
05 IMAGINARY-PART PIC S9(9)V9(9).
PROCEDURE DIVISION.
TEST-PARAGRAPH.
MOVE ZERO TO IMAGINARY-PART.
DIVIDE -28 BY 7 GIVING POSSIBLE-INTEGER.
PERFORM INTEGER-PARAGRAPH.
DIVIDE 28 BY 18 GIVING POSSIBLE-INTEGER.
PERFORM INTEGER-PARAGRAPH.
DIVIDE 3 BY 10000000000 GIVING POSSIBLE-INTEGER.
PERFORM INTEGER-PARAGRAPH.
TEST-COMPLEX-PARAGRAPH.
MOVE ZERO TO REAL-PART.
MOVE 1 TO IMAGINARY-PART.
MOVE REAL-PART TO POSSIBLE-INTEGER.
PERFORM INTEGER-PARAGRAPH.
STOP RUN.
INTEGER-PARAGRAPH.
IF IMAGINARY-PART IS EQUAL TO ZERO THEN PERFORM REAL-PARAGRAPH,
ELSE PERFORM COMPLEX-PARAGRAPH.
REAL-PARAGRAPH.
MOVE POSSIBLE-INTEGER TO DEFINITE-INTEGER.
IF DEFINITE-INTEGER IS EQUAL TO POSSIBLE-INTEGER
THEN DISPLAY POSSIBLE-INTEGER ' IS AN INTEGER.',
ELSE DISPLAY POSSIBLE-INTEGER ' IS NOT AN INTEGER.'.
COMPLEX-PARAGRAPH.
DISPLAY REAL-PART '+' IMAGINARY-PART 'i IS NOT AN INTEGER.'.</syntaxhighlight>
{{out}}
<pre>-000000004.000000000 IS AN INTEGER.
000000001.555555555 IS NOT AN INTEGER.
000000000.000000000 IS AN INTEGER.
000000000.000000000+ 000000001.000000000i IS NOT AN INTEGER.</pre>
 
=={{header|D}}==
<syntaxhighlight lang="d">import std.complex;
import std.math;
import std.meta;
import std.stdio;
import std.traits;
 
void main() {
print(25.000000);
print(24.999999);
print(24.999999, 0.00001);
print(25.000100);
print(-2.1e120);
print(-5e-2);
print(real.nan);
print(real.infinity);
print(5.0+0.0i);
print(5-5i);
}
 
void print(T)(T v, real tol = 0.0) {
writefln("Is %0.10s an integer? %s", v, isInteger(v, tol));
}
 
/// Test for plain integers
bool isInteger(T)(T v)
if (isIntegral!T) {
return true;
}
 
unittest {
assert(isInteger(5));
assert(isInteger(-5));
 
assert(isInteger(2L));
assert(isInteger(-2L));
}
 
/// Test for floating point
bool isInteger(T)(T v, real tol = 0.0)
if (isFloatingPoint!T) {
return (v - floor(v)) <= tol || (ceil(v) - v) <= tol;
}
 
unittest {
assert(isInteger(25.000000));
 
assert(!isInteger(24.999999));
assert(isInteger(24.999999, 0.00001));
}
 
/// Test for complex numbers
bool isInteger(T)(Complex!T v, real tol = 0.0) {
return isInteger(v.re, tol) && abs(v.im) <= tol;
}
 
unittest {
assert(isInteger(complex(1.0)));
assert(!isInteger(complex(1.0, 0.0001)));
 
assert(isInteger(complex(1.0, 0.00009), 0.0001));
}
 
/// Test for built-in complex types
bool isInteger(T)(T v, real tol = 0.0)
if (staticIndexOf!(Unqual!T, AliasSeq!(cfloat, cdouble, creal)) >= 0) {
return isInteger(v.re, tol) && abs(v.im) <= tol;
}
 
unittest {
assert(isInteger(1.0 + 0.0i));
assert(!isInteger(1.0 + 0.0001i));
 
assert(isInteger(1.0 + 0.00009i, 0.0001));
}
 
/// Test for built-in imaginary types
bool isInteger(T)(T v, real tol = 0.0)
if (staticIndexOf!(Unqual!T, AliasSeq!(ifloat, idouble, ireal)) >= 0) {
return abs(v) <= tol;
}
 
unittest {
assert(isInteger(0.0i));
assert(!isInteger(0.0001i));
 
assert(isInteger(0.00009i, 0.0001));
}</syntaxhighlight>
 
{{out}}
<pre>Is 25 an integer? true
Is 24.999999 an integer? false
Is 24.999999 an integer? true
Is 25.0001 an integer? false
Is -2.1e+120 an integer? true
Is -0.05 an integer? false
Is nan an integer? false
Is inf an integer? false
Is 5+0i an integer? true
Is 5-5i an integer? false</pre>
 
=={{header|Delphi}}==
{{works with|Delphi|6.0}}
{{libheader|SysUtils,StdCtrls}}
 
 
<syntaxhighlight lang="Delphi">
 
{Complex number}
 
type TComplex = record
Real,Imagine: double;
end;
 
{Tolerance for fuzzy integer test}
 
const Tolerance = 0.00001;
 
function IsFloatInteger(R,Fuzz: extended): boolean;
{Determine if floating point number is an integer}
var F: extended;
begin
F:=Abs(Frac(R));
if IsNan(R) or IsInfinite(R) then Result:=False
else Result:=(F<=Fuzz) or ((1-F)<=Fuzz);
end;
 
 
function IsComplexInteger(C: TComplex; Fuzz: extended): boolean;
{Determine if Complex number is an integer}
begin
Result:=(C.Imagine=0) and IsFloatInteger(C.Real,Fuzz);
end;
 
function GetBooleanStr(B: boolean): string;
{Return Yes/No string depending on boolean}
begin
if B then Result:='Yes' else Result:='No';
end;
 
 
procedure DisplayFloatInteger(Memo: TMemo; R: extended);
{Display test result for single floating point number}
var S: string;
var B1,B2: boolean;
begin
B1:=IsFloatInteger(R,0);
B2:=IsFloatInteger(R,Tolerance);
Memo.Lines.Add(Format('%15.6n, Is Integer = %3S Fuzzy = %3S',[R,GetBooleanStr(B1),GetBooleanStr(B2)]));
end;
 
 
procedure DisplayComplexInteger(Memo: TMemo; C: TComplex);
{Dispaly test result for single complex number}
var S: string;
var B1,B2: boolean;
begin
B1:=IsComplexInteger(C,0);
B2:=IsComplexInteger(C,Tolerance);
Memo.Lines.Add(Format('%3.1n + %3.1ni Is Integer = %3S Fuzzy = %3S',[C.Real,C.Imagine,GetBooleanStr(B1),GetBooleanStr(B2)]));
end;
 
 
procedure TestIntegerness(Memo: TMemo);
var C: TComplex;
begin
DisplayFloatInteger(Memo,25.000000);
DisplayFloatInteger(Memo,24.999999);
DisplayFloatInteger(Memo,25.000100);
DisplayFloatInteger(Memo,-2.1e120);
DisplayFloatInteger(Memo,-5e-2);
DisplayFloatInteger(Memo,NaN);
DisplayFloatInteger(Memo,Infinity);
Memo.Lines.Add('');
 
C.Real:=5; C.Imagine:=0;
DisplayComplexInteger(Memo,C);
C.Real:=5; C.Imagine:=5;
DisplayComplexInteger(Memo,C);
end;
</syntaxhighlight>
{{out}}
<pre>
25.000000, Is Integer = Yes Fuzzy = Yes
24.999999, Is Integer = No Fuzzy = Yes
25.000100, Is Integer = No Fuzzy = No
-2.1E120, Is Integer = Yes Fuzzy = Yes
-0.050000, Is Integer = No Fuzzy = No
NAN, Is Integer = No Fuzzy = No
INF, Is Integer = No Fuzzy = No
 
5.0 + 0.0i Is Integer = Yes Fuzzy = Yes
5.0 + 5.0i Is Integer = No Fuzzy = No
 
Elapsed Time: 11.308 ms.
 
</pre>
 
 
=={{header|EasyLang}}==
<syntaxhighlight>
func isint x .
if x mod 1 = 0
return 1
.
.
num[] = [ 25.000000 24.999999 25.0001 -2.1e120 -5e-2 0 / 0 1 / 0 ]
#
numfmt 10 0
for n in num[]
write n & " -> "
if isint n = 1
print "integer"
else
print "no integer"
.
.
</syntaxhighlight>
 
{{out}}
<pre>
25 -> integer
24.9999990000 -> no integer
25.0001000000 -> no integer
-2.1e+120 -> integer
-0.0500000000 -> no integer
nan -> no integer
inf -> no integer
</pre>
 
=={{header|Elixir}}==
<syntaxhighlight lang="elixir">defmodule Test do
def integer?(n) when n == trunc(n), do: true
def integer?(_), do: false
end
 
Enum.each([2, 2.0, 2.5, 2.000000000000001, 1.23e300, 1.0e-300, "123", '123', :"123"], fn n ->
IO.puts "#{inspect n} is integer?: #{Test.integer?(n)}"
end)</syntaxhighlight>
 
{{out}}
<pre>
2 is integer?: true
2.0 is integer?: true
2.5 is integer?: false
2.000000000000001 is integer?: false
1.23e300 is integer?: true
1.0e-300 is integer?: false
"123" is integer?: false
'123' is integer?: false
:"123" is integer?: false
</pre>
 
=={{header|Factor}}==
The <code>number=</code> word in the <code>math</code> vocabulary comes very close to encapsulating this task. It compares numbers for equality without regard for class, like <code>=</code> would. However, since <code>>integer</code> and <code>round</code> do not specialize on the <code>complex</code> class, we need to handle complex numbers specially. We use <code>>rect</code> to extract the real components of the complex number for further processing.
<syntaxhighlight lang="factor">USING: formatting io kernel math math.functions sequences ;
IN: rosetta-code.test-integerness
 
GENERIC: integral? ( n -- ? )
 
M: real integral? [ ] [ >integer ] bi number= ;
M: complex integral? >rect [ integral? ] [ 0 number= ] bi* and ;
GENERIC# fuzzy-int? 1 ( n tolerance -- ? )
 
M: real fuzzy-int? [ dup round - abs ] dip <= ;
M: complex fuzzy-int? [ >rect ] dip swapd fuzzy-int? swap 0
number= and ;
 
{
25/1
50+2/3
34/73
312459210312903/129381293812491284512951
25.000000
24.999999
25.000100
-2.1e120
-5e-2
0/0. ! NaN
1/0. ! Infinity
C{ 5.0 0.0 }
C{ 5 -5 }
C{ 5 0 }
}
"Number" "Exact int?" "Fuzzy int? (tolerance=0.00001)"
"%-41s %-11s %s\n" printf
[
[ ] [ integral? ] [ 0.00001 fuzzy-int? ] tri
"%-41u %-11u %u\n" printf
] each</syntaxhighlight>
{{out}}
<pre>
Number Exact int? Fuzzy int? (tolerance=0.00001)
25 t t
50+2/3 f f
34/73 f f
312459210312903/129381293812491284512951 f t
25.0 t t
24.999999 f t
25.0001 f f
-2.1e+120 t t
-0.05 f f
NAN: 8000000000000 f f
1/0. f f
C{ 5.0 0.0 } t t
C{ 5 -5 } f f
5 t t
</pre>
 
=={{header|Fortran}}==
===Straightforward===
The issue is a little delicate, because a number such as 3E120 is integral, but, cannot be represented in an ordinary integer variable. If the idea slides towards whether the value can be represented exactly by an integer variable then the task become easy. The following code takes advantage of the availability of INTEGER*8 variables, and an associated function KIDINT(x) that deals with double precision values and returns a 64-bit integer result. This function truncates - if it were to round then it might want to round up to one beyond the maximum possible integer of that sign. There is a bewildering variety of these truncation and rounding functions, some of which are generic and some not, and if only INTEGER*4 were available, different choices would have to be made.
 
The MODULE protocol of F90 is used, merely to save on the need to define the types of the function in each routine that uses them, since there is no default type for LOGICAL. Otherwise, this is F77 style.
<syntaxhighlight lang="fortran"> MODULE ZERMELO !Approach the foundations of mathematics.
CONTAINS
LOGICAL FUNCTION ISINTEGRAL(X) !A whole number?
REAL*8 X !Alas, this is not really a REAL number.
INTEGER*8 N !Largest available.
IF (ISNAN(X)) THEN !Avoid some sillyness.
ISINTEGRAL = .FALSE. !And possible error messages.
ELSE !But now it is safe to try.
N = KIDINT(X) !This one truncates.
ISINTEGRAL = N .EQ. X !Any difference?
END IF !A floating-point number may overflow an integer.
END FUNCTION ISINTEGRAL !And even if integral, it will not seem so.
 
LOGICAL FUNCTION ISINTEGRALZ(Z) !For complex numbers, two tests.
DOUBLE COMPLEX Z !Still not really REAL, though.
ISINTEGRALZ = ISINTEGRAL(DBLE(Z)) .AND. ISINTEGRAL(DIMAG(Z)) !Separate the parts.
END FUNCTION ISINTEGRALZ!No INTEGER COMPLEX type is offered.
END MODULE ZERMELO !Much more mathematics lie elsewhere.
 
PROGRAM TEST
USE ZERMELO
DOUBLE COMPLEX Z
 
WRITE (6,*) "See if some numbers are integral..."
WRITE (6,*) ISINTEGRAL(666D0),666D0
Z = DCMPLX(-3D0,4*ATAN(1D0))
WRITE (6,*) ISINTEGRALZ(Z),Z
END</syntaxhighlight>
<pre>
See if some numbers are integral...
T 666.000000000000
F (-3.00000000000000,3.14159265358979)</pre>
 
===Tricky===
If however large numbers are to be affirmed as integral even if there is no integer variable capable of holding such values, then a different approach is required. Given that a floating-point number has a finite precision, there will be some number above which no digits can be devoted to fractional parts and so the number represented by the floating-point value must be integral, while for smaller numbers the floating point value can be compared to its integer truncation, as above. Suppose a decimal computer (like the IBM1620!) for convenience, using eight decimal digits for the mantissa (and two for the exponent, as did the IBM1620). A (non-zero) normalised number must be of the form d·ddddddd and the largest number with a fractional digit would be 9999999·9 (represented as 9·9999999E+06 or possibly as ·99999999E+07 depending on the style of normalisation) and the next possible floating-point number would be 1·0000000E+07, then 1·0000001E+07, ''etc.'' advancing in steps of one. No fractional part is possible. Thus the boundary is clear and a test need merely involve a comparison: integral if greater than that, otherwise compare the floating-point number to its truncated integer form.
 
The argument is the same with binary (or base 4, 8 or 16), but, you have to know what base is used to prepare the proper boundary value, similarly you must ascertain just how many digits of precision are in use, remembering that in binary the leading one of normalised numbers may be represented implicitly, or it may be explicitly present. One would have to devise probing routines with delicate calculations that may be disrupted by various compiler optimisation tricks and unanticipated details of the arithmetic mill. For instance, the Intel 8087 floating-point co-processor and its descendants use an implicit leading-one bit for 32- and 64-bit floating-point numbers, but ''not'' for 80-bit floating-point numbers. So if your compiler offers a REAL*10 type, such variables will enjoy a slightly different style of arithmetic. Further, ''during'' a calculation (add, subtract, multiply, divide) a further three guard bits (with special meanings) are employed. Calculations are done with full 83-bit precision to yield an 80-bit result; it is only when values are stored that they are converted to single or double precision format in storage - the register retains full precision. On top of that, the arithmetic can employ "denormalised" numbers during underflow towards zero. Chapter 6 of ''The I8087 Numeric Data Processor'', page 219, remarks "At least some of the generalised numerical solutions to common mathematical procedures have coding that is so involved and tricky in order to take care of all possible roundoff contingencies that they have been termed 'pornographic algorithms'". So a probe routine that worked for one design will likely need tweaking when tried on another system.
 
To determine the number of digits of precision, one probes somewhat as follows:<syntaxhighlight lang="fortran"> X = 1
10 X = X*BASE
Y = X + 1
D = Y - X
IF (D .EQ. 1) GO TO 10</syntaxhighlight>
Or alternatively, compare 1 + ''eps'' to 1, successively dividing ''eps'' by BASE.
 
The difficulties include the risk that a compiler might wrongly apply the axia of mathematics to floating-point arithmetic and deduce that D was always one. Similarly, after assigning the result of X + 1 to Y, it may notice that the register could retain that value and so there would be no need to load Y's value to calculate Y - X: if the register was of greater precision than the variable, the probe will err. Producing output can help. As well as being interesting, otherwise a compiler might deduce that there is no need to calculate something because it is not used to produce output nor affects something that does lead to output.
 
Conveniently, F90 standardised the functions FRACTION(x) and EXPONENT(x) that reveal the parts of a floating point number and with the assistance of the RADIX(x) function that reports the base of the number system and DIGITS(x) the number of digits represented, a suitable boundary value can be constructed. For the decimal example above, 1E7 is the first value that has no space for fractional digits.
 
If the highest-precision floating-point number is 64-bit, and the largest integer is 64-bit, then, given that some of the 64 bits of the floating-point number are devoted to the exponent, floating-point values up to the threshold will never overflow a 64-bit integer range, and all will be well... A similar process would apply for 32-bit floating-point variables, and so on.
 
Since the special functions are only available for F90 and later, the example proceeds to activate the F90 protocol for making a function (or subroutine) generic. This requires a suitable function for each desired combination of parameter types and ringing the changes can soon become tedious as well as error-prone, though fortunately here, there is only one parameter and its types to work through. It would be helpful to have a decent pre-processor scheme (such as in pl/i) whereby the various routines would be generated, but there can be surprise obstacles also. Here, INTEGER*8 is not fully incorporated into the compiler as a possibility for integer constants, so it is necessary to pre-define INTEGER*8 BIG so that in its PARAMETER statement the compiler's calculation will have sufficient scope. The INTEGER*4 routine has no such difficulty.
 
Despite the attempt at generality, there will be difficulties on systems whose word sizes are not multiples of eight bits so that the REAL*4 scheme falters. Still, it is preferable to a blizzard of terms such as small int, int, long int, long long int. A decimal computer would be quite different in its size specifications, and there have been rumours of a Russian computer that worked in base three...
<syntaxhighlight lang="fortran">
MODULE ZERMELO !Approach the foundations of mathematics.
INTERFACE ISINTEGRAL !And obscure them with computerese.
MODULE PROCEDURE ISINTEGRALF4, ISINTEGRALF8,
1 ISINTEGRALZ8, ISINTEGRALZ16
END INTERFACE !Selection is by parameter type and number.
CONTAINS !Sop, now for a grabbag of routines.
LOGICAL FUNCTION ISINTEGRALF8(X) !A whole number?
REAL*8 X !Alas, this is not really a REAL number.
INTEGER*8 N !Largest available.
INTEGER*8 BIG !The first number too big to have any fractional digits in floating-point.
PARAMETER (BIG = RADIX(X)**(DIGITS(X) - 1)) !These "functions" are in fact constants.
IF (ISNAN(X)) THEN !Avoid some sillyness.
ISINTEGRALF8 = .FALSE. !And possible error messages.
ELSE IF (ABS(X).GE.BIG) THEN !But now it is safe to try.
ISINTEGRALF8 = .TRUE. !Can't have fractional digits => integral.
ELSE !But smaller numbers can have fractional digits.
N = KIDINT(X) !So, truncate to an integral value.
ISINTEGRALF8 = N .EQ. X !Any difference?
END IF !So much for inspection.
END FUNCTION ISINTEGRALF8 !No need to look at digit sequences.
 
LOGICAL FUNCTION ISINTEGRALF4(X) !A whole number?
REAL*4 X !Alas, this is not really a REAL number.
INTEGER*4 N !Largest available.
IF (ISNAN(X)) THEN !Avoid some sillyness.
ISINTEGRALF4 = .FALSE. !And possible error messages.
ELSE IF (ABS(X) .GE. RADIX(X)**(DIGITS(X) - 1)) THEN !Constant results as appropriate for X.
ISINTEGRALF4 = .TRUE. !Can't have fractional digits => integral.
ELSE !But smaller numbers can have fractional digits.
N = INT(X) !So, truncate to an integral value.
ISINTEGRALF4 = N .EQ. X !Any difference?
END IF !A real*4 should not overflow INTEGER*4.
END FUNCTION ISINTEGRALF4 !Thanks to the size check.
 
LOGICAL FUNCTION ISINTEGRALZ8(Z) !For complex numbers, two tests.
COMPLEX Z !Still not really REAL, though.
ISINTEGRALZ8 = ISINTEGRAL(REAL(Z)) .AND. ISINTEGRAL(AIMAG(Z)) !Separate the parts.
END FUNCTION ISINTEGRALZ8 !No INTEGER COMPLEX type is offered.
 
LOGICAL FUNCTION ISINTEGRALZ16(Z) !And there are two sorts of complex numbers.
DOUBLE COMPLEX Z !Still not really REAL.
ISINTEGRALZ16 = ISINTEGRAL(DBLE(Z)) .AND. ISINTEGRAL(DIMAG(Z)) !Separate the parts.
END FUNCTION ISINTEGRALZ16 !No INTEGER COMPLEX type is offered.
END MODULE ZERMELO !Much more mathematics lie elsewhere.
 
PROGRAM TEST
USE ZERMELO
DOUBLE COMPLEX Z
DOUBLE PRECISION X
REAL U
Cast forth some pearls.
WRITE (6,1) 4,DIGITS(U),RADIX(U)
WRITE (6,1) 8,DIGITS(X),RADIX(X)
1 FORMAT ("REAL*",I1,":",I3," digits, in base",I2)
 
WRITE (6,*) "See if some numbers are integral..."
WRITE (6,*) ISINTEGRAL(666D0),666D0
WRITE (6,*) ISINTEGRAL(665.9),665.9
Z = DCMPLX(-3D0,4*ATAN(1D0))
WRITE (6,*) ISINTEGRAL(Z),Z
END
</syntaxhighlight>
 
<pre>
REAL*4: 24 digits, in base 2
REAL*8: 53 digits, in base 2
See if some numbers are integral...
T 666.000000000000
F 665.9000
F (-3.00000000000000,3.14159265358979)
</pre>
 
=={{header|FreeBASIC}}==
<syntaxhighlight lang="vb">#define isInteger(x) iif(Int(val(x)) = val(x), 1, 0)
 
Dim As String test(1 To 8) = {"25.000000", "24.999999", "25.000100", "-2.1e120", "-5e-2", "NaN", "Inf", "-0.05"}
 
For i As Integer = 1 To Ubound(test)
Dim As String s = test(i)
Print s,
If isInteger(s) then Print "is integer" Else Print "is not integer"
Next i
 
Sleep</syntaxhighlight>
{{out}}
<pre>25.000000 is integer
24.999999 is not integer
25.000100 is not integer
-2.1e120 is integer
-5e-2 is not integer
NaN is not integer
Inf is integer
-0.05 is not integer</pre>
 
=={{header|Free Pascal}}==
<syntaxhighlight lang="delphi">// in FPC 3.2.0 the definition of `integer` still depends on the compiler mode
{$mode objFPC}
 
uses
// used for `isInfinite`, `isNan` and `fMod`
math,
// NB: `ucomplex`’s `complex` isn’t a simple data type as ISO 10206 requires
ucomplex;
 
{ --- determines whether a `float` value is (almost) an `integer` ------ }
function isInteger(x: float; const fuzziness: float = 0.0): Boolean;
// nested routine allows us to spare an `if … then` statement below
function fuzzyInteger: Boolean;
begin
// `x mod 1.0` uses `fMod` function from `math` unit
x := x mod 1.0;
result := (x <= fuzziness) or (x >= 1.0 - fuzziness);
end;
begin
{$push}
// just for emphasis: use lazy evaluation strategy (currently default)
{$boolEval off}
result := not isInfinite(x) and not isNan(x) and fuzzyInteger;
{$pop}
end;
 
{ --- check whether a `complex` number is (almost) in ℤ ---------------- }
function isInteger(const x: complex; const fuzziness: float = 0.0): Boolean;
begin
// you could use `isZero` from the `math` unit for a fuzzy zero
isInteger := (x.im = 0.0) and isInteger(x.re, fuzziness)
end;
 
{ --- test routine ----------------------------------------------------- }
procedure test(const x: float);
const
tolerance = 0.00001;
w = 42;
var
s: string;
begin
writeStr(s, 'isInteger(', x);
writeLn(s:w, ') = ', isInteger(x):5,
s:w, ', ', tolerance:7:5, ') = ', isInteger(x, tolerance):5);
end;
 
{ === MAIN ============================================================= }
begin
test(25.000000);
test(24.999999);
test(25.000100);
test(-2.1e120);
test(-5e-2);
test(NaN);
test(Infinity);
writeLn(isInteger(5.0 + 0.0 * i));
writeLn(isInteger(5 - 5 * i));
end.</syntaxhighlight>
{{out}}
<pre> isInteger( 2.50000000000000000000E+0001) = TRUE isInteger( 2.50000000000000000000E+0001, 0.00001) = TRUE
isInteger( 2.49999990000000000007E+0001) = FALSE isInteger( 2.49999990000000000007E+0001, 0.00001) = TRUE
isInteger( 2.50000999999999999994E+0001) = FALSE isInteger( 2.50000999999999999994E+0001, 0.00001) = FALSE
isInteger(-2.10000000000000000006E+0120) = TRUE isInteger(-2.10000000000000000006E+0120, 0.00001) = TRUE
isInteger(-5.00000000000000000007E-0002) = TRUE isInteger(-5.00000000000000000007E-0002, 0.00001) = TRUE
isInteger( Nan) = FALSE isInteger( Nan, 0.00001) = FALSE
isInteger( +Inf) = FALSE isInteger( +Inf, 0.00001) = FALSE
TRUE
FALSE</pre>
 
=={{header|Go}}==
<langsyntaxhighlight lang="go">package main
 
import (
Line 17 ⟶ 1,324:
)
 
// Go provides an integerness test only for the big.Rat typeand inbig.Float the standardtypes
// in the standard library.
 
// The fundamental piece of code needed for built-in floating point types
Line 136 ⟶ 1,443:
show(math.MaxFloat64)
show("9e100")
f := new(big.Float)
show(f)
f.SetString("1e-3000")
show(f)
show("(4+0i)", "(complex strings not parsed)")
show(4 + 0i)
Line 158 ⟶ 1,469:
show("12345/5")
show(new(customIntegerType))
}</langsyntaxhighlight>
{{out}}
<pre>
Line 190 ⟶ 1,501:
1.7976931348623157e+308 true float64
9e100 true string
0 true *big.Float
1e-3000 false *big.Float
(4+0i) false string (complex strings not parsed)
(4+0i) true complex128
Line 197 ⟶ 1,510:
(5+0i) true main.complexbased
(5+1i) false main.complexbased
833358060808842350779352 true uintptr
-2147483648 true int
18446744073709551615 true uint64
Line 207 ⟶ 1,520:
<…> true *main.customIntegerType
</pre>
 
=={{header|Haskell}}==
 
Some imports for additional number types
<syntaxhighlight lang="haskell">import Data.Decimal
import Data.Ratio
import Data.Complex</syntaxhighlight>
 
Haskell is statically typed, so in order to get universal integerness test we define a class of numbers, which may contain integers:
<syntaxhighlight lang="haskell">class ContainsInteger a where
isInteger :: a -> Bool</syntaxhighlight>
 
Laws for this class are simple:
 
<pre>for integral numbers:
isInteger n ≡ True
 
for real fractional numbers:
isInteger x ⟺ truncate x = x
</pre>
 
Here are some instances, which literally express class laws:
 
Integral numbers:
<syntaxhighlight lang="haskell">instance ContainsInteger Int where isInteger _ = True
instance ContainsInteger Integer where isInteger _ = True</syntaxhighlight>
 
Real fractional numbers:
<syntaxhighlight lang="haskell">isIntegerF :: (Eq x, RealFrac x) => x -> Bool
isIntegerF x = x == fromInteger (truncate x)
 
instance ContainsInteger Double where isInteger = isIntegerF
instance Integral i => ContainsInteger (DecimalRaw i) where isInteger = isIntegerF
instance Integral i => ContainsInteger (Ratio i) where isInteger = isIntegerF</syntaxhighlight>
 
Complex numbers:
<syntaxhighlight lang="haskell">instance (Eq a, Num a, ContainsInteger a) => ContainsInteger (Complex a) where
isInteger z = isInteger (realPart z) && (imagPart z == 0)</syntaxhighlight>
 
'''Extra credit'''
 
Approximate integerness for fractional numbers:
<syntaxhighlight lang="haskell">x ~~ eps = abs x <= eps
 
almostInteger :: RealFrac a => a -> a -> Bool
almostInteger eps x = (x - fromInteger (round x)) ~~ eps
 
almostIntegerC :: RealFrac a => a -> Complex a -> Bool
almostIntegerC eps z = almostInteger eps (realPart z) && (imagPart z) ~~ eps</syntaxhighlight>
 
'''Testing'''
<syntaxhighlight lang="haskell">tests = all (== True)
[ isInteger (5 :: Integer)
, isInteger (5.0 :: Decimal)
, isInteger (-5 :: Integer)
, isInteger (0 :: Decimal)
, isInteger (-2.1e120 :: Double)
, isInteger (5 % 1 :: Rational)
, isInteger (4 % 2 :: Rational)
, isInteger (5 :+ 0 :: Complex Integer)
, isInteger (5.0 :+ 0.0 :: Complex Decimal)
, isInteger (6 % 3 :+ 0 :: Complex Rational)
, isInteger (1/0 :: Double) -- Infinity is integer
, isInteger (1.1/0 :: Double) -- Infinity is integer
, not $ isInteger (5.01 :: Decimal)
, not $ isInteger (-5e-2 :: Double)
, not $ isInteger (5 % 3 :: Rational)
, not $ isInteger (5 :+ 1 :: Complex Integer)
, not $ isInteger (6 % 4 :+ 0 :: Complex Rational)
, not $ isInteger (5.0 :+ 1.0 :: Complex Decimal)
, almostInteger 0.01 2.001
, almostInteger 0.01 (-1.999999)
, almostInteger (1 % 10) (24 % 23)
, not $ almostInteger 0.01 2.02
, almostIntegerC 0.001 (5.999999 :+ 0.000001)
]</syntaxhighlight>
 
'''Possible use'''
 
Effective definition of Pithagorean triangles:
 
<syntaxhighlight lang="haskell">pithagoreanTriangles :: [[Integer]]
pithagoreanTriangles =
[ [a, b, round c] | b <- [1..]
, a <- [1..b]
, let c = sqrt (fromInteger (a^2 + b^2))
, isInteger (c :: Double) ]</syntaxhighlight>
<pre>λ> take 7 pithagoreanTriangles
[[3,4,5],[6,8,10],[5,12,13],[9,12,15],[8,15,17],[12,16,20],[15,20,25]]
 
λ> pithagoreanTriangles !! 1000
[726,968,1210]
 
λ> head $ filter ((> 1000). sum) pithagoreanTriangles
[297,304,425]</pre>
 
=={{header|J}}==
'''Solution''':<langsyntaxhighlight lang="j"> isInt =: (= <.) *. (= {.@+.)</langsyntaxhighlight>
'''Alternative solution''' (remainder after diving by 1?): <langsyntaxhighlight lang="j"> isInt=: (0 = 1&|) *. (0 = {:@+.)</langsyntaxhighlight>
'''Example''':<langsyntaxhighlight lang="j"> isInt 3.14 7 1.4j0 4j0 5j3 5r3 6r3
0 1 0 1 0 0 1</langsyntaxhighlight>
 
=={{header|Java}}==
{{trans|Kotlin}}
<syntaxhighlight lang="java">import java.math.BigDecimal;
import java.util.List;
 
public class TestIntegerness {
private static boolean isLong(double d) {
return isLong(d, 0.0);
}
 
private static boolean isLong(double d, double tolerance) {
return (d - Math.floor(d)) <= tolerance || (Math.ceil(d) - d) <= tolerance;
}
 
@SuppressWarnings("ResultOfMethodCallIgnored")
private static boolean isBigInteger(BigDecimal bd) {
try {
bd.toBigIntegerExact();
return true;
} catch (ArithmeticException ex) {
return false;
}
}
 
private static class Rational {
long num;
long denom;
 
Rational(int num, int denom) {
this.num = num;
this.denom = denom;
}
 
boolean isLong() {
return num % denom == 0;
}
 
@Override
public String toString() {
return String.format("%s/%s", num, denom);
}
}
 
private static class Complex {
double real;
double imag;
 
Complex(double real, double imag) {
this.real = real;
this.imag = imag;
}
 
boolean isLong() {
return TestIntegerness.isLong(real) && imag == 0.0;
}
 
@Override
public String toString() {
if (imag >= 0.0) {
return String.format("%s + %si", real, imag);
}
return String.format("%s - %si", real, imag);
}
}
 
public static void main(String[] args) {
List<Double> da = List.of(25.000000, 24.999999, 25.000100);
for (Double d : da) {
boolean exact = isLong(d);
System.out.printf("%.6f is %s integer%n", d, exact ? "an" : "not an");
}
System.out.println();
 
double tolerance = 0.00001;
System.out.printf("With a tolerance of %.5f:%n", tolerance);
for (Double d : da) {
boolean fuzzy = isLong(d, tolerance);
System.out.printf("%.6f is %s integer%n", d, fuzzy ? "an" : "not an");
}
System.out.println();
 
List<Double> fa = List.of(-2.1e120, -5e-2, Double.NaN, Double.POSITIVE_INFINITY);
for (Double f : fa) {
boolean exact = !f.isNaN() && !f.isInfinite() && isBigInteger(new BigDecimal(f.toString()));
System.out.printf("%s is %s integer%n", f, exact ? "an" : "not an");
}
System.out.println();
 
List<Complex> ca = List.of(new Complex(5.0, 0.0), new Complex(5.0, -5.0));
for (Complex c : ca) {
boolean exact = c.isLong();
System.out.printf("%s is %s integer%n", c, exact ? "an" : "not an");
}
System.out.println();
 
List<Rational> ra = List.of(new Rational(24, 8), new Rational(-5, 1), new Rational(17, 2));
for (Rational r : ra) {
boolean exact = r.isLong();
System.out.printf("%s is %s integer%n", r, exact ? "an" : "not an");
}
}
}</syntaxhighlight>
{{out}}
<pre>25.000000 is an integer
24.999999 is not an integer
25.000100 is not an integer
 
With a tolerance of 0.00001:
25.000000 is an integer
24.999999 is an integer
25.000100 is not an integer
 
-2.1E120 is an integer
-0.05 is not an integer
NaN is not an integer
Infinity is not an integer
 
5.0 + 0.0i is an integer
5.0 - -5.0i is not an integer
 
24/8 is an integer
-5/1 is an integer
17/2 is not an integer</pre>
 
=={{header|jq}}==
{{works with|jq|1.4}}
 
jq does not have builtin support for complex numbers or rationals, but in conformity with
the Rosetta Code page [[Arithmetic/Complex#jq]], we shall assume in the following that the complex number x+iy
has been identified with the array [x,y]. To illustrate how the task can be solved for rationals,
we shall also identify the rational numbers p/q with JSON objects that have the form:
{"type": "rational", "p": p, "q": q}.
<syntaxhighlight lang="jq">def is_integral:
if type == "number" then . == floor
elif type == "array" then
length == 2 and .[1] == 0 and (.[0] | is_integral)
else type == "object"
and .type == "rational"
and .q != 0
and (.q | is_integral)
and ((.p / .q) | is_integral)
end ;</syntaxhighlight>
'''Example''':
<syntaxhighlight lang="jq">(
0, -1, [3,0], {"p": 4, "q": 2, "type": "rational"},
1.1, -1.1, [3,1], {"p": 5, "q": 2, "type": "rational"}
) | "\(.) => \(if is_integral then "integral" else "" end)"</syntaxhighlight>
{{out}}
<syntaxhighlight lang="sh">$ jq -r -n -f is_integral.jq
0 => integral
-1 => integral
[3,0] => integral
{"p":4,"q":2,"type":"rational"} => integral
1.1 =>
-1.1 =>
[3,1] =>
{"p":5,"q":2,"type":"rational"} => </syntaxhighlight>
 
=={{header|Julia}}==
<syntaxhighlight lang="julia"># v0.6.0
 
@show isinteger(25.000000)
@show isinteger(24.999999)
@show isinteger(25.000100)
@show isinteger(-2.1e120)
@show isinteger(-5e-2)
@show isinteger(NaN)
@show isinteger(Inf)
@show isinteger(complex(5.0, 0.0))
@show isinteger(complex(5, 5))
</syntaxhighlight>
 
{{out}}
<pre>isinteger(25.0) = true
isinteger(24.999999) = false
isinteger(25.0001) = false
isinteger(-2.1e120) = true
isinteger(-0.05) = false
isinteger(NaN) = false
isinteger(Inf) = false
isinteger(complex(5.0, 0.0)) = true
isinteger(complex(5, 5)) = false</pre>
 
=={{header|Kotlin}}==
As Kotlin doesn't have built in rational or complex number classes, we create 'bare bones' classes for the purposes of this task:
<syntaxhighlight lang="scala">// version 1.1.2
 
import java.math.BigInteger
import java.math.BigDecimal
 
fun Double.isLong(tolerance: Double = 0.0) =
(this - Math.floor(this)) <= tolerance || (Math.ceil(this) - this) <= tolerance
 
fun BigDecimal.isBigInteger() =
try {
this.toBigIntegerExact()
true
}
catch (ex: ArithmeticException) {
false
}
 
class Rational(val num: Long, val denom: Long) {
fun isLong() = num % denom == 0L
override fun toString() = "$num/$denom"
}
class Complex(val real: Double, val imag: Double) {
fun isLong() = real.isLong() && imag == 0.0
 
override fun toString() =
if (imag >= 0.0)
"$real + ${imag}i"
else
"$real - ${-imag}i"
}
fun main(args: Array<String>) {
val da = doubleArrayOf(25.000000, 24.999999, 25.000100)
for (d in da) {
val exact = d.isLong()
println("${"%.6f".format(d)} is ${if (exact) "an" else "not an"} integer")
}
val tolerance = 0.00001
println("\nWith a tolerance of ${"%.5f".format(tolerance)}:")
for (d in da) {
val fuzzy = d.isLong(tolerance)
println("${"%.6f".format(d)} is ${if (fuzzy) "an" else "not an"} integer")
}
 
println()
val fa = doubleArrayOf(-2.1e120, -5e-2, Double.NaN, Double.POSITIVE_INFINITY)
for (f in fa) {
val exact = if (f.isNaN() || f.isInfinite()) false
else BigDecimal(f.toString()).isBigInteger()
println("$f is ${if (exact) "an" else "not an"} integer")
}
println()
val ca = arrayOf(Complex(5.0, 0.0), Complex(5.0, -5.0))
for (c in ca) {
val exact = c.isLong()
println("$c is ${if (exact) "an" else "not an"} integer")
}
 
println()
val ra = arrayOf(Rational(24, 8), Rational(-5, 1), Rational(17, 2))
for (r in ra) {
val exact = r.isLong()
println("$r is ${if (exact) "an" else "not an"} integer")
}
}</syntaxhighlight>
 
{{out}}
<pre>
25.000000 is an integer
24.999999 is not an integer
25.000100 is not an integer
 
With a tolerance of 0.00001:
25.000000 is an integer
24.999999 is an integer
25.000100 is not an integer
 
-2.1E120 is an integer
-0.05 is not an integer
NaN is not an integer
Infinity is not an integer
 
5.0 + 0.0i is an integer
5.0 - 5.0i is not an integer
 
24/8 is an integer
-5/1 is an integer
17/2 is not an integer
</pre>
 
=={{header|Lua}}==
<syntaxhighlight lang="lua">function isInt (x) return type(x) == "number" and x == math.floor(x) end
 
print("Value\tInteger?")
print("=====\t========")
local testCases = {2, 0, -1, 3.5, "String!", true}
for _, input in pairs(testCases) do print(input, isInt(input)) end</syntaxhighlight>
{{out}}
<pre>Value Integer?
===== ========
2 true
0 true
-1 true
3.5 false
String! false
true false</pre>
 
=={{header|Mathematica}} / {{header|Wolfram Language}}==
The built-in function IntegerQ performs the required test
<syntaxhighlight lang="mathematica">IntegerQ /@ {E, 2.4, 7, 9/2}</syntaxhighlight>
{{out}}<pre>{False,False,True,False}</pre>
=={{header|Nim}}==
A taxonomy of Nim number types:
 
::– SomeInteger: integer types, signed or unsigned, 8,16,32,or 64 bits
 
::– SomeFloat: floating point, 32 or 64 bits
 
::– SomeNumber: SomeInteger or SomeFloat
 
::– Rational: rational type; a numerator and denominator, of any (identical) SomeInteger type
 
::– Complex: complex type; real and imaginary of any (identical) SomeFloat type
 
<syntaxhighlight lang="nim">import complex, rationals, math, fenv, sugar
 
func isInteger[T: Complex | Rational | SomeNumber](x: T; tolerance = 0f64): bool =
when T is Complex:
x.im == 0 and x.re.isInteger
elif T is Rational:
x.dup(reduce).den == 1
elif T is SomeFloat:
ceil(x) - x <= tolerance
elif T is SomeInteger:
true
 
# Floats.
assert not NaN.isInteger
assert not INF.isInteger # Indeed, "ceil(INF) - INF" is NaN.
assert not (-5e-2).isInteger
assert (-2.1e120).isInteger
assert 25.0.isInteger
assert not 24.999999.isInteger
assert 24.999999.isInteger(tolerance = 0.00001)
assert not (1f64 + epsilon(float64)).isInteger
assert not (1f32 - epsilon(float32)).isInteger
# Rationals.
assert not (5 // 3).isInteger
assert (9 // 3).isInteger
assert (-143 // 13).isInteger
# Unsigned integers.
assert 3u.isInteger
# Complex numbers.
assert not (1.0 + im 1.0).isInteger
assert (5.0 + im 0.0).isInteger</syntaxhighlight>
 
=={{header|ooRexx}}==
<langsyntaxhighlight lang="oorexx">/* REXX ---------------------------------------------------------------
* 22.06.2014 Walter Pachl using a complex data class
* ooRexx Distribution contains an elaborate complex class
* parts of which are used here
* see REXX for Extra Credit implementation
*--------------------------------------------------------------------*/
Numeric Digits 1000
Line 273 ⟶ 2,026:
::method string /* format as a string value */
expose real imaginary /* get the state info */
return real'+'imaginary'i' /* format as real+imaginaryi */</langsyntaxhighlight>
'''output'''
<pre>1E+12+0i is an integer
Line 295 ⟶ 2,048:
3+0i is an integer</pre>
 
 
=={{header|Mathematica}} / {{header|Wolfram Language}}==
The built-in function IntegerQ performs the required test
<lang Mathematica>IntegerQ /@ {E, 2.4, 7, 9/2}</lang>
{{out}}<pre>{False,False,True,False}</pre>
=={{header|PARI/GP}}==
 
The operator <code>==</code> does what we want here, comparing a number mathematically regardless of how it's stored. <code>===</code> checks literal equivalence instead.
 
<langsyntaxhighlight lang="parigp">isInteger(z)=real(z)==real(z)\1 && imag(z)==imag(z)\1;
apply(isInteger, [7, I, 1.7 + I, 10.0 + I, 1.0 - 7.0 * I])</langsyntaxhighlight>
{{out}}
<pre>%1 = [1, 1, 0, 1, 1]</pre>
Line 311 ⟶ 2,059:
=={{header|Perl}}==
 
<langsyntaxhighlight perl6lang="perl">use Math::Complex;
 
sub is_int {
Line 326 ⟶ 2,074:
for (5, 4.1, sqrt(2), sqrt(4), 1.1e10, 3.0-0.0*i, 4-3*i, 5.6+0*i) {
printf "%20s is%s an integer\n", $_, (is_int($_) ? "" : " NOT");
}</langsyntaxhighlight>
 
{{out}}
Line 340 ⟶ 2,088:
</pre>
 
=={{header|Perl 6Pascal}}==
{{works with|Extended Pascal}}
Within Pascal’s dogma, the programmer is not supposed to be concerned about internal memory representation of specific values.
Pascal teaches you to program without making any presumptions about the underlying system.
That also means, you cannot properly inspect numeric properties beyond <tt>maxInt</tt> and <tt>maxReal</tt>.
<syntaxhighlight lang="pascal">program integerness(output);
 
{ determines whether a `complex` also fits in `integer` ---------------- }
In Perl 6, classes that implement the Numeric role have a method called <tt>narrow</tt> which returns an object with the same value but with the most appropriate type. So we can just test the type of ''that'' object.
function isRealIntegral(protected x: complex): Boolean;
begin
{ It constitutes an error if no value for `trunc(x)` exists, }
{ thus check re(x) is in the range -maxInt..maxInt first. }
isRealIntegral := (im(x) = 0.0) and_then
(abs(re(x)) <= maxInt * 1.0) and_then
(trunc(re(x)) * 1.0 = re(x))
end;
 
{ calls isRealIntegral with zero imaginary part ------------------------ }
<lang perl6>for pi, 1e5, 1+0i {
function isIntegral(protected x: real): Boolean;
say "$_ is{" NOT" if .narrow !~~ Int} an integer.";
begin
}</lang>
isIntegral := isRealIntegral(cmplx(x * 1.0, 0.0))
end;
 
{ Rosetta code test ---------------------------------------------------- }
procedure test(protected x: complex);
begin
writeLn(re(x), ' + ', im(x), ' 𝒾 : ',
isIntegral(re(x)), ' ', isRealIntegral(x))
end;
{ === MAIN ============================================================= }
begin
test(cmplx(25.0, 0.0));
test(cmplx(24.999999, 0.0));
test(cmplx(25.000100, 0.0));
test(cmplx(-2.1E120, 0.0));
test(cmplx(-5E-2, 0.0));
test(cmplx(5.0, 0.0));
test(cmplx(5, -5));
end.</syntaxhighlight>
{{out}}
<pre> 2.500000000000000e+01 + 0.000000000000000e+00 𝒾 : True True
<pre>3.14159265358979 is NOT an integer.
2.499999900000000e+01 + 0.000000000000000e+00 𝒾 : False False
100000 is an integer.
2.500010000000000e+01 + 0.000000000000000e+00 𝒾 : False False
1+0i is an integer.
-2.100000000000000e+120 + 0.000000000000000e+00 𝒾 : False False
-5.000000000000000e-02 + 0.000000000000000e+00 𝒾 : False False
5.000000000000000e+00 + 0.000000000000000e+00 𝒾 : True True
5.000000000000000e+00 + -5.000000000000000e+00 𝒾 : True False</pre>
Note that the <tt>program</tt> ''fails'' on the test case <tt>-2.1E120</tt>.
The utilized <tt>trunc</tt> function only works if a truncated <tt>integer</tt> value ''does'' exist.
 
=={{header|Phix}}==
{{libheader|Phix/basics}}
In most cases the builtin works pretty well, with Phix automatically storing integer results as such.
 
<!--<syntaxhighlight lang="phix">-->
<span style="color: #0000FF;">?</span><span style="color: #004080;">integer</span><span style="color: #0000FF;">(</span><span style="color: #000000;">3.5</span><span style="color: #0000FF;">+</span><span style="color: #000000;">3.5</span><span style="color: #0000FF;">)</span> <span style="color: #000080;font-style:italic;">-- true</span>
<span style="color: #0000FF;">?</span><span style="color: #004080;">integer</span><span style="color: #0000FF;">(</span><span style="color: #000000;">3.5</span><span style="color: #0000FF;">+</span><span style="color: #000000;">3.4</span><span style="color: #0000FF;">)</span> <span style="color: #000080;font-style:italic;">-- false</span>
<!--</syntaxhighlight>-->
 
The round function takes an inverted precision, so 1000000 means to the nearest 0.000001 and 100000 means the nearest 0.00001
 
<!--<syntaxhighlight lang="phix">-->
<span style="color: #0000FF;">?</span><span style="color: #004080;">integer</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">round</span><span style="color: #0000FF;">(</span><span style="color: #000000;">24.999999</span><span style="color: #0000FF;">,</span><span style="color: #000000;">1000000</span><span style="color: #0000FF;">))</span> <span style="color: #000080;font-style:italic;">-- false</span>
<span style="color: #0000FF;">?</span><span style="color: #004080;">integer</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">round</span><span style="color: #0000FF;">(</span><span style="color: #000000;">24.999999</span><span style="color: #0000FF;">,</span><span style="color: #000000;">100000</span><span style="color: #0000FF;">))</span> <span style="color: #000080;font-style:italic;">-- true</span>
<!--</syntaxhighlight>-->
 
By default the inverted precision of round is 1, and that does exactly what you'd expect.
 
<!--<syntaxhighlight lang="phix">-->
<span style="color: #0000FF;">?</span><span style="color: #7060A8;">equal</span><span style="color: #0000FF;">(-</span><span style="color: #000000;">2.1e120</span><span style="color: #0000FF;">,</span><span style="color: #7060A8;">round</span><span style="color: #0000FF;">(-</span><span style="color: #000000;">2.1e120</span><span style="color: #0000FF;">))</span> <span style="color: #000080;font-style:italic;">-- true</span>
<span style="color: #0000FF;">?</span><span style="color: #7060A8;">equal</span><span style="color: #0000FF;">(-</span><span style="color: #000000;">2.15</span><span style="color: #0000FF;">,</span><span style="color: #7060A8;">round</span><span style="color: #0000FF;">(-</span><span style="color: #000000;">2.15</span><span style="color: #0000FF;">))</span> <span style="color: #000080;font-style:italic;">-- false</span>
<!--</syntaxhighlight>-->
 
Technically though, -2.1e120 is way past precision limits, as next, so declaring it integer is deeply flawed...
It is not only way too big to fit in an integer, but also simply too big to actually have a fractional part.
Obviously using bigatoms would "solve" this, as long as I was prepared to wait for it to wade through the 120+
digits of precision needed, that is compared to the mere 19 or so that the raw physical hardware can manage.
 
<!--<syntaxhighlight lang="phix">-->
<span style="color: #0000FF;">?</span><span style="color: #7060A8;">equal</span><span style="color: #0000FF;">(-</span><span style="color: #000000;">2.1e120</span><span style="color: #0000FF;">,-</span><span style="color: #000000;">2.1e120</span><span style="color: #0000FF;">+</span><span style="color: #000000;">PI</span><span style="color: #0000FF;">)</span> <span style="color: #000080;font-style:italic;">-- true!!</span>
<!--</syntaxhighlight>-->
 
Phix considers both nan and inf as not an integer, and does not support complex numbers (as a primitive type, though there is a builtins/complex.e, not an autoinclude). Two final examples:
 
<!--<syntaxhighlight lang="phix">-->
<span style="color: #0000FF;">?</span><span style="color: #004080;">integer</span><span style="color: #0000FF;">(-</span><span style="color: #000000;">5e-2</span><span style="color: #0000FF;">)</span> <span style="color: #000080;font-style:italic;">-- false</span>
<span style="color: #0000FF;">?</span><span style="color: #004080;">integer</span><span style="color: #0000FF;">(</span><span style="color: #000000;">25.000000</span><span style="color: #0000FF;">)</span> <span style="color: #000080;font-style:italic;">-- true</span>
<!--</syntaxhighlight>-->
 
=={{header|PicoLisp}}==
Pico Lisp scaled fixed-point numbers. Every number is stored an an Integer and a Non-integer only relative to the scale applied. For this example we assume that all numbers are generated with the same scale. This is the common case.
<syntaxhighlight lang="picolisp">
(de int? (N)
(= N (* 1.0 (/ N 1.0)))) #returns T or NIL
 
(de integer? (N)
(and (= N (* 1.0 (/ N 1.0))) N)) #returns value of N or NIL
 
(scl 4) #-> 4 # *Scl the global which holds
1.0 #-> 10000
(int? 1.0) #-> T
(int? 1) #-> NIL # 1 with a scale of 4 is same as 0.0001 which is not an Integer
(int? -1.0) #-> T
(int? -0.0) #-> T
(int? "RE") #-> "RE" -- Number expected
(int? (*/ 2.0 1.0 3.0)) #-> NIL # 6667 is not an integer of the scale of 4, use of */ because of the scale
</syntaxhighlight>
 
=={{header|PowerShell}}==
<syntaxhighlight lang="powershell">
function Test-Integer ($Number)
{
try
{
$Number = [System.Numerics.Complex]$Number
 
if (($Number.Real -eq [int]$Number.Real) -and ($Number.Imaginary -eq 0))
{
return $true
}
else
{
return $false
}
}
catch
{
Write-Host "Parameter was not a number."
}
}
</syntaxhighlight>
<syntaxhighlight lang="powershell">
Test-Integer 9
Test-Integer 9.9
Test-Integer (New-Object System.Numerics.Complex(14,0))
Test-Integer (New-Object System.Numerics.Complex(14,56))
Test-Integer "abc"
</syntaxhighlight>
{{Out}}
<pre>
True
False
True
False
Parameter was not a number.
</pre>
 
=={{header|Python}}==
 
<lang python>>>> def isint(f):
<syntaxhighlight lang="python">>>> def isint(f):
return complex(f).imag == 0 and complex(f).real.is_integer()
 
>>> [isint(f) for f in (1.0, 2, (3.0+0.0j), 4.1, (3+4j), (5.6+0j))]
[True, True, True, False, False, False]
 
>>> </lang>
>>> # Test cases
...
>>> isint(25.000000)
True
>>> isint(24.999999)
False
>>> isint(25.000100)
False
>>> isint(-2.1e120)
True
>>> isint(-5e-2)
False
>>> isint(float('nan'))
False
>>> isint(float('inf'))
False
>>> isint(5.0+0.0j)
True
>>> isint(5-5j)
False
</syntaxhighlight>
 
=={{header|Quackery}}==
 
Quackery uses bignums ("numbers" in the Quackery nomenclature) and comes with a bignum rational ("vulgars") arithmetic library. Quackery does not differentiate between two numbers on the stack and one vulgar. <code>v-is-num</code> returns true (1) if the top two numbers on the stack can be interpreted as a vulgar with no fractional component, and false (0) otherwise.
 
<code>approxint</code> is the extra credit version. Tolerance is specified to a number of decimal places.
 
<syntaxhighlight lang="quackery"> [ $ "bigrat.qky" loadfile ] now!
[ mod not ] is v-is-num ( n/d --> b )
 
[ 1+ dip [ proper rot drop ]
10 swap ** round v-is-num ] is approxint ( n/d n --> b )</syntaxhighlight>
 
{{out}}
 
Testing in the Quackery shell.
 
<pre>/O> $ "25.000000" $->v drop v-is-num iff [ say "true" ] else [ say "false" ] cr
... $ "24.999999" $->v drop v-is-num iff [ say "true" ] else [ say "false" ] cr
... $ "25.000100" $->v drop v-is-num iff [ say "true" ] else [ say "false" ] cr
...
true
false
false
 
Stack empty.
 
/O> $ "25.000000" $->v drop 3 approxint iff [ say "true" ] else [ say "false" ] cr
... $ "24.999999" $->v drop 3 approxint iff [ say "true" ] else [ say "false" ] cr
... $ "25.000100" $->v drop 3 approxint iff [ say "true" ] else [ say "false" ] cr
...
true
true
false
 
Stack empty.</pre>
 
=={{header|Racket}}==
Line 368 ⟶ 2,310:
See [http://docs.racket-lang.org/reference/number-types.html?q=integer%3F#%28def._%28%28quote._~23~25kernel%29._integer~3f%29%29 documentation for <code>integer?</code>]
 
<langsyntaxhighlight lang="racket">#lang racket
(require tests/eli-tester)
 
Line 420 ⟶ 2,362:
(integer? pi) => #f
)
</syntaxhighlight>
</lang>
All tests pass.
 
=={{header|Raku}}==
(formerly Perl 6)
 
In Raku, all numeric types have a method called <tt>narrow</tt>, which returns an object with the same value but of the most appropriate type. So we can just check if ''that'' object is an <tt>Int</tt>. This works even with floats with large exponents, because the <tt>Int</tt> type supports arbitrarily large integers.
 
For the extra credit task, we can add another multi candidate that checks the distance between the number and it's nearest integer, but then we'll have to handle complex numbers specially.
 
<syntaxhighlight lang="raku" line>multi is-int ($n) { $n.narrow ~~ Int }
 
multi is-int ($n, :$tolerance!) {
abs($n.round - $n) <= $tolerance
}
 
multi is-int (Complex $n, :$tolerance!) {
is-int($n.re, :$tolerance) && abs($n.im) < $tolerance
}
 
# Testing:
 
for 25.000000, 24.999999, 25.000100, -2.1e120, -5e-2, Inf, NaN, 5.0+0.0i, 5-5i {
printf "%-7s %-9s %-5s %-5s\n", .^name, $_,
is-int($_),
is-int($_, :tolerance<0.00001>);
}</syntaxhighlight>
 
{{out}}
<pre>
Rat 25 True True
Rat 24.999999 False True
Rat 25.0001 False False
Num -2.1e+120 True True
Num -0.05 False False
Num Inf False False
Num NaN False False
Complex 5+0i True True
Complex 5-5i False False
</pre>
 
=={{header|REXX}}==
===version 1===
<langsyntaxhighlight lang="rexx">/* REXX ---------------------------------------------------------------
* 20.06.2014 Walter Pachl
* 22.06.2014 WP add complex numbers such as 13-12j etc.
Line 513 ⟶ 2,492:
imag=imag_sign||imag_v
 
Return real imag</langsyntaxhighlight>
'''output'''
<pre>3.14 isn't an integer
Line 534 ⟶ 2,513:
j is not an integer (imaginary part is not zero)
0003-00.0j is an integer</pre>
 
===version 1a Extra Credit===
<syntaxhighlight lang="rexx">/* REXX ---------------------------------------------------------------
* Extra credit
* Instead of using the datatype built-in function one could use this
*--------------------------------------------------------------------*/
Call testi 25.000000
Call testi 24.999999
Call testi 25.000100
Call testi 0.9999999
Call testi -0.9999999
Exit
 
testi:
Parse Arg x
If pos('.',x)>0 Then Do
xx=abs(x)
Parse Value abs(xx) With '.' d
d5=left(d,5,0)
End
Else d5=''
If d5='' | wordpos(d5,'00000 99999')>0 Then
Say x 'is an integer'
Else
Say x 'isn''t an integer'
Return</syntaxhighlight>
{{out}}
<pre>25.000000 is an integer
24.999999 is an integer
25.000100 isn't an integer
0.9999999 is an integer
-0.9999999 is an integer</pre>
 
===version 2===
This REXX version handles an exponent indicator of &nbsp; '''E''', &nbsp; '''D''', &nbsp; or &nbsp; '''Q''' &nbsp; (either lower or uppercase), &nbsp; and it also supports a trailing '''I''' or '''J''' imaginary indicator.
<br>it also supports a trailing &nbsp; '''I''' &nbsp; or &nbsp; '''J''' &nbsp; imaginary indicator.
 
('''E''', &nbsp; '''D''', &nbsp; and &nbsp; '''Q''' &nbsp; indicate an exponent for a single precision, double precision, and quad precision numbers, respectively.)
 
This version also handles numbers &nbsp; larger &nbsp; than can be stored (within REXX) as simple integers within the limits of &nbsp; '''numeric digits'''.
 
This version also handles numbers &nbsp; larger &nbsp; than can be stored (within REXX) as simple integers within the limits of '''numeric digits'''. &nbsp; Also, most REXXes have a limit on the minimum/maximum value of the power in exponentiated numbers.
<langsyntaxhighlight lang="rexx">/*REXX pgmprogram tests if a #number (possibly complex) is equivalent to an integer. */
numeric digits 3000 /*be able to handle biggihugic integers. */
parse arg #s /*getobtain optional #snumbers list from CCL.L. */
if #s='' then #s= '3.14 1.00000 33 999999999 99999999999 1e272 AA 0' ,
'1.000-3i 1.000-3.3i 4j 2.00000000+0j 0j 333 -1-i' ,
'1+i .00i j 0003-00.0j 1.2d1 2e55666 +0003-00.0j +0j' ,
'-.3q+2 -0i +03.0e+01+0.00e+20j -030.0e-001+0.0e-020j'
/* [↑] use these #snumbers for defaults.*/
do j=1 for words(#s); ox=word(#s, j) /*obtain a wordnumber from the #snumbers list.*/
parse upper var ox x /*getobtain an uppercase version of OX. */
x=translate(x, 'EEI', "QDJ") /*alt.translate exponent &and imag indicator.*/
if right(x, 1)=='I' then call tImag /*has the X number an imag.imaginary part?*/
if isInt(x) then say right(ox, 55) " is an integer." /*yupyuppers, it does. */
else say right(ox, 55) " isn't an integer." /*nope.noppers, it doesn't*/
end /*j*/ /* [↑] process each #number in list. the list*/
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
/*──────────────────────────────────ISINT subroutine────────────────────*/
isInt: procedure; parse arg n /*obtain the number in question. */
if datatype(n, 'Whole') then return 1 /*it's a simple integer (small). */
parse var n m 'E' p /*separate base from the 10's pow power. */
if \datatype(p, 'Numb') then return 0 /*Not an integer if P not aan intinteger.*/
return p>0 | m=0 /*Isis power>0 or mantissa = zero? */
/*──────────────────────────────────────────────────────────────────────────────────────*/
/*──────────────────────────────────ISSIGN subroutine───────────────────*/
isSign: parse arg ? 2; return ?=='+' | ?=='"-'" /*concisea method to test for a leading sign. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
/*──────────────────────────────────TIMAG subroutine────────────────────*/
tImag: x=left(x, length(x) -1) /*strip the trailing I or J. from number*/
if isInt(x) then do /*is what's remaining an integer ? */
if x\=0 then x=. /*what's remaining isn't =equal to zero. */
return /*return to invoker in either waycase. */
end /* [↑] handle simple imag.imaginary case. */
if isSign(x) then x=substr(x, 2) /*stripX leadinghas a sign? from Strip X ? the leading sign*/
e=verify(x, .0123456789) /*find 1st char not a digit |or a dot. */
if e==0 then do; x=.; return; end /*Nothing? Then it's ¬not an integer. */
y=substr(x, e, 1) /*Y is the suspect character. */
if isSign(y) then do /*is suspect charcharacter a plus |or minus?*/
z=substr(x, e+1) /*obtain the imaginary part of X. */
x= left(x, e-1) /* " " real " " " */
if isInt(z) then if z=0 then return /*imag.imaginary part is 0.*/
x=. /*the imaginary part isn't zero. */
end /* [↑] end of imag.imaginary part of X. */
if y\=='E' then do then return /*the real part of X hasdoesn't have aan powerexpon.*/
p=substr(x, e+1) /*obtain power of real part of X. */
_= left(p, 1) /*obtain the possible sign of powthe power*/
if isSign(_) then p=substr(p, 2) /*strip the power sign from the exponent. */
s=verify(p, '-+', "M") /*is there an imaginary sepseparator char. ?*/
if s==0 if s==0 then do; x=.; return; end /*No sign? Not Then isn't not an integer.*/
z=substr(p, s+1) /*getobtain the imag.the imaginary part of X. */
x= left(x, e+s) /* " " " real " " " */
if isInt(z) then if z\=0 then x=. /*Not imagimaginary part=0? Not intan integer.*/
return end /*return [↑]to the handleinvoker imagof this sub. */</syntaxhighlight>
{{out|output|text=&nbsp; when using the default inputs:}}
return /*return to invoker. */</lang>
'''output''' using the default input:
<pre>
3.14 isn't an integer.
Line 627 ⟶ 2,642:
 
would be considered an integer &nbsp; (extra blanks were added to show the number with more clarity).
<langsyntaxhighlight lang="rexx">/*REXX pgmprogram tests if a #number (possibly complex) is equivalent to an integer. */
numeric digits 3000 /*be able to handle biggihugic integers. */
unaB= '++ -- -+ +-' /*a list of unary operators. unary operators.*/
unaA= '+ + - -' /*list" " " translated " " of unary operators trans. */
parse arg #s /*getobtain optional #snumbers list from CCL.L. */
if #s='' then #s= '245+-00.0e-12i 245++++++0e+12j --3450d-1----0.0d-1j' ,
'4.5e11111222223333344444555556666677777888889999900'
/* [↑] use these #snumbers for defaults.*/
do j=1 for words(#s); ox=word(#s, j) /*obtain a wordnumber from the #snumbers list.*/
parse upper var ox x /*getobtain an uppercase version of OX. */
x=translate(x, 'EEJ', "QDI") /*alt.translate exponent &and imag indicator?*/
 
do k=1 for words(unaB) /*process every possible unary opoperator*/
_=word(unaB, k) /*a unary operator to be changed. , maybe*/
 
do while pos(_, x) \== 0 /*keep changing 'tiluntil no more are left.*/
x=changestr(_, x, word(unaA, k) ) /*reduce all uniryunary operators. (if any).*/
end /*while*/
end /*k*/
 
if right(x, 1)=='J' then call tImag /*has the X number an imag.imaginary part?*/
if isInt(x) then say right(ox, 55) " is an integer." /*yupyuppers, it does. */
else say right(ox, 55) " isn't an integer." /*nope.noppers, it doesn't*/
end /*j*/ /* [↑] process each number in the list*/
end /*j*/
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
/*──────────────────────────────────ISINT subroutine────────────────────*/
isInt: procedure; parse arg n /*obtain the number in question. */
if datatype(n, 'Whole') then return 1 /*it's a simple integer (small). */
parse var n m 'E' p /*separate base from the 10's pow power. */
if \datatype(p, 'Numb') then return 0 /*Not an integer if P not aan intinteger.*/
return p>0 | m=0 /*Isis power>0 or mantissa = zero? */
/*──────────────────────────────────────────────────────────────────────────────────────*/
/*──────────────────────────────────ISSIGN subroutine───────────────────*/
isSign: parse arg ? 2; return ?=='+' | ?=='"-'" /*concisea method to test for a leading sign. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
/*──────────────────────────────────TIMAG subroutine────────────────────*/
tImag: x=left(x, length(x) -1) /*strip the trailing I or J. from number*/
if isInt(x) then do /*is what's remaining an integer ? */
if x\=0 then x=. /*what's remaining isn't =equal to zero. */
return /*return to invoker in either waycase. */
end /* [↑] handle simple imag.imaginary case. */
if isSign(x) then x=substr(x, 2) /*stripX leadinghas a sign? from Strip X ? the leading sign*/
e=verify(x, .0123456789) /*find 1st char not a digit |or a dot. */
if e==0 then do; x=.; return; end /*Nothing? Then it's ¬not an integer. */
y=substr(x, e, 1) /*Y is the suspect character. */
if isSign(y) then do /*is suspect charcharacter a plus |or minus?*/
z=substr(x, e+1) /*obtain the imaginary part of X. */
x= left(x, e-1) /* " " real " " " */
if isInt(z) then if z=0 then return /*imag.imaginary part is 0.*/
x=. /*the imaginary part isn't zero. */
end /* [↑] end of imag.imaginary part of X. */
if y\=='E' then do then return /*the real part of X hasdoesn't have aan powerexpon.*/
p=substr(x, e+1) /*obtain power of real part of X. */
_= left(p, 1) /*obtain the possible sign of powthe power*/
if isSign(_) then p=substr(p, 2) /*strip the power sign from the exponent. */
s=verify(p, '-+', "M") /*is there an imaginary sepseparator char. ?*/
if s==0 if s==0 then do; x=.; return; end /*No sign? Not Then isn't not an integer.*/
z=substr(p, s+1) /*getobtain the imag.the imaginary part of X. */
x= left(x, e+s) /* " " " real " " " */
if isInt(z) then if z\=0 then x=. /*Not imagimaginary part=0? Not intan integer.*/
return end /*return [↑]to the handleinvoker imagof this sub. */</syntaxhighlight>
{{out|output|text=&nbsp; when using the default inputs:}}
return /*return to invoker. */</lang>
'''output''' using the default input:
<pre>
245+-00.0e-12i is an integer.
Line 696 ⟶ 2,710:
 
=={{header|Ruby}}==
 
Testing for integerness of floats, rationals and complex numbers:
<langsyntaxhighlight lang="ruby">
class Numeric
def integerto_i?
self == self.to_i rescue false
end
end
 
# Demo
ar = [225.0000000, 224.5999999, 25.000100, -2.1e120, -5e-2, # 2 floatsFloats
2.to_rFloat::NAN, 2.5.to_rFloat::INFINITY, # 2more rationalsFloats
2.to_c2r, 2+0.5i]5r, # 2 complex numbers # Rationals
2+0i, 2+0.0i, 5-5i] # Complexes
 
ar.each{|num| puts "#{num} integer? #{num.integer?}" }
ar.each{|num| puts "#{num} integer? #{num.to_i?}" }
</lang>
</syntaxhighlight>
{{out}}
<pre>
225.0 integer? true
224.5999999 integer? false
25.0001 integer? false
-2.1e+120 integer? true
-0.05 integer? false
NaN integer? false
Infinity integer? false
2/1 integer? true
5/2 integer? false
2+0i integer? true
2+0.5i0i integer? false
5-5i integer? false
</pre>
 
Ruby considers 2+0.0i to be inexact and raises an exception when the to_i method attempts to convert it to an integer. 2+0i is considered exact and converts to integer.
 
=={{header|Scheme}}==
 
The '''Racket''' solution covers tests for integer? with the different numbers, and these all apply to Scheme.
 
Examples:
 
<pre>
sash[r7rs]> (integer? 1)
#t
sash[r7rs]> (integer? 2/3)
#f
sash[r7rs]> (integer? 4/2)
#t
sash[r7rs]> (integer? 1+3i)
#f
sash[r7rs]> (integer? 1+0i)
#t
sash[r7rs]> (exact? 3.0)
#f
sash[r7rs]> (integer? 3.0)
#t
sash[r7rs]> (integer? 3.5)
#f
sash[r7rs]> (integer? 1.23e3)
#t
sash[r7rs]> (integer? 1.23e1)
#f
sash[r7rs]> (integer? 1e120)
#t
</pre>
 
=={{header|Sidef}}==
<syntaxhighlight lang="ruby">func is_int (n, tolerance=0) {
!!(abs(n.real.round + n.imag - n) <= tolerance)
}
 
%w(25.000000 24.999999 25.000100 -2.1e120 -5e-2 Inf NaN 5.0+0.0i 5-5i).each {|s|
var n = Number(s)
printf("%-10s %-8s %-5s\n", s,
is_int(n),
is_int(n, tolerance: 0.00001))
}</syntaxhighlight>
{{out}}
<pre>
25.000000 true true
24.999999 false true
25.000100 false false
-2.1e120 true true
-5e-2 false false
Inf false false
NaN false false
5.0+0.0i true true
5-5i false false
</pre>
 
=={{header|Tcl}}==
 
{{incomplete}}
The simplest method of doing thisway is testingto test whether the value is (numerically) equal to theitself valuecast afteras castingan itinteger. to aentier() integralperforms valuethis cast without imposing any word-size limits (as int() or wide() would).
 
<lang tcl>proc isNumberIntegral {x} {
<syntaxhighlight lang="tcl">proc isNumberIntegral {x} {
expr {$x == entier($x)}
}
# test with various kinds of numbers:
foreach x {3.14 7 1000000000000000000000} {
foreach x {1e100 3.14 7 1.000000000000001 1000000000000000000000 -22.7 -123.000} {
puts [format "%s: %s" $x [expr {[isNumberIntegral $x] ? "yes" : "no"}]]
}</langsyntaxhighlight>
{{out}}
<pre>
1e100: yes
3.14: no
7: yes
1.000000000000001: no
1000000000000000000000: yes
-22.7: no
-123.000: yes
</pre>
 
Note that 1.0000000000000001 will pass this integer test, because its difference from 1.0 is beyond the precision of an IEEE binary64 float. This discrepancy will be visible in other languages, but perhaps more obvious in Tcl as such a value's string representation will persist:
 
<syntaxhighlight lang="tcl">% set a 1.0000000000000001
1.0000000000000001
% expr $a
1.0
% IsNumberIntegral $a
1
% puts $a
1.0000000000000001</syntaxhighlight>
 
compare Python:
 
<syntaxhighlight lang="python">>>> a = 1.0000000000000001
>>> a
1.0
>>> 1.0 == 1.0000000000000001
True</syntaxhighlight>
 
.. this is a fairly benign illustration of why comparing floating point values with == is usually a bad idea.
 
=={{header|Wren}}==
{{libheader|Wren-big}}
{{libheader|Wren-complex}}
{{libheader|Wren-rat}}
{{libheader|Wren-fmt}}
The -2e120 example requires the use of BigRat to reliably determine whether it's an integer or not. Although the Num class can deal with numbers of this size and correctly identifies it as an integer, it would do the same if (say) 0.5 were added to it because integer determination is only reliable up to around 15 digits.
<syntaxhighlight lang="wren">import "./big" for BigRat
import "./complex" for Complex
import "./rat" for Rat
import "./fmt" for Fmt
 
var tests1 = [25.000000, 24.999999, 25.000100]
var tests2 = ["-2.1e120"]
var tests3 = [-5e-2, 0/0, 1/0]
var tests4 = [Complex.fromString("5.0+0.0i"), Complex.fromString("5-5i")]
var tests5 = [Rat.new(24, 8), Rat.new(-5, 1), Rat.new(17, 2)]
var tests6 = tests1 + [-5e-2]
 
System.print("Using exact arithmetic:\n")
for (t in tests1) {
Fmt.print(" $-9.6f is integer? $s", t, t.isInteger)
}
System.print()
for (t in tests2) {
Fmt.print(" $-9s is integer? $s", t, BigRat.new(t, 1).isInteger)
}
for (t in tests3) {
Fmt.print(" $-9.6f is integer? $s", t, t.isInteger)
}
System.print()
for (t in tests4) {
Fmt.print(" $-9s is integer? $s", t, t.isRealInteger)
}
System.print()
for (t in tests5) {
Fmt.print(" $-9s is integer? $s", t, t.isInteger)
}
System.print("\nWithin a tolerance of 0.00001:\n")
var tol = 0.00001
for (t in tests6) {
var d = (t - t.round).abs
Fmt.print(" $9.6f is integer? $s", t, d <= tol)
}</syntaxhighlight>
 
{{out}}
<pre>
Using exact arithmetic:
 
25.000000 is integer? true
24.999999 is integer? false
25.000100 is integer? false
 
-2.1e120 is integer? true
-0.050000 is integer? false
nan is integer? false
infinity is integer? false
 
5 + 0i is integer? true
5 - 5i is integer? false
 
3/1 is integer? true
-5/1 is integer? true
17/2 is integer? false
 
Within a tolerance of 0.00001:
 
25.000000 is integer? true
24.999999 is integer? true
25.000100 is integer? false
-0.050000 is integer? false
</pre>
 
=={{header|XPL0}}==
XPL0 has two data types: signed 32-bit integer and 8-byte real
represented by the processor's FPU (normally IEEE 754 double format). This
test program fails by stating that -2e10 is not an integer. However, it
is not an XPL0 integer that can be represented by a 32-bit signed value.
 
<syntaxhighlight lang="xpl0">real R;
[Format(20, 20);
repeat R:= RlIn(0);
RlOut(0, R);
Text(0, if R = float(fix(R)) then " is integer"
else " is not integer");
CrLf(0);
until R = 0.;
]</syntaxhighlight>
 
{{out}}
<pre>
25.000000 25.00000000000000000000 is integer
24.999999 24.99999900000000000000 is not integer
24.9999999999999999 25.00000000000000000000 is integer
25.00001 25.00001000000000000000 is not integer
-2e9 -2000000000.00000000000000000000 is integer
-2e10 -20000000000.00000000000000000000 is not integer
-5e-1 -0.50000000000000000000 is not integer
0 0.00000000000000000000 is integer
</pre>
 
=={{header|zkl}}==
No complex type.
<langsyntaxhighlight lang="zkl">T(1, 2.0,4.1,"nope",self).apply((1).isType)</langsyntaxhighlight>
{{out}}<pre>L(True,False,False,False,False)</pre>
All is not golden as BigInts (lib GMP) don't consider themselves to be integers so the above test would fail. For that case:
<langsyntaxhighlight lang="zkl">fcn isInt(x){ try{x==x.toInt()}catch{False}}
var BN=Import("zklBigNum");
T(1, 2.0,4.1,"nope",self,BN(5)).apply(isInt);</langsyntaxhighlight>
{{out}}<pre>L(True,True,False,False,False,True)</pre>
Note that the first float is now considered to have an integer equivalent.
2,069

edits