Jump to content

Talk:Erdős-Nicolas numbers

From Rosetta Code

Is there a special structure for those numbers

prime decomposition of Erdős-Nicolas numbers OEIS:A194472 - Erdős–Nicolas numbers

Sum 1..n:Div_Cnt:                 n : Pots
    6      8 :                   24 :2^3*3
   31     36 :                 2016 :2^5*3^2*7
   43     48 :                 8190 :2*3^2*5*7*13
   66     72 :                42336 :2^5*3^3*7^2
   66     72 :                45864 :2^3*3^2*7^2*13
   68     72 :               392448 :2^8*3*7*73
  113    120 :               714240 :2^9*3^2*5*31
  115    120 :              1571328 :2^9*3^2*11*31
  280    288 :             61900800 :2^11*3*5^2*13*31
  142    144 :             91963648 :2^8*7*19*37*73
  258    264 :            211891200 :2^10*3*5^2*31*89
  426    432 :           1931236608 :2^8*3*7^2*19*37*73
  329    336 :           2013143040 :2^13*3^2*5*43*127
  331    336 :           4428914688 :2^13*3^2*11*43*127
  238    240 :          10200236032 :2^14*7*19*31*151
  714    720 :         214204956672 :2^14*3*7^2*19*31*151
 2670   2688 :      104828758917120 :2^20*3^3*5*7^3*17*127
 4591   4608 :      916858574438400 :2^15*3^3*5^2*11^2*31*43*257
 4591   4608 :      967609154764800 :2^15*3^3*5^2*17^2*19*31*257
 4312   4320 :    93076753068441600 :2^14*3*5^2*19*31^2*83*151*331
 4024   4032 :   215131015678525440 :2^20*3*5*13^2*31*61*127*337
11509  11520 :  1371332329173024768 :2^17*3^4*11^3*19*31*37*61*73
Well, they're all even numbers...
Also, properties of this sequence would largely overlap with properties of perfect numbers. --Rdm (talk) 17:23, 4 November 2022 (UTC)
Cookies help us deliver our services. By using our services, you agree to our use of cookies.