Sunflower fractal: Difference between revisions

From Rosetta Code
Content added Content deleted
(Added Go)
Line 2: Line 2:
Draw [https://1drv.ms/u/s!AqDUIunCqVnIg1U89bApXAzPU9XH Sunflower fractal]
Draw [https://1drv.ms/u/s!AqDUIunCqVnIg1U89bApXAzPU9XH Sunflower fractal]
<br>
<br>
=={{header|Go}}==
{{trans|Ring}}
This uses the [https://github.com/fogleman/gg Go Graphics library] for rendering 2D graphics in pure Go. The image produced, when viewed with (for example) EOG, is similar to the Ring entry.
<lang go>package main

import (
"github.com/fogleman/gg"
"math"
)

func main() {
dc := gg.NewContext(400, 400)
dc.SetRGB(1, 1, 1)
dc.Clear()
dc.SetRGB(0, 0, 1)
c := (math.Sqrt(5) + 1) / 2
numberOfSeeds := 3000
for i := 0; i <= numberOfSeeds; i++ {
fi := float64(i)
fn := float64(numberOfSeeds)
r := math.Pow(fi, c) / fn
angle := 2 * math.Pi * c * fi
x := r*math.Sin(angle) + 200
y := r*math.Cos(angle) + 200
fi /= fn / 5
dc.DrawCircle(x, y, fi)
}
dc.SetLineWidth(1)
dc.Stroke()
dc.Fill()
dc.SavePNG("sunflower_fractal.png")
}</lang>

=={{header|Microsoft Small Basic}}==
=={{header|Microsoft Small Basic}}==
{{trans|Ring}}
{{trans|Ring}}

Revision as of 18:50, 24 July 2018

Sunflower fractal is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.

Draw Sunflower fractal

Go

Translation of: Ring

This uses the Go Graphics library for rendering 2D graphics in pure Go. The image produced, when viewed with (for example) EOG, is similar to the Ring entry. <lang go>package main

import (

   "github.com/fogleman/gg"
   "math"

)

func main() {

   dc := gg.NewContext(400, 400)
   dc.SetRGB(1, 1, 1)
   dc.Clear()
   dc.SetRGB(0, 0, 1)
   c := (math.Sqrt(5) + 1) / 2
   numberOfSeeds := 3000
   for i := 0; i <= numberOfSeeds; i++ {
       fi := float64(i)
       fn := float64(numberOfSeeds)
       r := math.Pow(fi, c) / fn
       angle := 2 * math.Pi * c * fi
       x := r*math.Sin(angle) + 200
       y := r*math.Cos(angle) + 200
       fi /= fn / 5
       dc.DrawCircle(x, y, fi)
   }
   dc.SetLineWidth(1)
   dc.Stroke()
   dc.Fill()
   dc.SavePNG("sunflower_fractal.png")

}</lang>

Microsoft Small Basic

Translation of: Ring

<lang smallbasic>' Sunflower fractal - 24/07/2018

 GraphicsWindow.Width=410
 GraphicsWindow.Height=400
 c=(Math.SquareRoot(5)+1)/2
 numberofseeds=3000
 For i=0 To numberofseeds
   r=Math.Power(i,c)/numberofseeds
   angle=2*Math.Pi*c*i
   x=r*Math.Sin(angle)+200
   y=r*Math.Cos(angle)+200
   GraphicsWindow.DrawEllipse(x, y, i/numberofseeds*10, i/numberofseeds*10)
 EndFor </lang>
Output:

Sunflower fractal

Ring

<lang ring>

  1. Project : Sunflower fractal
  2. Date  : 2018/07/24
  3. Author : Gal Zsolt (~ CalmoSoft ~)
  4. Email  : calmosoft@gmail.com

load "guilib.ring"

paint = null

new qapp

       {
       win1 = new qwidget() {
                 setwindowtitle("Sunflower fractal")
                 setgeometry(100,100,320,500)
                 label1 = new qlabel(win1) {
                             setgeometry(10,10,400,400)
                             settext("")
                 }
                 new qpushbutton(win1) {
                         setgeometry(100,400,100,30)
                         settext("draw")
                         setclickevent("draw()")
                 }
                 show()
       }
       exec()
       }

func draw

       p1 = new qpicture()
              color = new qcolor() {
              setrgb(0,0,255,255)
       }
       pen = new qpen() {
                setcolor(color)
                setwidth(1)
       }
       paint = new qpainter() {
                 begin(p1)
                 setpen(pen)
       c = (sqrt(5) + 1) / 2
       numberofseeds = 3000
       for i = 0 to numberofseeds
             r = pow(i, c ) / (numberofseeds)
             angle = 2 * 3.14 * c * i
             x = r * sin(angle) + 100
             y = r * cos(angle) + 100
            drawellipse(x, y, i / (numberofseeds / 10), i / (numberofseeds / 10))
       next
       endpaint()
       }
       label1 { setpicture(p1) show() }

</lang> Output:

Sunflower fractal