Jump to content

Fibonacci sequence: Difference between revisions

Dialects of BASIC moved to the BASIC section.
(Dialects of BASIC moved to the BASIC section.)
Line 1,582:
print n + chr(9) + c
</syntaxhighlight>
 
==={{header|BBC BASIC}}===
<syntaxhighlight lang="bbcbasic"> PRINT FNfibonacci_r(1), FNfibonacci_i(1)
PRINT FNfibonacci_r(13), FNfibonacci_i(13)
PRINT FNfibonacci_r(26), FNfibonacci_i(26)
END
DEF FNfibonacci_r(N)
IF N < 2 THEN = N
= FNfibonacci_r(N-1) + FNfibonacci_r(N-2)
DEF FNfibonacci_i(N)
LOCAL F, I, P, T
IF N < 2 THEN = N
P = 1
FOR I = 1 TO N
T = F
F += P
P = T
NEXT
= F
</syntaxhighlight>
{{out}}
<pre> 1 1
233 233
121393 121393</pre>
 
==={{header|Commodore BASIC}}===
Line 1,609 ⟶ 1,635:
 
READY.</pre>
 
==={{header|Craft Basic}}===
<syntaxhighlight lang="basic">let a = 1
let b = 1
 
print "Fibonacci Sequence"
 
do
 
let s = a + b
let a = b
let b = s
let i = i + 1
 
print s
 
loop i < 20</syntaxhighlight>
 
==={{header|FreeBASIC}}===
Extended sequence coded big integer.
<syntaxhighlight lang="freebasic">'Fibonacci extended
'Freebasic version 24 Windows
Dim Shared ADDQmod(0 To 19) As Ubyte
Dim Shared ADDbool(0 To 19) As Ubyte
 
For z As Integer=0 To 19
ADDQmod(z)=(z Mod 10+48)
ADDbool(z)=(-(10<=z))
Next z
 
Function plusINT(NUM1 As String,NUM2 As String) As String
Dim As Byte flag
#macro finish()
three=Ltrim(three,"0")
If three="" Then Return "0"
If flag=1 Then Swap NUM2,NUM1
Return three
Exit Function
#endmacro
var lenf=Len(NUM1)
var lens=Len(NUM2)
If lens>lenf Then
Swap NUM2,NUM1
Swap lens,lenf
flag=1
End If
var diff=lenf-lens-Sgn(lenf-lens)
var three="0"+NUM1
var two=String(lenf-lens,"0")+NUM2
Dim As Integer n2
Dim As Ubyte addup,addcarry
addcarry=0
For n2=lenf-1 To diff Step -1
addup=two[n2]+NUM1[n2]-96
three[n2+1]=addQmod(addup+addcarry)
addcarry=addbool(addup+addcarry)
Next n2
If addcarry=0 Then
finish()
End If
If n2=-1 Then
three[0]=addcarry+48
finish()
End If
For n2=n2 To 0 Step -1
addup=two[n2]+NUM1[n2]-96
three[n2+1]=addQmod(addup+addcarry)
addcarry=addbool(addup+addcarry)
Next n2
three[0]=addcarry+48
finish()
End Function
 
Function fibonacci(n As Integer) As String
Dim As String sl,l,term
sl="0": l="1"
If n=1 Then Return "0"
If n=2 Then Return "1"
n=n-2
For x As Integer= 1 To n
term=plusINT(l,sl)
sl=l
l=term
Next x
Function =term
End Function
 
'============== EXAMPLE ===============
print "THE SEQUENCE TO 10:"
print
For n As Integer=1 To 10
Print "term";n;": "; fibonacci(n)
Next n
print
print "Selected Fibonacci number"
print "Fibonacci 500"
print
print fibonacci(500)
Sleep</syntaxhighlight>
{{out}}
<pre>THE SEQUENCE TO 10:
 
term 1: 0
term 2: 1
term 3: 1
term 4: 2
term 5: 3
term 6: 5
term 7: 8
term 8: 13
term 9: 21
term 10: 34
 
Selected Fibonacci number
Fibonacci 500
 
86168291600238450732788312165664788095941068326060883324529903470149056115823592
713458328176574447204501</pre>
 
==={{header|FTCBASIC}}===
<syntaxhighlight lang="basic">define a = 1, b = 1, s = 0, i = 0
 
cls
 
print "Fibonacci Sequence"
 
do
 
let s = a + b
let a = b
let b = s
+1 i
 
print s
 
loop i < 20
 
pause
end</syntaxhighlight>
 
==={{header|FutureBasic}}===
==== Iterative ====
<syntaxhighlight lang="futurebasic">window 1, @"Fibonacci Sequence", (0,0,480,620)
 
local fn Fibonacci( n as long ) as long
static long s1
static long s2
long temp
if ( n < 2 )
s1 = n
exit fn
else
temp = s1 + s2
s2 = s1
s1 = temp
exit fn
end if
end fn = s1
 
long i
CFTimeInterval t
 
t = fn CACurrentMediaTime
 
for i = 0 to 40
print i;@".\t";fn Fibonacci(i)
next i
 
print : printf @"Compute time: %.3f ms",(fn CACurrentMediaTime-t)*1000
 
HandleEvents</syntaxhighlight>
Output:
<pre>
0. 0
1. 1
2. 1
3. 2
4. 3
5. 5
6. 8
7. 13
8. 21
9. 34
10. 55
11. 89
12. 144
13. 233
14. 377
15. 610
16. 987
17. 1597
18. 2584
19. 4181
20. 6765
21. 10946
22. 17711
23. 28657
24. 46368
25. 75025
26. 121393
27. 196418
28. 317811
29. 514229
30. 832040
31. 1346269
32. 2178309
33. 3524578
34. 5702887
35. 9227465
36. 14930352
37. 24157817
38. 39088169
39. 63245986
40. 102334155
 
Compute time: 2.143 ms</pre>
 
==== Recursive ====
Cost is a time penalty
<syntaxhighlight lang="futurebasic">
local fn Fibonacci( n as NSInteger ) as NSInteger
NSInteger result
if n < 2 then result = n : exit fn
result = fn Fibonacci( n-1 ) + fn Fibonacci( n-2 )
end fn = result
 
window 1
 
NSInteger i
CFTimeInterval t
 
t = fn CACurrentMediaTime
for i = 0 to 40
print i;@".\t";fn Fibonacci(i)
next
print : printf @"Compute time: %.3f ms",(fn CACurrentMediaTime-t)*1000
 
HandleEvents
</syntaxhighlight>
{{output}}
<pre>
0. 0
1. 1
2. 1
3. 2
4. 3
5. 5
6. 8
7. 13
8. 21
9. 34
10. 55
11. 89
12. 144
13. 233
14. 377
15. 610
16. 987
17. 1597
18. 2584
19. 4181
20. 6765
21. 10946
22. 17711
23. 28657
24. 46368
25. 75025
26. 121393
27. 196418
28. 317811
29. 514229
30. 832040
31. 1346269
32. 2178309
33. 3524578
34. 5702887
35. 9227465
36. 14930352
37. 24157817
38. 39088169
39. 63245986
40. 102334155
 
Compute time: 2844.217 ms
</pre>
 
==={{header|GFA Basic}}===
<syntaxhighlight lang="text">
'
' Compute nth Fibonacci number
'
' open a window for display
OPENW 1
CLEARW 1
' Display some fibonacci numbers
' Fib(46) is the largest number GFA Basic can reach
' (long integers are 4 bytes)
FOR i%=0 TO 46
PRINT "fib(";i%;")=";@fib(i%)
NEXT i%
' wait for a key press and tidy up
~INP(2)
CLOSEW 1
'
' Function to compute nth fibonacci number
' n must be in range 0 to 46, inclusive
'
FUNCTION fib(n%)
LOCAL n0%,n1%,nn%,i%
n0%=0
n1%=1
SELECT n%
CASE 0
RETURN n0%
CASE 1
RETURN n1%
DEFAULT
FOR i%=2 TO n%
nn%=n0%+n1%
n0%=n1%
n1%=nn%
NEXT i%
RETURN nn%
ENDSELECT
ENDFUNC
</syntaxhighlight>
 
==={{header|Integer BASIC}}===
Line 1,636 ⟶ 1,993:
200 LET FIB=A
210 END DEF</syntaxhighlight>
 
==={{header|Liberty BASIC}}===
====Iterative/Recursive====
{{works with|Just BASIC}}
<syntaxhighlight lang="lb">
for i = 0 to 15
print fiboR(i),fiboI(i)
next i
function fiboR(n)
if n <= 1 then
fiboR = n
else
fiboR = fiboR(n-1) + fiboR(n-2)
end if
end function
function fiboI(n)
a = 0
b = 1
for i = 1 to n
temp = a + b
a = b
b = temp
next i
fiboI = a
end function
</syntaxhighlight>
{{out}}
<pre>
0 0
1 1
1 1
2 2
3 3
5 5
8 8
13 13
21 21
34 34
55 55
89 89
144 144
233 233
377 377
610 610
</pre>
====Iterative/Negative====
{{works with|Just BASIC}}
<syntaxhighlight lang="lb">
print "Rosetta Code - Fibonacci sequence": print
print " n Fn"
for x=-12 to 12 '68 max
print using("### ", x); using("##############", FibonacciTerm(x))
next x
print
[start]
input "Enter a term#: "; n$
n$=lower$(trim$(n$))
if n$="" then print "Program complete.": end
print FibonacciTerm(val(n$))
goto [start]
 
function FibonacciTerm(n)
n=int(n)
FTa=0: FTb=1: FTc=-1
select case
case n=0 : FibonacciTerm=0 : exit function
case n=1 : FibonacciTerm=1 : exit function
case n=-1 : FibonacciTerm=-1 : exit function
case n>1
for x=2 to n
FibonacciTerm=FTa+FTb
FTa=FTb: FTb=FibonacciTerm
next x
exit function
case n<-1
for x=-2 to n step -1
FibonacciTerm=FTa+FTc
FTa=FTc: FTc=FibonacciTerm
next x
exit function
end select
end function
</syntaxhighlight>
{{out}}
<pre>
Rosetta Code - Fibonacci sequence
 
n Fn
-12 -144
-11 -89
-10 -55
-9 -34
-8 -21
-7 -13
-6 -8
-5 -5
-4 -3
-3 -2
-2 -1
-1 -1
0 0
1 1
2 1
3 2
4 3
5 5
6 8
7 13
8 21
9 34
10 55
11 89
12 144
 
Enter a term#: 12
144
Enter a term#:
Program complete.
</pre>
 
==={{header|Microsoft Small Basic}}===
====Iterative====
<syntaxhighlight lang="smallbasic">' Fibonacci sequence - 31/07/2018
n = 139
f1 = 0
f2 = 1
TextWindow.WriteLine("fibo(0)="+f1)
TextWindow.WriteLine("fibo(1)="+f2)
For i = 2 To n
f3 = f1 + f2
TextWindow.WriteLine("fibo("+i+")="+f3)
f1 = f2
f2 = f3
EndFor</syntaxhighlight>
{{out}}
<pre>
fibo(139)=50095301248058391139327916261
</pre>
====Binet's Formula====
<syntaxhighlight lang="smallbasic">' Fibonacci sequence - Binet's Formula - 31/07/2018
n = 69
sq5=Math.SquareRoot(5)
phi1=(1+sq5)/2
phi2=(1-sq5)/2
phi1n=phi1
phi2n=phi2
For i = 2 To n
phi1n=phi1n*phi1
phi2n=phi2n*phi2
TextWindow.Write(Math.Floor((phi1n-phi2n)/sq5)+" ")
EndFor</syntaxhighlight>
{{out}}
<pre>
1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765 10946 17711 28657 46368 75025 121393 196418 317811 514229 832040 1346269 2178309 3524578 5702887 9227465 14930352 24157817 39088169 63245986 102334155 165580141 267914296 433494437 701408733 1134903170 1836311903 2971215073 4807526976 7778742049 12586269025 20365011074 32951280099 53316291173 86267571272 139583862445 225851433717 365435296162 591286729879 956722026041 1548008755920 2504730781961 4052739537881 6557470319842 10610209857723 17167680177565 27777890035288 44945570212853 72723460248141 117669030460994
</pre>
 
==={{header|PowerBASIC}}===
{{trans|BASIC}}
There seems to be a limitation (dare I say, bug?) in PowerBASIC regarding how large numbers are stored. 10E17 and larger get rounded to the nearest 10. For F(n), where ABS(n) > 87, is affected like this:
actual: displayed:
F(88) 1100087778366101931 1100087778366101930
F(89) 1779979416004714189 1779979416004714190
F(90) 2880067194370816120 2880067194370816120
F(91) 4660046610375530309 4660046610375530310
F(92) 7540113804746346429 7540113804746346430
 
<syntaxhighlight lang="powerbasic">FUNCTION fibonacci (n AS LONG) AS QUAD
DIM u AS LONG, a AS LONG, L0 AS LONG, outP AS QUAD
STATIC fibNum() AS QUAD
 
u = UBOUND(fibNum)
a = ABS(n)
 
IF u < 1 THEN
REDIM fibNum(1)
fibNum(1) = 1
u = 1
END IF
 
SELECT CASE a
CASE 0 TO 92
IF a > u THEN
REDIM PRESERVE fibNum(a)
FOR L0 = u + 1 TO a
fibNum(L0) = fibNum(L0 - 1) + fibNum(L0 - 2)
IF 88 = L0 THEN fibNum(88) = fibNum(88) + 1
NEXT
END IF
IF n < 0 THEN
fibonacci = fibNum(a) * ((-1)^(a+1))
ELSE
fibonacci = fibNum(a)
END IF
CASE ELSE
'Even without the above-mentioned bug, we're still limited to
'F(+/-92), due to data type limits. (F(93) = &hA94F AD42 221F 2702)
ERROR 6
END SELECT
END FUNCTION
 
FUNCTION PBMAIN () AS LONG
DIM n AS LONG
#IF NOT %DEF(%PB_CC32)
OPEN "out.txt" FOR OUTPUT AS 1
#ENDIF
FOR n = -92 TO 92
#IF %DEF(%PB_CC32)
PRINT STR$(n); ": "; FORMAT$(fibonacci(n), "#")
#ELSE
PRINT #1, STR$(n) & ": " & FORMAT$(fibonacci(n), "#")
#ENDIF
NEXT
CLOSE
END FUNCTION</syntaxhighlight>
 
==={{header|PureBasic}}===
====Macro based calculation====
<syntaxhighlight lang="purebasic">Macro Fibonacci (n)
Int((Pow(((1+Sqr(5))/2),n)-Pow(((1-Sqr(5))/2),n))/Sqr(5))
EndMacro</syntaxhighlight>
====Recursive====
<syntaxhighlight lang="purebasic">Procedure FibonacciReq(n)
If n<2
ProcedureReturn n
Else
ProcedureReturn FibonacciReq(n-1)+FibonacciReq(n-2)
EndIf
EndProcedure</syntaxhighlight>
 
====Recursive & optimized with a static hash table====
This will be much faster on larger n's, this as it uses a table to store known parts instead of recalculating them.
On my machine the speedup compares to above code is
Fib(n) Speedup
20 2
25 23
30 217
40 25847
46 1156741
<syntaxhighlight lang="purebasic">Procedure Fibonacci(n)
Static NewMap Fib.i()
Protected FirstRecursion
If MapSize(Fib())= 0 ; Init the hash table the first run
Fib("0")=0: Fib("1")=1
FirstRecursion = #True
EndIf
If n >= 2
Protected.s s=Str(n)
If Not FindMapElement(Fib(),s) ; Calculate only needed parts
Fib(s)= Fibonacci(n-1)+Fibonacci(n-2)
EndIf
n = Fib(s)
EndIf
If FirstRecursion ; Free the memory when finalizing the first call
ClearMap(Fib())
EndIf
ProcedureReturn n
EndProcedure</syntaxhighlight>
 
'''Example'''
Fibonacci(0)= 0
Fibonacci(1)= 1
Fibonacci(2)= 1
Fibonacci(3)= 2
Fibonacci(4)= 3
Fibonacci(5)= 5
FibonacciReq(0)= 0
FibonacciReq(1)= 1
FibonacciReq(2)= 1
FibonacciReq(3)= 2
FibonacciReq(4)= 3
FibonacciReq(5)= 5
 
==={{header|QB64}}===
''CBTJD'': 2020/03/13
<syntaxhighlight lang="qbasic">_DEFINE F AS _UNSIGNED _INTEGER64
CLS
PRINT
PRINT "Enter 40 to more easily see the difference in calculation speeds."
PRINT
INPUT "Enter n for Fibonacci(n): ", n
PRINT
PRINT " Analytic Method (Fastest): F("; LTRIM$(STR$(n)); ") ="; fA(n)
PRINT "Iterative Method (Fast): F("; LTRIM$(STR$(n)); ") ="; fI(n)
PRINT "Recursive Method (Slow): F("; LTRIM$(STR$(n)); ") ="; fR(n)
END
 
' === Analytic Fibonacci Function (Fastest)
FUNCTION fA (n)
fA = INT(0.5 + (((SQR(5) + 1) / 2) ^ n) / SQR(5))
END FUNCTION
 
' === Iterative Fibonacci Function (Fast)
FUNCTION fI (n)
FOR i = 1 TO n
IF i < 3 THEN a = 1: b = 1
t = fI + b: fI = b: b = t
NEXT
END FUNCTION
 
' === Recursive Fibonacci function (Slow)
FUNCTION fR (n)
IF n <= 1 THEN
fR = n
ELSE
fR = fR(n - 1) + fR(n - 2)
END IF
END FUNCTION
</syntaxhighlight>
Fibonacci from Russia
<syntaxhighlight lang="qbasic">DIM F(80) AS DOUBLE 'FibRus.bas DANILIN
F(1) = 0: F(2) = 1
'OPEN "FibRus.txt" FOR OUTPUT AS #1
FOR i = 3 TO 80
F(i) = F(i-1)+F(i-2)
NEXT i
 
FOR i = 1 TO 80
f$ = STR$(F(i)): LF = 22 - LEN(f$)
n$ = ""
FOR j = 1 TO LF: n$ = " " + n$: NEXT
f$ = n$ + f$
PRINT i, f$: ' PRINT #1, i, f$
NEXT i</syntaxhighlight>
{{out}}
<pre>1 0
2 1
3 1
4 2
5 3
6 5
7 8
8 13
9 21
...
24 28657
25 46368
26 75025
...
36 9227465
37 14930352
38 24157817
...
48 2971215073
49 4807526976
50 7778742049
...
60 956722026041
61 1548008755920
62 2504730781961
...
76 2111485077978050
77 3416454622906707
78 5527939700884757
79 8944394323791464
80 1.447233402467622D+16</pre>
 
==={{header|QBasic}}===
Line 1,706 ⟶ 2,423:
====Recursive====
This example can't handle n < 0.
 
<syntaxhighlight lang="qbasic">FUNCTION recFib (n)
IF (n < 2) THEN
Line 1,716 ⟶ 2,432:
 
====Array (Table) Lookup====
 
This uses a pre-generated list, requiring much less run-time processor usage. (Since the sequence never changes, this is probably the best way to do this in "the real world". The same applies to other sequences like prime numbers, and numbers like pi and e.)
 
Line 1,741 ⟶ 2,456:
'*****sample inputs*****</syntaxhighlight>
 
===={{header|QB64Run BASIC}}====
<syntaxhighlight lang="runbasic">for i = 0 to 10
print i;" ";fibR(i);" ";fibI(i)
next i
end
function fibR(n)
if n < 2 then fibR = n else fibR = fibR(n-1) + fibR(n-2)
end function
function fibI(n)
b = 1
for i = 1 to n
t = a + b
a = b
b = t
next i
fibI = a
end function</syntaxhighlight>
 
==={{header|S-BASIC}}===
Fibonacci from Russia
Note that the 23rd Fibonacci number (=28657) is the largest that can be generated without overflowing S-BASIC's integer data type.
<syntaxhighlight lang="basic">
rem - iterative function to calculate nth fibonacci number
function fibonacci(n = integer) = integer
var f, i, p1, p2 = integer
p1 = 0
p2 = 1
if n = 0 then
f = 0
else
for i = 1 to n
f = p1 + p2
p2 = p1
p1 = f
next i
end = f
 
rem - exercise the function
<syntaxhighlight lang="qbasic">DIM F(80) AS DOUBLE 'FibRus.bas DANILIN
var i = integer
F(1) = 0: F(2) = 1
for i = 0 to 10
'OPEN "FibRus.txt" FOR OUTPUT AS #1
print fibonacci(i);
FOR i = 3 TO 80
next i
F(i) = F(i-1)+F(i-2)
NEXT i
 
end
FOR i = 1 TO 80
</syntaxhighlight>
f$ = STR$(F(i)): LF = 22 - LEN(f$)
n$ = ""
FOR j = 1 TO LF: n$ = " " + n$: NEXT
f$ = n$ + f$
PRINT i, f$: ' PRINT #1, i, f$
NEXT i</syntaxhighlight>
{{out}}
<pre>1 0 1 1 2 3 5 8 13 21 34 055
</pre>
2 1
3 1
4 2
5 3
6 5
7 8
8 13
9 21
...
24 28657
25 46368
26 75025
...
36 9227465
37 14930352
38 24157817
...
48 2971215073
49 4807526976
50 7778742049
...
60 956722026041
61 1548008755920
62 2504730781961
...
76 2111485077978050
77 3416454622906707
78 5527939700884757
79 8944394323791464
80 1.447233402467622D+16</pre>
 
==={{header|Sinclair ZX81 BASIC}}===
Line 1,822 ⟶ 2,536:
120 GOSUB 70
130 RETURN</syntaxhighlight>
 
==={{header|smart BASIC}}===
 
The Iterative method is slow (relatively) and the Recursive method doubly so since it references the recursion function twice.
 
The N-th Term (fibN) function is much faster as it utilizes Binet's Formula.
 
<ul>
<li>fibR: Fibonacci Recursive</li>
<li>fibI: Fibonacci Iterative</li>
<li>fibN: Fibonacci N-th Term</li>
</ul>
 
<syntaxhighlight lang="qbasic">FOR i = 0 TO 15
PRINT fibR(i),fibI(i),fibN(i)
NEXT i
 
/* Recursive Method */
DEF fibR(n)
IF n <= 1 THEN
fibR = n
ELSE
fibR = fibR(n-1) + fibR(n-2)
ENDIF
END DEF
 
/* Iterative Method */
DEF fibI(n)
a = 0
b = 1
FOR i = 1 TO n
temp = a + b
a = b
b = temp
NEXT i
fibI = a
END DEF
 
/* N-th Term Method */
DEF fibN(n)
uphi = .5 + SQR(5)/2
lphi = .5 - SQR(5)/2
fibN = (uphi^n-lphi^n)/SQR(5)
END DEF</syntaxhighlight>
 
==={{header|Softbridge BASIC}}===
====Iterative====
<syntaxhighlight lang="basic">
Function Fibonacci(n)
x = 0
y = 1
i = 0
n = ABS(n)
If n < 2 Then
Fibonacci = n
Else
Do Until (i = n)
sum = x+y
x=y
y=sum
i=i+1
Loop
Fibonacci = x
End If
 
End Function
</syntaxhighlight>
 
==={{header|TI-83 BASIC}}===
==== Sequence table ====
<syntaxhighlight lang="ti83b">[Y=]
nMin=0
u(n)=u(n-1)+u(n-2)
u(nMin)={1,0}
[TABLE]
n u(n)
------- -------
0 0
1 1
2 1
3 2
4 3
5 5
6 8
7 13
8 21
9 34
10 55
11 89
12 144 </syntaxhighlight>
 
==== Iterative ====
<syntaxhighlight lang="ti83b">{0,1
While 1
Disp Ans(1
{Ans(2),sum(Ans
End</syntaxhighlight>
 
==== Binet's formula ====
<syntaxhighlight lang="ti83b">Prompt N
.5(1+√(5 //golden ratio
(Ans^N–(-Ans)^-N)/√(5</syntaxhighlight>
 
==={{header|TI-89 BASIC}}===
====Recursive====
Optimized implementation (too slow to be usable for ''n'' higher than about 12).
<syntaxhighlight lang="ti89b">fib(n)
when(n<2, n, fib(n-1) + fib(n-2))</syntaxhighlight>
 
====Iterative====
Unoptimized implementation (I think the for loop can be eliminated, but I'm not sure).
<syntaxhighlight lang="ti89b">fib(n)
Func
Local a,b,c,i
0→a
1→b
For i,1,n
a→c
b→a
c+b→b
EndFor
a
EndFunc</syntaxhighlight>
 
==={{header|Tiny BASIC}}===
{{works with|TinyBasic}}
<syntaxhighlight lang="basic">10 LET A = 0
20 LET B = 1
30 PRINT "Which F_n do you want?"
40 INPUT N
50 IF N = 0 THEN GOTO 140
60 IF N = 1 THEN GOTO 120
70 LET C = B + A
80 LET A = B
90 LET B = C
100 LET N = N - 1
110 GOTO 60
120 PRINT B
130 END
140 PRINT 0
150 END
</syntaxhighlight>
 
==={{header|Tiny Craft Basic}}===
<syntaxhighlight lang="basic">10 cls
 
20 let a = 1
30 let b = 1
 
40 print "Fibonacci Sequence"
 
50 rem loop
 
60 let s = a + b
70 let a = b
80 let b = s
90 let i = i + 1
 
100 print s
 
120 if i < 20 then 50
 
130 shell "pause"
140 end</syntaxhighlight>
 
==={{header|True BASIC}}===
<syntaxhighlight lang="qbasic">FUNCTION fibonacci (n)
LET n1 = 0
LET n2 = 1
FOR k = 1 TO ABS(n)
LET sum = n1 + n2
LET n1 = n2
LET n2 = sum
NEXT k
IF n < 0 THEN
LET fibonacci = n1 * ((-1) ^ ((-n) + 1))
ELSE
LET fibonacci = n1
END IF
END FUNCTION
 
PRINT fibonacci(0) ! 0
PRINT fibonacci(13) ! 233
PRINT fibonacci(-42) !-267914296
PRINT fibonacci(47) ! 2971215073
END</syntaxhighlight>
 
==={{header|VBA}}===
Like Visual Basic .NET, but with keyword "Public" and type Variant (subtype Currency) instead of Decimal:
<syntaxhighlight lang="vb">Public Function Fib(ByVal n As Integer) As Variant
Dim fib0 As Variant, fib1 As Variant, sum As Variant
Dim i As Integer
fib0 = 0
fib1 = 1
For i = 1 To n
sum = fib0 + fib1
fib0 = fib1
fib1 = sum
Next i
Fib = fib0
End Function </syntaxhighlight>
With Currency type, maximum value is fibo(73).
 
The (slow) recursive version:
 
<syntaxhighlight lang="vba">
Public Function RFib(Term As Integer) As Long
If Term < 2 Then RFib = Term Else RFib = RFib(Term - 1) + RFib(Term - 2)
End Function
</syntaxhighlight>
 
With Long type, maximum value is fibo(46).
 
==={{header|VBScript}}===
====Non-recursive, object oriented, generator====
Defines a generator class, with a default Get property. Uses Currency for larger-than-Long values. Tests for overflow and switches to Double. Overflow information also available from class.
 
=====Class Definition:=====
<syntaxhighlight lang="vb">class generator
dim t1
dim t2
dim tn
dim cur_overflow
Private Sub Class_Initialize
cur_overflow = false
t1 = ccur(0)
t2 = ccur(1)
tn = ccur(t1 + t2)
end sub
public default property get generated
on error resume next
 
generated = ccur(tn)
if err.number <> 0 then
generated = cdbl(tn)
cur_overflow = true
end if
t1 = ccur(t2)
if err.number <> 0 then
t1 = cdbl(t2)
cur_overflow = true
end if
t2 = ccur(tn)
if err.number <> 0 then
t2 = cdbl(tn)
cur_overflow = true
end if
tn = ccur(t1+ t2)
if err.number <> 0 then
tn = cdbl(t1) + cdbl(t2)
cur_overflow = true
end if
on error goto 0
end property
public property get overflow
overflow = cur_overflow
end property
end class</syntaxhighlight>
 
=====Invocation:=====
<syntaxhighlight lang="vb">dim fib
set fib = new generator
dim i
for i = 1 to 100
wscript.stdout.write " " & fib
if fib.overflow then
wscript.echo
exit for
end if
next</syntaxhighlight>
 
{{out}}
<pre> 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765 10946 17711 28657 46368 75025 121393 196418 317811 514229 832040 1346269 2178309 3524578 5702887 9227465 14930352 24157817 39088169 63245986 102334155 165580141 267914296 433494437 701408733 1134903170 1836311903 2971215073 4807526976 7778742049 12586269025 20365011074 32951280099 53316291173 86267571272 139583862445 225851433717 365435296162 591286729879 956722026041 1548008755920 2504730781961 4052739537881 6557470319842 10610209857723 17167680177565 27777890035288 44945570212853 72723460248141 117669030460994 190392490709135 308061521170129 498454011879264 806515533049393</pre>
 
==={{header|Visual Basic}}===
{{works with|Visual Basic|VB6 Standard}}
Maximum integer value (7*10^28) can be obtained by using decimal type, but decimal type is only a sub type of the variant type.
<syntaxhighlight lang="vb">Sub fibonacci()
Const n = 139
Dim i As Integer
Dim f1 As Variant, f2 As Variant, f3 As Variant 'for Decimal
f1 = CDec(0): f2 = CDec(1) 'for Decimal setting
Debug.Print "fibo("; 0; ")="; f1
Debug.Print "fibo("; 1; ")="; f2
For i = 2 To n
f3 = f1 + f2
Debug.Print "fibo("; i; ")="; f3
f1 = f2
f2 = f3
Next i
End Sub 'fibonacci</syntaxhighlight>
{{Out}}
<pre>fibo( 0 )= 0
fibo( 1 )= 1
fibo( 2 )= 1
...
fibo( 137 )= 19134702400093278081449423917
fibo( 138 )= 30960598847965113057878492344
fibo( 139 )= 50095301248058391139327916261 </pre>
 
==={{header|Visual Basic .NET}}===
'''Platform:''' [[.NET]]
====Iterative====
{{works with|Visual Basic .NET|9.0+}}
With Decimal type, maximum value is fibo(139).
<syntaxhighlight lang="vbnet">Function Fib(ByVal n As Integer) As Decimal
Dim fib0, fib1, sum As Decimal
Dim i As Integer
fib0 = 0
fib1 = 1
For i = 1 To n
sum = fib0 + fib1
fib0 = fib1
fib1 = sum
Next
Fib = fib0
End Function</syntaxhighlight>
====Recursive====
{{works with|Visual Basic .NET|9.0+}}
<syntaxhighlight lang="vbnet">Function Seq(ByVal Term As Integer)
If Term < 2 Then Return Term
Return Seq(Term - 1) + Seq(Term - 2)
End Function</syntaxhighlight>
====BigInteger====
There is no real maximum value of BigInterger class, except the memory to store the number.
Within a minute, fibo(2000000) is a number with 417975 digits.
<syntaxhighlight lang="vbnet"> Function FiboBig(ByVal n As Integer) As BigInteger
' Fibonacci sequence with BigInteger
Dim fibn2, fibn1, fibn As BigInteger
Dim i As Integer
fibn = 0
fibn2 = 0
fibn1 = 1
If n = 0 Then
Return fibn2
ElseIf n = 1 Then
Return fibn1
ElseIf n >= 2 Then
For i = 2 To n
fibn = fibn2 + fibn1
fibn2 = fibn1
fibn1 = fibn
Next i
Return fibn
End If
Return 0
End Function 'FiboBig
 
Sub fibotest()
Dim i As Integer, s As String
i = 2000000 ' 2 millions
s = FiboBig(i).ToString
Console.WriteLine("fibo(" & i & ")=" & s & " - length=" & Len(s))
End Sub 'fibotest</syntaxhighlight>
 
====BigInteger, speedier method====
{{Libheader|System.Numerics}}
This method doesn't need to iterate the entire list, and is much faster. The 2000000 (two millionth) Fibonacci number can be found in a fraction of a second.<br/>Algorithm from [http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibFormula.html here, see section 3, ''Finding Fibonacci Numbers Fully''.]
<syntaxhighlight lang="vbnet">Imports System
Imports System.Collections.Generic
Imports BI = System.Numerics.BigInteger
 
Module Module1
 
' A sparse array of values calculated along the way
Dim sl As SortedList(Of Integer, BI) = New SortedList(Of Integer, BI)()
 
' Square a BigInteger
Function sqr(ByVal n As BI) As BI
Return n * n
End Function
 
' Helper routine for Fsl(). It adds an entry to the sorted list when necessary
Sub IfNec(n As Integer)
If Not sl.ContainsKey(n) Then sl.Add(n, Fsl(n))
End Sub
 
' This routine is semi-recursive, but doesn't need to evaluate every number up to n.
' Algorithm from here: http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibFormula.html#section3
Function Fsl(ByVal n As Integer) As BI
If n < 2 Then Return n
Dim n2 As Integer = n >> 1, pm As Integer = n2 + ((n And 1) << 1) - 1 : IfNec(n2) : IfNec(pm)
Return If(n2 > pm, (2 * sl(pm) + sl(n2)) * sl(n2), sqr(sl(n2)) + sqr(sl(pm)))
End Function
 
' Conventional iteration method (not used here)
Function Fm(ByVal n As BI) As BI
If n < 2 Then Return n
Dim cur As BI = 0, pre As BI = 1
For i As Integer = 0 To n - 1
Dim sum As BI = cur + pre : pre = cur : cur = sum : Next : Return cur
End Function
 
Sub Main()
Dim vlen As Integer, num As Integer = 2_000_000, digs As Integer = 35
Dim sw As System.Diagnostics.Stopwatch = System.Diagnostics.Stopwatch.StartNew()
Dim v As BI = Fsl(num) : sw.[Stop]()
Console.Write("{0:n3} ms to calculate the {1:n0}th Fibonacci number, ", sw.Elapsed.TotalMilliseconds, num)
vlen = CInt(Math.Ceiling(BI.Log10(v))) : Console.WriteLine("number of digits is {0}", vlen)
If vlen < 10000 Then
sw.Restart() : Console.WriteLine(v) : sw.[Stop]()
Console.WriteLine("{0:n3} ms to write it to the console.", sw.Elapsed.TotalMilliseconds)
Else
Console.Write("partial: {0}...{1}", v / BI.Pow(10, vlen - digs), v Mod BI.Pow(10, digs))
End If
End Sub
End Module</syntaxhighlight>
{{out}}
<pre>120.374 ms to calculate the 2,000,000th Fibonacci number, number of digits is 417975
partial: 85312949175076415430516606545038251...91799493108960825129188777803453125</pre>
 
==={{header|Xojo}}===
Pass n to this function where n is the desired number of iterations. This example uses the UInt64 datatype which is as unsigned 64 bit integer. As such, it overflows after the 93rd iteration.
<syntaxhighlight lang="vb">Function fibo(n As Integer) As UInt64
 
Dim noOne As UInt64 = 1
Dim noTwo As UInt64 = 1
Dim sum As UInt64
 
For i As Integer = 3 To n
sum = noOne + noTwo
noTwo = noOne
noOne = sum
Next
 
Return noOne
End Function</syntaxhighlight>
 
==={{header|Yabasic}}===
<syntaxhighlight lang="yabasic">sub fibonacci (n)
n1 = 0
n2 = 1
for k = 1 to abs(n)
sum = n1 + n2
n1 = n2
n2 = sum
next k
if n < 0 then
return n1 * ((-1) ^ ((-n) + 1))
else
return n1
end if
end sub</syntaxhighlight>
 
==={{header|ZX Spectrum Basic}}===
====Iterative====
<syntaxhighlight lang="zxbasic">10 REM Only positive numbers
20 LET n=10
30 LET n1=0: LET n2=1
40 FOR k=1 TO n
50 LET sum=n1+n2
60 LET n1=n2
70 LET n2=sum
80 NEXT k
90 PRINT n1</syntaxhighlight>
 
====Analytic====
<syntaxhighlight lang="zxbasic">10 DEF FN f(x)=INT (0.5+(((SQR 5+1)/2)^x)/SQR 5)</syntaxhighlight>
 
=={{header|Batch File}}==
Line 1,911 ⟶ 3,087:
// vim: set syntax=c ts=4 sw=4 et:
</syntaxhighlight>
 
=={{header|BBC BASIC}}==
<syntaxhighlight lang="bbcbasic"> PRINT FNfibonacci_r(1), FNfibonacci_i(1)
PRINT FNfibonacci_r(13), FNfibonacci_i(13)
PRINT FNfibonacci_r(26), FNfibonacci_i(26)
END
DEF FNfibonacci_r(N)
IF N < 2 THEN = N
= FNfibonacci_r(N-1) + FNfibonacci_r(N-2)
DEF FNfibonacci_i(N)
LOCAL F, I, P, T
IF N < 2 THEN = N
P = 1
FOR I = 1 TO N
T = F
F += P
P = T
NEXT
= F
</syntaxhighlight>
{{out}}
<pre> 1 1
233 233
121393 121393</pre>
 
=={{header|bc}}==
Line 3,423 ⟶ 4,573:
 
<pre>0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181</pre>
 
=={{header|Craft Basic}}==
<syntaxhighlight lang="basic">let a = 1
let b = 1
 
print "Fibonacci Sequence"
 
do
 
let s = a + b
let a = b
let b = s
let i = i + 1
 
print s
 
loop i < 20</syntaxhighlight>
 
=={{header|Crystal}}==
 
===Recursive===
<syntaxhighlight lang="ruby">def fib(n)
Line 5,221 ⟶ 6,353:
fibonacci := f[previous];
end;</syntaxhighlight>
 
=={{header|FreeBASIC}}==
Extended sequence coded big integer.
<syntaxhighlight lang="freebasic">'Fibonacci extended
'Freebasic version 24 Windows
Dim Shared ADDQmod(0 To 19) As Ubyte
Dim Shared ADDbool(0 To 19) As Ubyte
 
For z As Integer=0 To 19
ADDQmod(z)=(z Mod 10+48)
ADDbool(z)=(-(10<=z))
Next z
 
Function plusINT(NUM1 As String,NUM2 As String) As String
Dim As Byte flag
#macro finish()
three=Ltrim(three,"0")
If three="" Then Return "0"
If flag=1 Then Swap NUM2,NUM1
Return three
Exit Function
#endmacro
var lenf=Len(NUM1)
var lens=Len(NUM2)
If lens>lenf Then
Swap NUM2,NUM1
Swap lens,lenf
flag=1
End If
var diff=lenf-lens-Sgn(lenf-lens)
var three="0"+NUM1
var two=String(lenf-lens,"0")+NUM2
Dim As Integer n2
Dim As Ubyte addup,addcarry
addcarry=0
For n2=lenf-1 To diff Step -1
addup=two[n2]+NUM1[n2]-96
three[n2+1]=addQmod(addup+addcarry)
addcarry=addbool(addup+addcarry)
Next n2
If addcarry=0 Then
finish()
End If
If n2=-1 Then
three[0]=addcarry+48
finish()
End If
For n2=n2 To 0 Step -1
addup=two[n2]+NUM1[n2]-96
three[n2+1]=addQmod(addup+addcarry)
addcarry=addbool(addup+addcarry)
Next n2
three[0]=addcarry+48
finish()
End Function
 
Function fibonacci(n As Integer) As String
Dim As String sl,l,term
sl="0": l="1"
If n=1 Then Return "0"
If n=2 Then Return "1"
n=n-2
For x As Integer= 1 To n
term=plusINT(l,sl)
sl=l
l=term
Next x
Function =term
End Function
 
'============== EXAMPLE ===============
print "THE SEQUENCE TO 10:"
print
For n As Integer=1 To 10
Print "term";n;": "; fibonacci(n)
Next n
print
print "Selected Fibonacci number"
print "Fibonacci 500"
print
print fibonacci(500)
Sleep</syntaxhighlight>
{{out}}
<pre>THE SEQUENCE TO 10:
 
term 1: 0
term 2: 1
term 3: 1
term 4: 2
term 5: 3
term 6: 5
term 7: 8
term 8: 13
term 9: 21
term 10: 34
 
Selected Fibonacci number
Fibonacci 500
 
86168291600238450732788312165664788095941068326060883324529903470149056115823592
713458328176574447204501</pre>
 
=={{header|Frink}}==
Line 5,369 ⟶ 6,396:
 
RET</syntaxhighlight>
 
=={{header|FTCBASIC}}==
<syntaxhighlight lang="basic">define a = 1, b = 1, s = 0, i = 0
 
cls
 
print "Fibonacci Sequence"
 
do
 
let s = a + b
let a = b
let b = s
+1 i
 
print s
 
loop i < 20
 
pause
end</syntaxhighlight>
 
=={{header|FunL}}==
Line 5,484 ⟶ 6,490:
in a
</syntaxhighlight>
 
=={{header|FutureBasic}}==
=== Iterative ===
<syntaxhighlight lang="futurebasic">window 1, @"Fibonacci Sequence", (0,0,480,620)
 
local fn Fibonacci( n as long ) as long
static long s1
static long s2
long temp
if ( n < 2 )
s1 = n
exit fn
else
temp = s1 + s2
s2 = s1
s1 = temp
exit fn
end if
end fn = s1
 
long i
CFTimeInterval t
 
t = fn CACurrentMediaTime
 
for i = 0 to 40
print i;@".\t";fn Fibonacci(i)
next i
 
print : printf @"Compute time: %.3f ms",(fn CACurrentMediaTime-t)*1000
 
HandleEvents</syntaxhighlight>
Output:
<pre>
0. 0
1. 1
2. 1
3. 2
4. 3
5. 5
6. 8
7. 13
8. 21
9. 34
10. 55
11. 89
12. 144
13. 233
14. 377
15. 610
16. 987
17. 1597
18. 2584
19. 4181
20. 6765
21. 10946
22. 17711
23. 28657
24. 46368
25. 75025
26. 121393
27. 196418
28. 317811
29. 514229
30. 832040
31. 1346269
32. 2178309
33. 3524578
34. 5702887
35. 9227465
36. 14930352
37. 24157817
38. 39088169
39. 63245986
40. 102334155
 
Compute time: 2.143 ms</pre>
 
=== Recursive ===
Cost is a time penalty
<syntaxhighlight lang="futurebasic">
local fn Fibonacci( n as NSInteger ) as NSInteger
NSInteger result
if n < 2 then result = n : exit fn
result = fn Fibonacci( n-1 ) + fn Fibonacci( n-2 )
end fn = result
 
window 1
 
NSInteger i
CFTimeInterval t
 
t = fn CACurrentMediaTime
for i = 0 to 40
print i;@".\t";fn Fibonacci(i)
next
print : printf @"Compute time: %.3f ms",(fn CACurrentMediaTime-t)*1000
 
HandleEvents
</syntaxhighlight>
{{output}}
<pre>
0. 0
1. 1
2. 1
3. 2
4. 3
5. 5
6. 8
7. 13
8. 21
9. 34
10. 55
11. 89
12. 144
13. 233
14. 377
15. 610
16. 987
17. 1597
18. 2584
19. 4181
20. 6765
21. 10946
22. 17711
23. 28657
24. 46368
25. 75025
26. 121393
27. 196418
28. 317811
29. 514229
30. 832040
31. 1346269
32. 2178309
33. 3524578
34. 5702887
35. 9227465
36. 14930352
37. 24157817
38. 39088169
39. 63245986
40. 102334155
 
Compute time: 2844.217 ms
</pre>
 
=={{header|Fōrmulæ}}==
 
Fōrmulæ programs are not textual, visualization/edition of programs is done showing/manipulating structures but not text. Moreover, there can be multiple visual representations of the same program. Even though it is possible to have textual representation &mdash;i.e. XML, JSON&mdash; they are intended for storage and transfer purposes more than visualization and edition.
 
Line 5,652 ⟶ 6,510:
<syntaxhighlight lang="gecho">0 1 dup wover + dup wover + dup wover + dup wover +</syntaxhighlight>
Prints the first several fibonacci numbers...
 
=={{header|GFA Basic}}==
 
<syntaxhighlight lang="text">
'
' Compute nth Fibonacci number
'
' open a window for display
OPENW 1
CLEARW 1
' Display some fibonacci numbers
' Fib(46) is the largest number GFA Basic can reach
' (long integers are 4 bytes)
FOR i%=0 TO 46
PRINT "fib(";i%;")=";@fib(i%)
NEXT i%
' wait for a key press and tidy up
~INP(2)
CLOSEW 1
'
' Function to compute nth fibonacci number
' n must be in range 0 to 46, inclusive
'
FUNCTION fib(n%)
LOCAL n0%,n1%,nn%,i%
n0%=0
n1%=1
SELECT n%
CASE 0
RETURN n0%
CASE 1
RETURN n1%
DEFAULT
FOR i%=2 TO n%
nn%=n0%+n1%
n0%=n1%
n1%=nn%
NEXT i%
RETURN nn%
ENDSELECT
ENDFUNC
</syntaxhighlight>
 
=={{header|GML}}==
 
<syntaxhighlight lang="gml">///fibonacci(n)
//Returns the nth fibonacci number
Line 7,007 ⟶ 7,822:
</syntaxhighlight>
 
=={{header|Liberty BASIC}}==
===Iterative/Recursive===
<syntaxhighlight lang="lb">
for i = 0 to 15
print fiboR(i),fiboI(i)
next i
function fiboR(n)
if n <= 1 then
fiboR = n
else
fiboR = fiboR(n-1) + fiboR(n-2)
end if
end function
function fiboI(n)
a = 0
b = 1
for i = 1 to n
temp = a + b
a = b
b = temp
next i
fiboI = a
end function
</syntaxhighlight>
{{out}}
<pre>
0 0
1 1
1 1
2 2
3 3
5 5
8 8
13 13
21 21
34 34
55 55
89 89
144 144
233 233
377 377
610 610
</pre>
===Iterative/Negative===
<syntaxhighlight lang="lb">
print "Rosetta Code - Fibonacci sequence": print
print " n Fn"
for x=-12 to 12 '68 max
print using("### ", x); using("##############", FibonacciTerm(x))
next x
print
[start]
input "Enter a term#: "; n$
n$=lower$(trim$(n$))
if n$="" then print "Program complete.": end
print FibonacciTerm(val(n$))
goto [start]
 
function FibonacciTerm(n)
n=int(n)
FTa=0: FTb=1: FTc=-1
select case
case n=0 : FibonacciTerm=0 : exit function
case n=1 : FibonacciTerm=1 : exit function
case n=-1 : FibonacciTerm=-1 : exit function
case n>1
for x=2 to n
FibonacciTerm=FTa+FTb
FTa=FTb: FTb=FibonacciTerm
next x
exit function
case n<-1
for x=-2 to n step -1
FibonacciTerm=FTa+FTc
FTa=FTc: FTc=FibonacciTerm
next x
exit function
end select
end function
</syntaxhighlight>
{{out}}
<pre>
Rosetta Code - Fibonacci sequence
 
n Fn
-12 -144
-11 -89
-10 -55
-9 -34
-8 -21
-7 -13
-6 -8
-5 -5
-4 -3
-3 -2
-2 -1
-1 -1
0 0
1 1
2 1
3 2
4 3
5 5
6 8
7 13
8 21
9 34
10 55
11 89
12 144
 
Enter a term#: 12
144
Enter a term#:
Program complete.
</pre>
 
=={{header|Lingo}}==
 
===Recursive===
 
<syntaxhighlight lang="lingo">on fib (n)
if n<2 then return n
Line 7,136 ⟶ 7,831:
 
===Iterative===
 
<syntaxhighlight lang="lingo">on fib (n)
if n<2 then return n
Line 7,150 ⟶ 7,844:
 
===Analytic===
 
<syntaxhighlight lang="lingo">on fib (n)
sqrt5 = sqrt(5.0)
Line 7,861 ⟶ 8,554:
end</syntaxhighlight>
 
=={{header|Microsoft Small Basic}}==
===Iterative===
<syntaxhighlight lang="smallbasic">' Fibonacci sequence - 31/07/2018
n = 139
f1 = 0
f2 = 1
TextWindow.WriteLine("fibo(0)="+f1)
TextWindow.WriteLine("fibo(1)="+f2)
For i = 2 To n
f3 = f1 + f2
TextWindow.WriteLine("fibo("+i+")="+f3)
f1 = f2
f2 = f3
EndFor</syntaxhighlight>
{{out}}
<pre>
fibo(139)=50095301248058391139327916261
</pre>
===Binet's Formula===
<syntaxhighlight lang="smallbasic">' Fibonacci sequence - Binet's Formula - 31/07/2018
n = 69
sq5=Math.SquareRoot(5)
phi1=(1+sq5)/2
phi2=(1-sq5)/2
phi1n=phi1
phi2n=phi2
For i = 2 To n
phi1n=phi1n*phi1
phi2n=phi2n*phi2
TextWindow.Write(Math.Floor((phi1n-phi2n)/sq5)+" ")
EndFor</syntaxhighlight>
{{out}}
<pre>
1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765 10946 17711 28657 46368 75025 121393 196418 317811 514229 832040 1346269 2178309 3524578 5702887 9227465 14930352 24157817 39088169 63245986 102334155 165580141 267914296 433494437 701408733 1134903170 1836311903 2971215073 4807526976 7778742049 12586269025 20365011074 32951280099 53316291173 86267571272 139583862445 225851433717 365435296162 591286729879 956722026041 1548008755920 2504730781961 4052739537881 6557470319842 10610209857723 17167680177565 27777890035288 44945570212853 72723460248141 117669030460994
</pre>
 
=={{header|min}}==
Line 9,838 ⟶ 10,496:
.
.</syntaxhighlight>
 
=={{header|PowerBASIC}}==
{{trans|BASIC}}
 
There seems to be a limitation (dare I say, bug?) in PowerBASIC regarding how large numbers are stored. 10E17 and larger get rounded to the nearest 10. For F(n), where ABS(n) > 87, is affected like this:
actual: displayed:
F(88) 1100087778366101931 1100087778366101930
F(89) 1779979416004714189 1779979416004714190
F(90) 2880067194370816120 2880067194370816120
F(91) 4660046610375530309 4660046610375530310
F(92) 7540113804746346429 7540113804746346430
 
<syntaxhighlight lang="powerbasic">FUNCTION fibonacci (n AS LONG) AS QUAD
DIM u AS LONG, a AS LONG, L0 AS LONG, outP AS QUAD
STATIC fibNum() AS QUAD
 
u = UBOUND(fibNum)
a = ABS(n)
 
IF u < 1 THEN
REDIM fibNum(1)
fibNum(1) = 1
u = 1
END IF
 
SELECT CASE a
CASE 0 TO 92
IF a > u THEN
REDIM PRESERVE fibNum(a)
FOR L0 = u + 1 TO a
fibNum(L0) = fibNum(L0 - 1) + fibNum(L0 - 2)
IF 88 = L0 THEN fibNum(88) = fibNum(88) + 1
NEXT
END IF
IF n < 0 THEN
fibonacci = fibNum(a) * ((-1)^(a+1))
ELSE
fibonacci = fibNum(a)
END IF
CASE ELSE
'Even without the above-mentioned bug, we're still limited to
'F(+/-92), due to data type limits. (F(93) = &hA94F AD42 221F 2702)
ERROR 6
END SELECT
END FUNCTION
 
FUNCTION PBMAIN () AS LONG
DIM n AS LONG
#IF NOT %DEF(%PB_CC32)
OPEN "out.txt" FOR OUTPUT AS 1
#ENDIF
FOR n = -92 TO 92
#IF %DEF(%PB_CC32)
PRINT STR$(n); ": "; FORMAT$(fibonacci(n), "#")
#ELSE
PRINT #1, STR$(n) & ": " & FORMAT$(fibonacci(n), "#")
#ENDIF
NEXT
CLOSE
END FUNCTION</syntaxhighlight>
 
=={{header|PowerShell}}==
Line 10,231 ⟶ 10,829:
loop a b n = if n==0 then a else loop b (a+b) (n-1);
end;</syntaxhighlight>
 
=={{header|PureBasic}}==
 
===Macro based calculation===
<syntaxhighlight lang="purebasic">Macro Fibonacci (n)
Int((Pow(((1+Sqr(5))/2),n)-Pow(((1-Sqr(5))/2),n))/Sqr(5))
EndMacro</syntaxhighlight>
===Recursive===
<syntaxhighlight lang="purebasic">Procedure FibonacciReq(n)
If n<2
ProcedureReturn n
Else
ProcedureReturn FibonacciReq(n-1)+FibonacciReq(n-2)
EndIf
EndProcedure</syntaxhighlight>
 
===Recursive & optimized with a static hash table===
This will be much faster on larger n's, this as it uses a table to store known parts instead of recalculating them.
On my machine the speedup compares to above code is
Fib(n) Speedup
20 2
25 23
30 217
40 25847
46 1156741
<syntaxhighlight lang="purebasic">Procedure Fibonacci(n)
Static NewMap Fib.i()
Protected FirstRecursion
If MapSize(Fib())= 0 ; Init the hash table the first run
Fib("0")=0: Fib("1")=1
FirstRecursion = #True
EndIf
If n >= 2
Protected.s s=Str(n)
If Not FindMapElement(Fib(),s) ; Calculate only needed parts
Fib(s)= Fibonacci(n-1)+Fibonacci(n-2)
EndIf
n = Fib(s)
EndIf
If FirstRecursion ; Free the memory when finalizing the first call
ClearMap(Fib())
EndIf
ProcedureReturn n
EndProcedure</syntaxhighlight>
 
'''Example'''
Fibonacci(0)= 0
Fibonacci(1)= 1
Fibonacci(2)= 1
Fibonacci(3)= 2
Fibonacci(4)= 3
Fibonacci(5)= 5
FibonacciReq(0)= 0
FibonacciReq(1)= 1
FibonacciReq(2)= 1
FibonacciReq(3)= 2
FibonacciReq(4)= 3
FibonacciReq(5)= 5
 
=={{header|Purity}}==
Line 10,613 ⟶ 11,150:
.. 679891637638612258
. 1100087778366101931</pre>
 
=={{header|QB64}}==
''CBTJD'': 2020/03/13
<syntaxhighlight lang="qbasic">_DEFINE F AS _UNSIGNED _INTEGER64
CLS
PRINT
PRINT "Enter 40 to more easily see the difference in calculation speeds."
PRINT
INPUT "Enter n for Fibonacci(n): ", n
PRINT
PRINT " Analytic Method (Fastest): F("; LTRIM$(STR$(n)); ") ="; fA(n)
PRINT "Iterative Method (Fast): F("; LTRIM$(STR$(n)); ") ="; fI(n)
PRINT "Recursive Method (Slow): F("; LTRIM$(STR$(n)); ") ="; fR(n)
END
 
' === Analytic Fibonacci Function (Fastest)
FUNCTION fA (n)
fA = INT(0.5 + (((SQR(5) + 1) / 2) ^ n) / SQR(5))
END FUNCTION
 
' === Iterative Fibonacci Function (Fast)
FUNCTION fI (n)
FOR i = 1 TO n
IF i < 3 THEN a = 1: b = 1
t = fI + b: fI = b: b = t
NEXT
END FUNCTION
 
' === Recursive Fibonacci function (Slow)
FUNCTION fR (n)
IF n <= 1 THEN
fR = n
ELSE
fR = fR(n - 1) + fR(n - 2)
END IF
END FUNCTION
</syntaxhighlight>
 
=={{header|Qi}}==
Line 11,337 ⟶ 11,837:
=> [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
</pre>
 
=={{header|Run BASIC}}==
<syntaxhighlight lang="runbasic">for i = 0 to 10
print i;" ";fibR(i);" ";fibI(i)
next i
end
function fibR(n)
if n < 2 then fibR = n else fibR = fibR(n-1) + fibR(n-2)
end function
function fibI(n)
b = 1
for i = 1 to n
t = a + b
a = b
b = t
next i
fibI = a
end function</syntaxhighlight>
 
=={{header|Rust}}==
Line 11,460 ⟶ 11,940:
}</syntaxhighlight>
 
=={{header|S-BASIC}}==
Note that the 23rd Fibonacci number (=28657) is the largest that can be generated without overflowing S-BASIC's integer data type.
<syntaxhighlight lang="basic">
rem - iterative function to calculate nth fibonacci number
function fibonacci(n = integer) = integer
var f, i, p1, p2 = integer
p1 = 0
p2 = 1
if n = 0 then
f = 0
else
for i = 1 to n
f = p1 + p2
p2 = p1
p1 = f
next i
end = f
 
rem - exercise the function
var i = integer
for i = 0 to 10
print fibonacci(i);
next i
 
end
</syntaxhighlight>
{{out}}
<pre> 0 1 1 2 3 5 8 13 21 34 55
</pre>
 
=={{header|SAS}}==
 
=== Iterative ===
 
This code builds a table <code>fib</code> holding the first few values of the Fibonacci sequence.
 
<syntaxhighlight lang="sas">data fib;
a=0;
Line 11,509 ⟶ 11,957:
 
=== Naive recursive ===
 
This code provides a simple example of defining a function and using it recursively. One of the members of the sequence is written to the log.
 
Line 12,077 ⟶ 12,524:
2000000 fib (builtin): 229ms (827461038 cycles)
10000000 fib (builtin): 2.769s (9970686190 cycles)</pre>
 
=={{header|smart BASIC}}==
 
The Iterative method is slow (relatively) and the Recursive method doubly so since it references the recursion function twice.
 
The N-th Term (fibN) function is much faster as it utilizes Binet's Formula.
 
<ul>
<li>fibR: Fibonacci Recursive</li>
<li>fibI: Fibonacci Iterative</li>
<li>fibN: Fibonacci N-th Term</li>
</ul>
 
<syntaxhighlight lang="qbasic">FOR i = 0 TO 15
PRINT fibR(i),fibI(i),fibN(i)
NEXT i
 
/* Recursive Method */
DEF fibR(n)
IF n <= 1 THEN
fibR = n
ELSE
fibR = fibR(n-1) + fibR(n-2)
ENDIF
END DEF
 
/* Iterative Method */
DEF fibI(n)
a = 0
b = 1
FOR i = 1 TO n
temp = a + b
a = b
b = temp
NEXT i
fibI = a
END DEF
 
/* N-th Term Method */
DEF fibN(n)
uphi = .5 + SQR(5)/2
lphi = .5 - SQR(5)/2
fibN = (uphi^n-lphi^n)/SQR(5)
END DEF</syntaxhighlight>
 
=={{header|SNOBOL4}}==
 
===Recursive===
<syntaxhighlight lang="snobol"> define("fib(a)") :(fib_end)
Line 12,187 ⟶ 12,589:
| #+==/ fib(n-2)|+fib(n-1)|
\=====recursion======/!========/</syntaxhighlight>
 
=={{header|Softbridge BASIC}}==
===Iterative===
<syntaxhighlight lang="basic">
Function Fibonacci(n)
x = 0
y = 1
i = 0
n = ABS(n)
If n < 2 Then
Fibonacci = n
Else
Do Until (i = n)
sum = x+y
x=y
y=sum
i=i+1
Loop
Fibonacci = x
End If
 
End Function
</syntaxhighlight>
 
=={{header|Spin}}==
Line 12,818 ⟶ 13,197:
<pre>R/S -> 89</pre>
<pre>R/S -> 144</pre>
 
=={{header|TI-83 BASIC}}==
Sequence table:
<syntaxhighlight lang="ti83b">[Y=]
nMin=0
u(n)=u(n-1)+u(n-2)
u(nMin)={1,0}
[TABLE]
n u(n)
------- -------
0 0
1 1
2 1
3 2
4 3
5 5
6 8
7 13
8 21
9 34
10 55
11 89
12 144 </syntaxhighlight>
 
Iterative:
<syntaxhighlight lang="ti83b">{0,1
While 1
Disp Ans(1
{Ans(2),sum(Ans
End</syntaxhighlight>
 
Binet's formula:
<syntaxhighlight lang="ti83b">Prompt N
.5(1+√(5 //golden ratio
(Ans^N–(-Ans)^-N)/√(5</syntaxhighlight>
 
=={{header|TI-89 BASIC}}==
===Recursive===
Optimized implementation (too slow to be usable for ''n'' higher than about 12).
 
<syntaxhighlight lang="ti89b">fib(n)
when(n<2, n, fib(n-1) + fib(n-2))</syntaxhighlight>
 
===Iterative===
Unoptimized implementation (I think the for loop can be eliminated, but I'm not sure).
 
<syntaxhighlight lang="ti89b">fib(n)
Func
Local a,b,c,i
0→a
1→b
For i,1,n
a→c
b→a
c+b→b
EndFor
a
EndFunc</syntaxhighlight>
 
=={{header|Tiny BASIC}}==
{{works with|TinyBasic}}
<syntaxhighlight lang="basic">10 LET A = 0
20 LET B = 1
30 PRINT "Which F_n do you want?"
40 INPUT N
50 IF N = 0 THEN GOTO 140
60 IF N = 1 THEN GOTO 120
70 LET C = B + A
80 LET A = B
90 LET B = C
100 LET N = N - 1
110 GOTO 60
120 PRINT B
130 END
140 PRINT 0
150 END
</syntaxhighlight>
 
 
=={{header|Tiny Craft Basic}}==
<syntaxhighlight lang="basic">10 cls
 
20 let a = 1
30 let b = 1
 
40 print "Fibonacci Sequence"
 
50 rem loop
 
60 let s = a + b
70 let a = b
80 let b = s
90 let i = i + 1
 
100 print s
 
120 if i < 20 then 50
 
130 shell "pause"
140 end</syntaxhighlight>
 
=={{header|True BASIC}}==
<syntaxhighlight lang="qbasic">FUNCTION fibonacci (n)
LET n1 = 0
LET n2 = 1
FOR k = 1 TO ABS(n)
LET sum = n1 + n2
LET n1 = n2
LET n2 = sum
NEXT k
IF n < 0 THEN
LET fibonacci = n1 * ((-1) ^ ((-n) + 1))
ELSE
LET fibonacci = n1
END IF
END FUNCTION
 
PRINT fibonacci(0) ! 0
PRINT fibonacci(13) ! 233
PRINT fibonacci(-42) !-267914296
PRINT fibonacci(47) ! 2971215073
END</syntaxhighlight>
 
=={{header|TSE SAL}}==
<syntaxhighlight lang="tse sal">
 
// library: math: get: series: fibonacci <description></description> <version control></version control> <version>1.0.0.0.3</version> <version control></version control> (filenamemacro=getmasfi.s) [<Program>] [<Research>] [kn, ri, su, 20-01-2013 22:04:02]
INTEGER PROC FNMathGetSeriesFibonacciI( INTEGER nI )
Line 12,988 ⟶ 13,244:
UNTIL FALSE
END
 
</syntaxhighlight>
 
Line 13,235 ⟶ 13,490:
$
</syntaxhighlight>
 
=={{header|VBA}}==
Like Visual Basic .NET, but with keyword "Public" and type Variant (subtype Currency) instead of Decimal:
<syntaxhighlight lang="vb">Public Function Fib(ByVal n As Integer) As Variant
Dim fib0 As Variant, fib1 As Variant, sum As Variant
Dim i As Integer
fib0 = 0
fib1 = 1
For i = 1 To n
sum = fib0 + fib1
fib0 = fib1
fib1 = sum
Next i
Fib = fib0
End Function </syntaxhighlight>
With Currency type, maximum value is fibo(73).
 
The (slow) recursive version:
 
<syntaxhighlight lang="vba">
Public Function RFib(Term As Integer) As Long
If Term < 2 Then RFib = Term Else RFib = RFib(Term - 1) + RFib(Term - 2)
End Function
</syntaxhighlight>
 
With Long type, maximum value is fibo(46).
 
=={{header|VBScript}}==
===Non-recursive, object oriented, generator===
Defines a generator class, with a default Get property. Uses Currency for larger-than-Long values. Tests for overflow and switches to Double. Overflow information also available from class.
 
====Class Definition:====
<syntaxhighlight lang="vb">class generator
dim t1
dim t2
dim tn
dim cur_overflow
Private Sub Class_Initialize
cur_overflow = false
t1 = ccur(0)
t2 = ccur(1)
tn = ccur(t1 + t2)
end sub
public default property get generated
on error resume next
 
generated = ccur(tn)
if err.number <> 0 then
generated = cdbl(tn)
cur_overflow = true
end if
t1 = ccur(t2)
if err.number <> 0 then
t1 = cdbl(t2)
cur_overflow = true
end if
t2 = ccur(tn)
if err.number <> 0 then
t2 = cdbl(tn)
cur_overflow = true
end if
tn = ccur(t1+ t2)
if err.number <> 0 then
tn = cdbl(t1) + cdbl(t2)
cur_overflow = true
end if
on error goto 0
end property
public property get overflow
overflow = cur_overflow
end property
end class</syntaxhighlight>
 
====Invocation:====
<syntaxhighlight lang="vb">dim fib
set fib = new generator
dim i
for i = 1 to 100
wscript.stdout.write " " & fib
if fib.overflow then
wscript.echo
exit for
end if
next</syntaxhighlight>
 
====Output:====
<syntaxhighlight lang="vbscript"> 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765 10946 17711 28657 46368 75025 121393 196418 317811 514229 832040 1346269 2178309 3524578 5702887 9227465 14930352 24157817 39088169 63245986 102334155 165580141 267914296 433494437 701408733 1134903170 1836311903 2971215073 4807526976 7778742049 12586269025 20365011074 32951280099 53316291173 86267571272 139583862445 225851433717 365435296162 591286729879 956722026041 1548008755920 2504730781961 4052739537881 6557470319842 10610209857723 17167680177565 27777890035288 44945570212853 72723460248141 117669030460994 190392490709135 308061521170129 498454011879264 806515533049393</syntaxhighlight>
 
=={{header|Vedit macro language}}==
===Iterative===
 
Calculate fibonacci(#1). Negative values return 0.
<syntaxhighlight lang="vedit">:FIBONACCI:
Line 13,407 ⟶ 13,570:
{{out}}
<pre>fibonacci(1000) = 43466557686937456435688527675040625802564660517371780402481729089536555417949051890403879840079255169295922593080322634775209689623239873322471161642996440906533187938298969649928516003704476137795166849228875</pre>
 
=={{header|Visual Basic}}==
{{works with|Visual Basic|VB6 Standard}}
Maximum integer value (7*10^28) can be obtained by using decimal type, but decimal type is only a sub type of the variant type.
<syntaxhighlight lang="vb">Sub fibonacci()
Const n = 139
Dim i As Integer
Dim f1 As Variant, f2 As Variant, f3 As Variant 'for Decimal
f1 = CDec(0): f2 = CDec(1) 'for Decimal setting
Debug.Print "fibo("; 0; ")="; f1
Debug.Print "fibo("; 1; ")="; f2
For i = 2 To n
f3 = f1 + f2
Debug.Print "fibo("; i; ")="; f3
f1 = f2
f2 = f3
Next i
End Sub 'fibonacci</syntaxhighlight>
{{Out}}
<pre>fibo( 0 )= 0
fibo( 1 )= 1
fibo( 2 )= 1
...
fibo( 137 )= 19134702400093278081449423917
fibo( 138 )= 30960598847965113057878492344
fibo( 139 )= 50095301248058391139327916261 </pre>
 
=={{header|Visual Basic .NET}}==
'''Platform:''' [[.NET]]
===Iterative===
{{works with|Visual Basic .NET|9.0+}}
With Decimal type, maximum value is fibo(139).
<syntaxhighlight lang="vbnet">Function Fib(ByVal n As Integer) As Decimal
Dim fib0, fib1, sum As Decimal
Dim i As Integer
fib0 = 0
fib1 = 1
For i = 1 To n
sum = fib0 + fib1
fib0 = fib1
fib1 = sum
Next
Fib = fib0
End Function</syntaxhighlight>
===Recursive===
{{works with|Visual Basic .NET|9.0+}}
<syntaxhighlight lang="vbnet">Function Seq(ByVal Term As Integer)
If Term < 2 Then Return Term
Return Seq(Term - 1) + Seq(Term - 2)
End Function</syntaxhighlight>
===BigInteger===
There is no real maximum value of BigInterger class, except the memory to store the number.
Within a minute, fibo(2000000) is a number with 417975 digits.
<syntaxhighlight lang="vbnet"> Function FiboBig(ByVal n As Integer) As BigInteger
' Fibonacci sequence with BigInteger
Dim fibn2, fibn1, fibn As BigInteger
Dim i As Integer
fibn = 0
fibn2 = 0
fibn1 = 1
If n = 0 Then
Return fibn2
ElseIf n = 1 Then
Return fibn1
ElseIf n >= 2 Then
For i = 2 To n
fibn = fibn2 + fibn1
fibn2 = fibn1
fibn1 = fibn
Next i
Return fibn
End If
Return 0
End Function 'FiboBig
 
Sub fibotest()
Dim i As Integer, s As String
i = 2000000 ' 2 millions
s = FiboBig(i).ToString
Console.WriteLine("fibo(" & i & ")=" & s & " - length=" & Len(s))
End Sub 'fibotest</syntaxhighlight>
 
===BigInteger, speedier method===
 
{{Libheader|System.Numerics}}
This method doesn't need to iterate the entire list, and is much faster. The 2000000 (two millionth) Fibonacci number can be found in a fraction of a second.<br/>Algorithm from [http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibFormula.html here, see section 3, ''Finding Fibonacci Numbers Fully''.]
<syntaxhighlight lang="vbnet">Imports System
Imports System.Collections.Generic
Imports BI = System.Numerics.BigInteger
 
Module Module1
 
' A sparse array of values calculated along the way
Dim sl As SortedList(Of Integer, BI) = New SortedList(Of Integer, BI)()
 
' Square a BigInteger
Function sqr(ByVal n As BI) As BI
Return n * n
End Function
 
' Helper routine for Fsl(). It adds an entry to the sorted list when necessary
Sub IfNec(n As Integer)
If Not sl.ContainsKey(n) Then sl.Add(n, Fsl(n))
End Sub
 
' This routine is semi-recursive, but doesn't need to evaluate every number up to n.
' Algorithm from here: http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibFormula.html#section3
Function Fsl(ByVal n As Integer) As BI
If n < 2 Then Return n
Dim n2 As Integer = n >> 1, pm As Integer = n2 + ((n And 1) << 1) - 1 : IfNec(n2) : IfNec(pm)
Return If(n2 > pm, (2 * sl(pm) + sl(n2)) * sl(n2), sqr(sl(n2)) + sqr(sl(pm)))
End Function
 
' Conventional iteration method (not used here)
Function Fm(ByVal n As BI) As BI
If n < 2 Then Return n
Dim cur As BI = 0, pre As BI = 1
For i As Integer = 0 To n - 1
Dim sum As BI = cur + pre : pre = cur : cur = sum : Next : Return cur
End Function
 
Sub Main()
Dim vlen As Integer, num As Integer = 2_000_000, digs As Integer = 35
Dim sw As System.Diagnostics.Stopwatch = System.Diagnostics.Stopwatch.StartNew()
Dim v As BI = Fsl(num) : sw.[Stop]()
Console.Write("{0:n3} ms to calculate the {1:n0}th Fibonacci number, ", sw.Elapsed.TotalMilliseconds, num)
vlen = CInt(Math.Ceiling(BI.Log10(v))) : Console.WriteLine("number of digits is {0}", vlen)
If vlen < 10000 Then
sw.Restart() : Console.WriteLine(v) : sw.[Stop]()
Console.WriteLine("{0:n3} ms to write it to the console.", sw.Elapsed.TotalMilliseconds)
Else
Console.Write("partial: {0}...{1}", v / BI.Pow(10, vlen - digs), v Mod BI.Pow(10, digs))
End If
End Sub
End Module</syntaxhighlight>
{{out}}
<pre>120.374 ms to calculate the 2,000,000th Fibonacci number, number of digits is 417975
partial: 85312949175076415430516606545038251...91799493108960825129188777803453125</pre>
 
=={{header|V (Vlang)}}==
Line 13,928 ⟶ 13,953:
x
(fib 1 1 x) ) )</syntaxhighlight>
 
=={{header|Xojo}}==
Pass n to this function where n is the desired number of iterations. This example uses the UInt64 datatype which is as unsigned 64 bit integer. As such, it overflows after the 93rd iteration.
<syntaxhighlight lang="vb">Function fibo(n As Integer) As UInt64
 
Dim noOne As UInt64 = 1
Dim noTwo As UInt64 = 1
Dim sum As UInt64
 
For i As Integer = 3 To n
sum = noOne + noTwo
noTwo = noOne
noOne = sum
Next
 
Return noOne
End Function</syntaxhighlight>
 
=={{header|XPL0}}==
Line 13,983 ⟶ 13,991:
else local:fib($n - 1) + local:fib($n - 2)
};</syntaxhighlight>
 
 
=={{header|Yabasic}}==
<syntaxhighlight lang="yabasic">sub fibonacci (n)
n1 = 0
n2 = 1
for k = 1 to abs(n)
sum = n1 + n2
n1 = n2
n2 = sum
next k
if n < 0 then
return n1 * ((-1) ^ ((-n) + 1))
else
return n1
end if
end sub</syntaxhighlight>
 
=={{header|Z80 Assembly}}==
Line 14,071 ⟶ 14,062:
610,987,1597,2584,4181,
</pre>
 
=={{header|ZX Spectrum Basic}}==
====Iterative====
<syntaxhighlight lang="zxbasic">10 REM Only positive numbers
20 LET n=10
30 LET n1=0: LET n2=1
40 FOR k=1 TO n
50 LET sum=n1+n2
60 LET n1=n2
70 LET n2=sum
80 NEXT k
90 PRINT n1</syntaxhighlight>
 
====Analytic====
<syntaxhighlight lang="zxbasic">10 DEF FN f(x)=INT (0.5+(((SQR 5+1)/2)^x)/SQR 5)</syntaxhighlight>
 
[[Category:Arithmetic]]
512

edits

Cookies help us deliver our services. By using our services, you agree to our use of cookies.