Jump to content

Fractran: Difference between revisions

m
syntax highlighting fixup automation
m (syntax highlighting fixup automation)
Line 50:
{{trans|D}}
 
<langsyntaxhighlight lang="11l">F fractran(prog, =val, limit)
V fracts = prog.split(‘ ’).map(p -> p.split(‘/’).map(i -> Int(i)))
[Float] r
Line 61:
R r
 
print(fractran(‘17/91 78/85 19/51 23/38 29/33 77/29 95/23 77/19 1/17 11/13 13/11 15/14 15/2 55/1’, 2, 15))</langsyntaxhighlight>
 
{{out}}
Line 69:
 
=={{header|360 Assembly}}==
<langsyntaxhighlight lang="360asm">* FRACTRAN 17/02/2019
FRACTRAN CSECT
USING FRACTRAN,R13 base register
Line 116:
XDEC DS CL12 temp
REGEQU
END FRACTRAN</langsyntaxhighlight>
{{out}}
<pre>
Line 136:
=={{header|Ada}}==
 
<langsyntaxhighlight Adalang="ada">with Ada.Text_IO;
 
procedure Fractan is
Line 178:
2, 15);
-- output is "0: 2 1: 15 2: 825 3: 725 ... 14: 132 15: 116"
end Fractan;</langsyntaxhighlight>
 
{{out}}
Line 185:
=={{header|ALGOL 68}}==
{{works with|ALGOL 68G|Any - tested with release 2.8.win32}}
<langsyntaxhighlight lang="algol68"># as the numbers required for finding the first 20 primes are quite large, #
# we use Algol 68G's LONG LONG INT with a precision of 100 digits #
PR precision 100 PR
Line 258:
print( ( whole( pos, -12 ) + " " + whole( power of 2, -6 ) + " (" + whole( n OF pf, 0 ) + ")", newline ) )
FI
OD</langsyntaxhighlight>
{{out}}
<pre>
Line 286:
 
=={{header|AutoHotkey}}==
<langsyntaxhighlight AutoHotkeylang="autohotkey">n := 2, steplimit := 15, numerator := [], denominator := []
s := "17/91 78/85 19/51 23/38 29/33 77/29 95/23 77/19 1/17 11/13 13/11 15/14 15/2 55/1"
 
Line 309:
}
break
}</langsyntaxhighlight>
{{out}}
<pre>0: 2
Line 334:
the "factor" command allows one to decrypt the data. For example, the program below computes the product of a and b, entered as 2<sup>a</sup> and 3<sup>b</sup>, the product being 5<sup>a×b</sup>. Two arrays are computed from the fractions, ns for the numerators and ds for the denominators. Then, every time where the multiplication by a fraction yields an integer, the output of the division is stored into a csv file in factored format.
 
<langsyntaxhighlight lang="bash">#! /bin/bash
program="1/1 455/33 11/13 1/11 3/7 11/2 1/3"
echo $program | tr " " "\n" | cut -d"/" -f1 | tr "\n" " " > "data"
Line 353:
let "t=$t+1"
done
</syntaxhighlight>
</lang>
 
If at the beginning n=72=2<sup>3</sup>×3<sup>2</sup> (to compute 3×2), the steps of the computation look like this:
Line 390:
 
=={{header|Batch File}}==
<langsyntaxhighlight lang="dos">@echo off
setlocal enabledelayedexpansion
 
Line 445:
echo.
pause
exit /b 1</langsyntaxhighlight>
{{Out}}
<pre>Input:
Line 479:
Note that in some interpreters you may need to press <Return> twice after entering the fractions if the ''Starting value'' prompt doesn't at first appear.
 
<langsyntaxhighlight lang="befunge">p0" :snoitcarF">:#,_>&00g5p~$&00g:v
v"Starting value: "_^#-*84~p6p00+1<
>:#,_&0" :snoitaretI">:#,_#@>>$&\:v
:$_\:10g5g*:10g6g%v1:\1$\$<|!:-1\.<
g0^<!:-1\p01+1g01$_10g6g/\^>\010p00</langsyntaxhighlight>
 
{{out}}
Line 498:
<code>Fractran</code> performs a single iteration of fractran on a given input, list of numerators and list of denominators.
 
<langsyntaxhighlight lang="bqn"># Fractran interpreter
 
# Helpers
Line 531:
seq ← 200 RunFractran 2‿"17/91 78/85 19/51 23/38 29/33 77/29 95/23 77/19 1/17 11/13 13/11 15/14 15/2 55/1"
•Out "Generated numbers: "∾•Repr seq
•Out "Primes: "∾•Repr 1↓⌊2⋆⁼(⌈=⌊)∘(2⊸(⋆⁼))⊸/ seq</langsyntaxhighlight>
<syntaxhighlight lang="text"> )ex fractran.bqn
Generated numbers: 2‿15‿825‿725‿1925‿2275‿425‿390‿330‿290‿770‿910‿170‿156‿132‿116‿308‿364‿68‿4‿30‿225‿12375‿10875‿28875‿25375‿67375‿79625‿14875‿13650‿2550‿2340‿1980‿1740‿4620‿4060‿10780‿12740‿2380‿2184‿408‿152‿92‿380‿230‿950‿575‿2375‿9625‿11375‿2125‿1950‿1650‿1450‿3850‿4550‿850‿780‿660‿580‿1540‿1820‿340‿312‿264‿232‿616‿728‿136‿8‿60‿450‿3375‿185625‿163125‿433125‿380625‿1010625‿888125‿2358125‿2786875‿520625‿477750‿89250‿81900‿15300‿14040‿11880‿10440‿27720‿24360‿64680‿56840‿150920‿178360‿33320‿30576‿5712‿2128‿1288‿5320‿3220‿13300‿8050‿33250‿20125‿83125‿336875‿398125‿74375‿68250‿12750‿11700‿9900‿8700‿23100‿20300‿53900‿63700‿11900‿10920‿2040‿1872‿1584‿1392‿3696‿3248‿8624‿10192‿1904‿112‿120‿900‿6750‿50625‿2784375‿2446875‿6496875‿5709375‿15159375‿13321875‿35371875‿31084375‿82534375‿97540625‿18221875‿16721250‿3123750‿2866500‿535500‿491400‿91800‿84240‿71280‿62640‿166320‿146160‿388080‿341040‿905520‿795760‿2112880‿2497040‿466480‿428064‿79968‿29792‿18032‿74480‿45080‿186200‿112700‿465500‿281750‿1163750‿704375‿2909375‿11790625‿13934375‿2603125‿2388750‿446250‿409500‿76500‿70200‿59400‿52200‿138600‿121800‿323400‿284200‿754600‿891800‿166600‿152880‿28560‿26208‿4896‿1824‿1104
Primes: 2‿3</langsyntaxhighlight>
 
=={{header|Bracmat}}==
This program computes the first twenty primes. It has to do almost 430000 iterations to arrive at the twentieth prime, so instead of immediately writing each number to the terminal, it adds it to a list. After the set number of iterations, the list of numbers is written to a text file numbers.lst (21858548 bytes), so you can inspect it. Because it takes some time to do all iterations, its is advisable to write the source code below in a text file 'fractran' and run it in batch mode in the background, instead of starting Bracmat in interactive mode and typing the program at the prompt. The primes, together with the largest number found, are written to a file FRACTRAN.OUT.
<langsyntaxhighlight lang="bracmat">(fractran=
np n fs A Z fi P p N L M
. !arg:(?N,?n,?fs) {Number of iterations, start n, fractions}
Line 573:
str$("\ntime: " flt$(clk$+-1*!t0,4) " sec\n")
, "FRACTRAN.OUT",NEW)
);</langsyntaxhighlight>
In Linux, run the program as follows (assuming bracmat and the file 'fractran' are in the CWD):
<pre>./bracmat 'get$fractran' &</pre>
Line 609:
Using GMP. Powers of two are in brackets.
For extra credit, pipe the output through <code>| less -S</code>.
<langsyntaxhighlight lang="c">#include <stdio.h>
#include <stdlib.h>
#include <gmp.h>
Line 673:
 
return 0;
}</langsyntaxhighlight>
 
=={{header|C++}}==
<langsyntaxhighlight lang="cpp">
#include <iostream>
#include <sstream>
Line 742:
return 0;
}
</syntaxhighlight>
</lang>
{{out}}
<pre>
Line 764:
=={{header|Common Lisp}}==
 
<langsyntaxhighlight lang="lisp">(defun fractran (n frac-list)
(lambda ()
(prog1
Line 784:
for next = (funcall fractran-instance)
until (null next)
do (print next))</langsyntaxhighlight>
 
{{out}}
Line 811:
===Simple Version===
{{trans|Java}}
<langsyntaxhighlight lang="d">import std.stdio, std.algorithm, std.conv, std.array;
 
void fractran(in string prog, int val, in uint limit) {
Line 828:
fractran("17/91 78/85 19/51 23/38 29/33 77/29 95/23
77/19 1/17 11/13 13/11 15/14 15/2 55/1", 2, 15);
}</langsyntaxhighlight>
{{out}}
<pre>0: 2
Line 847:
 
===Lazy Version===
<langsyntaxhighlight lang="d">import std.stdio, std.algorithm, std.conv, std.array, std.range;
 
struct Fractran {
Line 872:
77/19 1/17 11/13 13/11 15/14 15/2 55/1", 2)
.take(15).writeln;
}</langsyntaxhighlight>
{{out}}
<pre>[2, 15, 825, 725, 1925, 2275, 425, 390, 330, 290, 770, 910, 170, 156, 132]</pre>
Line 879:
{{libheader| System.RegularExpressions}}
{{Trans|Java}}
<syntaxhighlight lang="delphi">
<lang Delphi>
program FractranTest;
 
Line 971:
TFractan.Create(DATA, 2).Free;
Readln;
end.</langsyntaxhighlight>
{{out}}
<pre>
Line 993:
=={{header|Elixir}}==
{{trans|Erlang}}
<langsyntaxhighlight lang="elixir">defmodule Fractran do
use Bitwise
Line 1,058:
|> Enum.map(&Fractran.lowbit/1)
|> tl
IO.puts "The first few primes are:\n#{inspect prime}"</langsyntaxhighlight>
 
{{out}}
Line 1,071:
=={{header|Erlang}}==
The exec() function can be passed a predicate which filters steps that satisfy a condition, which for the prime automata is a check to see if the number is a power of 2.
<langsyntaxhighlight lang="erlang">#! /usr/bin/escript
 
-mode(native).
Line 1,130:
gcd(A, 0) -> A;
gcd(A, B) -> gcd(B, A rem B).
</syntaxhighlight>
</lang>
{{out}}
<pre>
Line 1,146:
 
=={{header|Factor}}==
<langsyntaxhighlight lang="factor">USING: io kernel math math.functions math.parser multiline
prettyprint sequences splitting ;
IN: rosetta-code.fractran
Line 1,180:
2bi ;
MAIN: main</langsyntaxhighlight>
{{out}}
<pre>
Line 1,191:
 
=={{header|Fermat}}==
<langsyntaxhighlight lang="fermat">Func FT( arr, n, m ) =
;{executes John H. Conway's FRACTRAN language for a program stored in [arr], an}
;{input integer stored in n, for a maximum of m steps}
Line 1,216:
[arr]:=[( 17/91,78/85,19/51,23/38,29/33,77/29,95/23,77/19,1/17,11/13,13/11,15/14,15/2,55/1 )];
 
FT( [arr], 2, 20 );</langsyntaxhighlight>
{{out}}<pre>
2
Line 1,245:
 
===The Code===
The source style is F77 except for the use of the I0 format code, though not all F77 compilers will offer INTEGER*8. By not using the MODULE scheme, array parameters can't be declared via P(:) which implies a secret additional parameter giving the size of the array and which can be accessed via the likes of <code>UBOUND(P, DIM = 1)</code> Instead, the old-style specification involves no additional parameters and can be given as P(*) meaning "no statement" as to the upper bound, or P(M) which ''may'' be interpreted as the upper bound being the value of M in the compilers that allow this. The actual upper bound of the parameter is unknown and unchecked, so the older style of P(12345) or similar might be used. Rather to my surprise, this compiler (Compaq F90/95) complained if parameter M was declared after the arrays P(M),Q(M) as it is my habit to declare parameters in the order of their appearance. <langsyntaxhighlight Fortranlang="fortran">C:\Nicky\RosettaCode\FRACTRAN\FRACTRAN.for(6) : Warning: This name has not been given an explicit type. [M]
INTEGER P(M),Q(M)!The terms of the fractions.</langsyntaxhighlight>
So much for multi-pass compilers!
 
Similarly, without the MODULE protocol, in all calling routines function FRACTRAN would be deemed floating-point so a type declaration is needed in each. <langsyntaxhighlight Fortranlang="fortran"> INTEGER FUNCTION FRACTRAN(N,P,Q,M) !Notion devised by J. H. Conway.
Careful: the rule is N*P/Q being integer. N*6/3 is integer always because this is N*2/1, but 3 may not divide N.
Could check GCD(P,Q), dividing out the common denominator so MOD(N,Q) works.
Line 1,298:
END DO !The next step.
END !Whee!
</syntaxhighlight>
</lang>
 
===The Results===
Line 1,339:
28 1: 14875
</pre>
Later Fortrans might offer the library function <code>POPCNT(n)</code> which returns the number of on-bits in an integer, most convenient for detecting a straight power of two in a binary computer. Adjusting the interpretation loop to be <langsyntaxhighlight Fortranlang="fortran"> DO I = 1,M !Here we go!
IT = FRACTRAN(N,P,Q,L) !Do it!
IF (POPCNT(N).EQ.1) WRITE (6,11) I,IT,N !Show it!
Line 1,350:
END IF !So much for overflow.
END DO !The next step.
</syntaxhighlight>
</lang>
Leads to the following output:
<pre>
Line 1,385:
 
===Revised Code===
Because this scheme requires a supply of prime numbers, it is convenient to employ the routines prepared for the [[Extensible_prime_generator|extensible prime generator]] via module PRIMEBAG. So, this means escalating to the F90 style, and given that, some compound data structures can be used (for better mnemonics) in place of collections of arrays. <langsyntaxhighlight Fortranlang="fortran"> MODULE CONWAYSIDEA !Notion devised by J. H. Conway.
USE PRIMEBAG !This is a common need.
INTEGER LASTP,ENUFF !Some size allowances.
Line 1,572:
Complete!
END !Whee!
</syntaxhighlight>
</lang>
 
===Revised Results===
Line 1,687:
100 7: 3 1 1 1
</pre>
This time, restricting output to only occasions when N is a power of two requires no peculiar bit-counting function. Just change the interpretation loop to <langsyntaxhighlight Fortranlang="fortran"> DO I = 1,MS !Here we go!
IT = FRACTRAN(LF) !Do it!
IF (ALL(NPPOW(2:LP).EQ.0)) CALL SHOWN(I,IT) !Show it!
IF (IT.LE.0) EXIT !Quit it?
END DO !The next step.</langsyntaxhighlight>
 
Output:
Line 1,805:
=={{header|FreeBASIC}}==
Added a compiler condition to make the program work with the old GMP.bi header file
<langsyntaxhighlight FreeBasiclang="freebasic">' version 06-07-2015
' compile with: fbc -s console
' uses gmp
Line 1,894:
Print : Print "hit any key to end program"
Sleep
End</langsyntaxhighlight>
{{out}}
<pre>2, 15, 825, 725, 1925, 2275, 425, 390, 330, 290, 770, 910, 170, 156, 132, 116
Line 1,933:
=={{header|Go}}==
Basic task: This compiles to produce a program that reads the limit, starting number n, and list of fractions as command line arguments, with the list of fractions as a single argument.
<langsyntaxhighlight lang="go">package main
 
import (
Line 1,994:
}
exec(p, &n, limit)
}</langsyntaxhighlight>
{{out|Command line usage, with program compiled as "ft"}}
<pre>
Line 2,002:
Extra credit: This invokes above program with appropriate arguments,
and processes the output to obtain the 20 primes.
<langsyntaxhighlight lang="go">package main
 
import (
Line 2,036:
}
fmt.Println()
}</langsyntaxhighlight>
{{out}}
<pre>
Line 2,044:
=={{header|Haskell}}==
===Running the program===
<langsyntaxhighlight lang="haskell">import Data.List (find)
import Data.Ratio (Ratio, (%), denominator)
 
Line 2,051:
case find (\f -> n `mod` denominator f == 0) fracts of
Nothing -> []
Just f -> fractran fracts $ truncate (fromIntegral n * f)</langsyntaxhighlight>
 
Example:
Line 2,061:
===Reading the program===
Additional import
<syntaxhighlight lang Haskell="haskell">import Data.List.Split (splitOn)</langsyntaxhighlight>
<langsyntaxhighlight Haskelllang="haskell">readProgram :: String -> [Ratio Int]
readProgram = map (toFrac . splitOn "/") . splitOn ","
where toFrac [n,d] = read n % read d</langsyntaxhighlight>
 
Example of running the program:
Line 2,074:
===Generation of primes===
Additional import
<langsyntaxhighlight Haskelllang="haskell">import Data.Maybe (mapMaybe)
import Data.List (elemIndex)</langsyntaxhighlight>
<langsyntaxhighlight Haskelllang="haskell">primes :: [Int]
primes = mapMaybe log2 $ fractran prog 2
where
Line 2,095:
, 55 % 1
]
log2 = fmap succ . elemIndex 2 . takeWhile even . iterate (`div` 2)</langsyntaxhighlight>
 
<pre>λ> take 20 primes
Line 2,103:
Works in both languages:
 
<langsyntaxhighlight lang="unicon">record fract(n,d)
 
procedure main(A)
Line 2,129:
}
write()
end</langsyntaxhighlight>
 
{{out}}
Line 2,142:
===Hybrid version===
'''Solution:'''
<langsyntaxhighlight lang="j">toFrac=: '/r' 0&".@charsub ] NB. read fractions from string
fractran15=: ({~ (= <.) i. 1:)@(toFrac@[ * ]) ^:(<15) NB. return first 15 Fractran results</langsyntaxhighlight>
 
'''Example:'''
<langsyntaxhighlight lang="j"> taskstr=: '17/91 78/85 19/51 23/38 29/33 77/29 95/23 77/19 1/17 11/13 13/11 15/14 15/2 55/1'
taskstr fractran15 2
2 15 825 725 1925 2275 425 390 330 290 770 910 170 156 132</langsyntaxhighlight>
 
===Tacit version===
Line 2,156:
This is a variation of the previous solution which it is not entirely tacit due to the use of the explicit standard library verb (function) charsub. The adverb (functional) fractran is defined as a fixed tacit adverb (that is, a stateless point-free functional),
 
<langsyntaxhighlight lang="j">fractran=. (((({~ (1 i.~ (= <.)))@:* ::]^:)(`]))(".@:('1234567890r ' {~ '1234567890/ '&i.)@:[`))(`:6)</langsyntaxhighlight>
The argument of fractran specifies a limit for the number of steps; if the limit is boxed the intermediate results are also included in the result.
Line 2,162:
'''Example'''
 
<langsyntaxhighlight lang="j"> '17/91 78/85 19/51 23/38 29/33 77/29 95/23 77/19 1/17 11/13 13/11 15/14 15/2 55/1' (<15) fractran 2
2 15 825 725 1925 2275 425 390 330 290 770 910 170 156 132</langsyntaxhighlight>
 
Line 2,170:
The prime numbers are produced via the adverb primes; its argument has the same specifications as the argument for the fractran adverb (which is used in its definition),
 
<langsyntaxhighlight lang="j">primes=. ('fractan'f.) ((1 }. 2 ^. (#~ *./@:e.&2 0"1@:q:))@:)
'17/91 78/85 19/51 23/38 29/33 77/29 95/23 77/19 1/17 11/13 13/11 15/14 15/2 55/1' (<555555) primes 2
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71</langsyntaxhighlight>
 
primes is also a stateless point-free functional,
<langsyntaxhighlight lang="j"> primes
((((({~ (1 i.~ (= <.)))@:* ::]^:)(`]))(".@:('1234567890r ' {~ '1234567890/ '&i.)@:[`))(`:6))((1 }. 2 ^. (#~ *./@:e.&2 0"1@:q:))@:)</langsyntaxhighlight>
 
Line 2,185:
When _ is the limit argument (i.e., when no limit is imposed) the run will halt according to the FRACTRAN programming language specifications (the run might also be forced to halt if a trivial changeless single cycle, induced by a useless 1/1 fraction, is detected). Thus, the FRACTRAN associated verb (function) is,
<langsyntaxhighlight lang="j"> _ fractran
".@:('1234567890r ' {~ '1234567890/ '&i.)@:[ ({~ (1 i.~ (= <.)))@:* ::]^:_ ]</langsyntaxhighlight>
 
Actually, most of the code above is there to comply with the task's requirement of a "''natural'' format." When J's format for fractions is used the FRACTRAN verb becomes,
 
<langsyntaxhighlight lang="j">FRACTRAN=. ({~ (1 i.~ (= <.)))@:* ::]^:_</langsyntaxhighlight>
 
which is an indirect concise confirmation that J's fixed tacit dialect is Turing complete.
Line 2,196:
In the following example, FRACTRAN calculates the product 4 * 6, the initial value 11664 = (2^4)*(3^6) holds 4 in the register associated with 2 and holds 6 in the register associated with 3; the result 59604644775390625 = 5^24 holds the product 24 = 4 * 6 in the register associated with 5,
 
<langsyntaxhighlight lang="j"> 455r33 11r13 1r11 3r7 11r2 1r3 FRACTRAN 11664
59604644775390625</langsyntaxhighlight>
 
=={{header|Java}}==
<langsyntaxhighlight lang="java">import java.util.Vector;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
Line 2,253:
System.out.println();
}
}</langsyntaxhighlight>
 
=={{header|JavaScript}}==
===Imperative===
<langsyntaxhighlight lang="javascript">// Parses the input string for the numerators and denominators
function compile(prog, numArr, denArr) {
let regex = /\s*(\d*)\s*\/\s*(\d*)\s*(.*)/m;
Line 2,301:
let [num, den] = compile("17/91 78/85 19/51 23/38 29/33 77/29 95/23 77/19 1/17 11/13 13/11 15/14 15/2 55/1", [], []);
body.innerHTML = dump(num, den);
body.innerHTML += exec(2, 0, 15, num, den);</langsyntaxhighlight>
 
===Functional===
Line 2,307:
 
Here is a functionally composed version, which also derives a few primes. I may have missed something, but this first draft suggests that we may need bigInt support (which JS lacks) to get as far as the sixth prime.
<langsyntaxhighlight lang="javascript">(() => {
'use strict';
 
Line 2,548:
// MAIN ---
return main();
})();</langsyntaxhighlight>
{{Out}}
<pre>"First fifteen steps:" -> [2,15,825,725,1925,2275,425,390,330,290,770,910,170,156,132]
Line 2,555:
=={{header|Julia}}==
{{works with|Julia|0.6}}
<langsyntaxhighlight lang="julia">function fractran(n::Integer, ratios::Vector{<:Rational}, steplim::Integer)
rst = zeros(BigInt, steplim)
for i in 1:steplim
Line 2,588:
end
n = fractran(n, fracs, 2)[2]
end</langsyntaxhighlight>
 
{{output}}
Line 2,614:
 
=={{header|Kotlin}}==
<langsyntaxhighlight lang="scala">// version 1.1.3
 
import java.math.BigInteger
Line 2,658:
println("\nFirst twenty primes:")
println(fractran(program, 2, 20, true))
}</langsyntaxhighlight>
 
{{out}}
Line 2,672:
This isn't as efficient as possible for long lists of fractions, since it doesn't stop doing n*listelements once it finds an integer. Instead, it computes "is integer?" for n*{all list elements}. For short lists that's probably not a big deal.
 
<langsyntaxhighlight Mathematicalang="mathematica">fractionlist = {17/91, 78/85, 19/51, 23/38, 29/33, 77/29, 95/23, 77/19, 1/17, 11/13, 13/11, 15/14, 15/2, 55/1};
n = 2;
steplimit = 20;
Line 2,686:
n = newlist[[truepositions[[1, 1]]]]; j++;
]
]</langsyntaxhighlight>
{{out}}
<pre>0: 2
Line 2,713:
 
Here is a different solution using a functional approach:
<syntaxhighlight lang="mathematica">
<lang Mathematica>
fractran[
program : {__ ? (Element[#, PositiveRationals] &)}, (* list of positive fractions *)
Line 2,727:
$PRIMEGAME = {17/91, 78/85, 19/51, 23/38, 29/33, 77/29, 95/23, 77/19, 1/17, 11/13, 13/11, 15/14, 15/2, 55/1};
fractran[$PRIMEGAME, 2, 50]
</syntaxhighlight>
</lang>
 
{{out}}
Line 2,735:
 
Extract the first 20 prime numbers encoded as powers of 2:
<syntaxhighlight lang="mathematica">
<lang Mathematica>
Select[IntegerQ] @ Log2[fractran[$PRIMEGAME, 2, 500000]]
</syntaxhighlight>
</lang>
{{out}}
<pre>{1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67}</pre>
Line 2,747:
We provide a general function to run any Fractran program and a specialized iterator to find prime numbers.
 
<syntaxhighlight lang="nim">
<lang Nim>
import strutils
import bignum
Line 2,802:
for val in primes(20):
echo val
</syntaxhighlight>
</lang>
 
{{out}}
Line 2,844:
With this algorithm, we no longer need big numbers. To avoid overflow, value at each step is displayed using
its decomposition in prime factors.
<syntaxhighlight lang="nim">
<lang Nim>
import algorithm
import sequtils
Line 2,981:
echo "\nFirst twenty prime numbers:"
findPrimes(20)
</syntaxhighlight>
</lang>
 
{{out}}
Line 3,022:
=={{header|OCaml}}==
This reads a Fractran program from standard input (keyboard or file) and runs it with the input given by the command line arguments, using arbitrary-precision numbers and fractions.
<langsyntaxhighlight lang="ocaml">open Num
 
let get_input () =
Line 3,064:
let num = get_input () in
let prog = read_program () in
run_program num prog</langsyntaxhighlight>
 
The program
Line 3,114:
{{Works with|PARI/GP|2.7.4 and above}}
 
<langsyntaxhighlight lang="parigp">
\\ FRACTRAN
\\ 4/27/16 aev
Line 3,130:
print(fractran(2,v,15));
}
</langsyntaxhighlight>
 
{{Output}}
Line 3,142:
This makes the fact that it's a prime-number-generating program much clearer.
 
<langsyntaxhighlight lang="perl">use strict;
use warnings;
use Math::BigRat;
Line 3,173:
 
print "\n";
</syntaxhighlight>
</lang>
 
If you uncomment the <pre>#print $n</pre>, it will print all the steps.
Line 3,188:
Division (to whole integer) is performed simply by subtracting the corresponding powers, as above not possible if any would be negative.
 
<!--<langsyntaxhighlight Phixlang="phix">(phixonline)-->
<span style="color: #008080;">without</span> <span style="color: #008080;">js</span> <span style="color: #000080;font-style:italic;">-- 8s
--with javascript_semantics -- 52s!! (see note)</span>
Line 3,294:
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"first %d primes: %v\n"</span><span style="color: #0000FF;">,{</span><span style="color: #000000;">primes</span><span style="color: #0000FF;">,</span><span style="color: #000000;">res</span><span style="color: #0000FF;">})</span>
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"%,d iterations in %s\n"</span><span style="color: #0000FF;">,{</span><span style="color: #000000;">iteration</span><span style="color: #0000FF;">,</span><span style="color: #7060A8;">elapsed</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">time</span><span style="color: #0000FF;">()-</span><span style="color: #000000;">t0</span><span style="color: #0000FF;">)})</span>
<!--</langsyntaxhighlight>-->
{{out}}
<pre>
Line 3,307:
 
=={{header|Prolog}}==
<langsyntaxhighlight lang="prolog">
load(Program, Fractions) :-
re_split("[ ]+", Program, Split), odd_items(Split, TextualFractions),
Line 3,358:
 
?- main.
</syntaxhighlight>
</lang>
{{Out}}
<pre>
Line 3,367:
=={{header|Python}}==
===Python: Generate series from a fractran program===
<langsyntaxhighlight lang="python">from fractions import Fraction
 
def fractran(n, fstring='17 / 91, 78 / 85, 19 / 51, 23 / 38, 29 / 33,'
Line 3,387:
n, m = 2, 15
print('First %i members of fractran(%i):\n ' % (m, n) +
', '.join(str(f) for f,i in zip(fractran(n), range(m))))</langsyntaxhighlight>
 
{{out}}
Line 3,396:
Use fractran above as a module imported into the following program.
 
<langsyntaxhighlight lang="python">
from fractran import fractran
 
Line 3,409:
if __name__ == '__main__':
for (prime, i), j in zip(fractran_primes(), range(15)):
print("Generated prime %2i from the %6i'th member of the fractran series" % (prime, i))</langsyntaxhighlight>
 
{{out}}
Line 3,436:
To execute a Fractran program until the halting condition is satisfied, use <code>[ program share run until ]</code>. The Fractran prime generator will never satisfy the halting condition, so in this task the <code>drop</code> after <code>run</code> discards the boolean.
 
<langsyntaxhighlight Quackerylang="quackery"> [ $ "bigrat.qky" loadfile ] now!
 
[ 1 & not ] is even ( n --> b )
Line 3,494:
program release
</syntaxhighlight>
</lang>
 
{{out}}
Line 3,505:
=={{header|Racket}}==
{{trans|D}} Simple version, without sequences.
<langsyntaxhighlight Racketlang="racket">#lang racket
 
(define (displaysp x)
Line 3,535:
"13 / 11, 15 / 14, 15 / 2, 55 / 1")))
 
(show-fractran fractran 2 15)</langsyntaxhighlight>
{{out}}
<pre>First 15 members of fractran(2):
Line 3,544:
{{works with|rakudo|2015-11-03}}
A Fractran program potentially returns an infinite list, and infinite lists are a common data structure in Raku. The limit is therefore enforced only by slicing the infinite list.
<syntaxhighlight lang="raku" perl6line>sub fractran(@program) {
2, { first Int, map (* * $_).narrow, @program } ... 0
}
say fractran(<17/91 78/85 19/51 23/38 29/33 77/29 95/23 77/19 1/17 11/13 13/11
15/14 15/2 55/1>)[^100];</langsyntaxhighlight>
{{out}}
<pre>(2 15 825 725 1925 2275 425 390 330 290 770 910 170 156 132 116 308 364 68 4 30 225 12375 10875 28875 25375 67375 79625 14875 13650 2550 2340 1980 1740 4620 4060 10780 12740 2380 2184 408 152 92 380 230 950 575 2375 9625 11375 2125 1950 1650 1450 3850 4550 850 780 660 580 1540 1820 340 312 264 232 616 728 136 8 60 450 3375 185625 163125 433125 380625 1010625 888125 2358125 2786875 520625 477750 89250 81900 15300 14040 11880 10440 27720 24360 64680 56840 150920 178360 33320 30576 5712 2128 1288)</pre>
'''Extra credit:'''
We can weed out all the powers of two into another infinite constant list based on the first list. In this case the sequence is limited only by our patience, and a ^C from the terminal. The <tt>.msb</tt> method finds the most significant bit of an integer, which conveniently is the base-2 log of the power-of-two in question.
<syntaxhighlight lang="raku" perl6line>sub fractran(@program) {
2, { first Int, map (* * $_).narrow, @program } ... 0
}
Line 3,559:
15/14 15/2 55/1> {
say $++, "\t", .msb, "\t", $_ if 1 +< .msb == $_;
}</langsyntaxhighlight>
{{out}}
<pre>
Line 3,575:
 
=={{header|Red}}==
<langsyntaxhighlight Redlang="red">Red ["Fractran"]
 
inp: ask "please enter list of fractions, or input file name: "
Line 3,598:
if l = index? code [halt]
]
]</langsyntaxhighlight>
{{out}}
<pre>please enter list of fractions, or input file name: 17/91 78/85 19/51 23/38 29/33 77/29 95/23 77/19 1/17 11/13 13/11 15/14 15/2 55/1
Line 3,622:
Programming note: &nbsp; extra blanks can be inserted in the fractions before and/or after the solidus &nbsp; ['''<big>/</big>'''].
===showing all terms===
<langsyntaxhighlight lang="rexx">/*REXX program runs FRACTRAN for a given set of fractions and from a specified N. */
numeric digits 2000 /*be able to handle larger numbers. */
parse arg N terms fracs /*obtain optional arguments from the CL*/
Line 3,649:
exit 0 /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
commas: parse arg ?; do jc=length(?)-3 to 1 by -3; ?=insert(',', ?, jc); end; return ?</langsyntaxhighlight>
{{out|output|text=&nbsp; when using the default input:}}
<pre style="height:63ex">
Line 3,759:
===showing prime numbers===
Programming note: &nbsp; if the number of terms specified (the 2<sup>nd</sup> argument) is negative, then only powers of two are displayed.
<langsyntaxhighlight lang="rexx">/*REXX program runs FRACTRAN for a given set of fractions and from a specified N. */
numeric digits 999; d= digits(); w= length(d) /*be able to handle gihugeic numbers. */
parse arg N terms fracs /*obtain optional arguments from the CL*/
Line 3,797:
exit 0 /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
commas: parse arg ?; do jc=length(?)-3 to 1 by -3; ?=insert(',', ?, jc); end; return ?</langsyntaxhighlight>
{{out|output|text=&nbsp; when using the input (negative fifty million) of: &nbsp; &nbsp; <tt> , &nbsp; -50000000 </tt>}}
<pre>
Line 3,879:
 
=={{header|Ruby}}==
<langsyntaxhighlight lang="ruby">ar = %w[17/91 78/85 19/51 23/38 29/33 77/29 95/23 77/19 1/17 11/13 13/11 15/14 15/2 55/1]
FractalProgram = ar.map(&:to_r) #=> array of rationals
 
Line 3,896:
# demo
p Runner.take(20).map(&:numerator)
p prime_generator.take(20)</langsyntaxhighlight>
 
{{Out}}
Line 3,905:
 
=={{header|Scala}}==
<langsyntaxhighlight lang="scala">class TestFractran extends FunSuite {
val program = Fractran("17/91 78/85 19/51 23/38 29/33 77/29 95/23 77/19 1/17 11/13 13/11 15/14 15/2 55/1")
val expect = List(2, 15, 825, 725, 1925, 2275, 425, 390, 330, 290, 770, 910, 170, 156, 132)
Line 3,928:
}
}
}</langsyntaxhighlight>
 
=={{header|Scheme}}==
Line 3,935:
{{libheader|Scheme/SRFIs}}
Similar to Python implementation of generating primes, the power of 2 is detected by first converting the number to binary representation, and check if it has only 1 "1" bit.
<langsyntaxhighlight lang="scheme">(import (scheme base)
(scheme inexact)
(scheme read)
Line 4,008:
 
(display "Primes:\n")
(generate-primes 20 2) ; create first 20 primes</langsyntaxhighlight>
{{out}}
<pre>Task: 2 15 825 725 1925 2275 425 390 330 290 770 910 170 156 132 116 308 364 68 4
Line 4,016:
 
=={{header|Seed7}}==
<langsyntaxhighlight lang="seed7">$ include "seed7_05.s7i";
include "rational.s7i";
 
Line 4,051:
end for;
writeln;
end func;</langsyntaxhighlight>
 
{{out}}
Line 4,059:
 
Program to compute prime numbers with fractran (The program has no limit, use CTRL-C to terminate it):
<langsyntaxhighlight lang="seed7">$ include "seed7_05.s7i";
include "bigrat.s7i";
 
Line 4,087:
begin
fractran(2_, program);
end func;</langsyntaxhighlight>
 
{{out}}
Line 4,121:
=={{header|Sidef}}==
{{trans|Ruby}}
<langsyntaxhighlight lang="ruby">var str ="17/91, 78/85, 19/51, 23/38, 29/33, 77/29, 95/23, 77/19, 1/17, 11/13, 13/11, 15/14, 15/2, 55/1"
const FractalProgram = str.split(',').map{.num} #=> array of rationals
 
Line 4,148:
 
prime_generator(20, {|n| print (n, ' ') })
print "\n"</langsyntaxhighlight>
{{out}}
<pre>
Line 4,157:
=={{header|Tcl}}==
{{works with|Tcl|8.6}}
<langsyntaxhighlight lang="tcl">package require Tcl 8.6
 
oo::class create Fractran {
Line 4,205:
77/19 1/17 11/13 13/11 15/14 15/2 55/1
}]
puts [$ft execute 2]</langsyntaxhighlight>
{{out}}
<pre>
Line 4,211:
</pre>
You can just collect powers of 2 by monkey-patching in something like this:
<langsyntaxhighlight lang="tcl">oo::objdefine $ft method pow2 {n} {
set co [coroutine [incr nco] my Generate 2]
set pows {}
Line 4,222:
return $pows
}
puts [$ft pow2 10]</langsyntaxhighlight>
Which will then produce this additional output:
<pre>
Line 4,230:
=={{header|TI-83 BASIC}}==
{{works with|TI-83 BASIC|TI-84Plus 2.55MP}}
<langsyntaxhighlight lang="ti83b">100->T
2->N
{17,78,19,23,29,77,95,77, 1,11,13,15,15,55}->LA
Line 4,248:
J+1->J
End
End</langsyntaxhighlight>
Note:
-> stands for Store symbol
Line 4,271:
=={{header|VBA}}==
This implementations follows the Wikipedia description of [[wp:FRACTRAN|FRACTRAN]]. There are test, decrement and increment instructions on an array of variables which are the exponents of the prime factors of the argument, which are the only instructions used to run the program with the function run, or go through it step by step with the function steps. An auxiliary factor function is used to compile the FRACTRAN program.
<langsyntaxhighlight lang="vb">Option Base 1
Public prime As Variant
Public nf As New Collection
Line 4,386:
Debug.Print "First 30 primes:"
Debug.Print "after"; filter_primes(2, 30); "iterations."
End Sub</langsyntaxhighlight>{{out}}
<pre>First 20 results:
15 825 725 1925 2275 425 390 330 290 770 910 170 156 132 116 308 364 68 4 30
Line 4,397:
{{libheader|Wren-big}}
Extra credit is glacially slow. We just find the first 10 primes which takes about 85 seconds.
<langsyntaxhighlight lang="ecmascript">import "/big" for BigInt, BigRat
 
var isPowerOfTwo = Fn.new { |bi| bi & (bi - BigInt.one) == BigInt.zero }
Line 4,427:
System.print(fractran.call(program, 2, 20, false))
System.print("\nFirst ten primes:")
System.print(fractran.call(program, 2, 10, true))</langsyntaxhighlight>
 
{{out}}
Line 4,439:
 
=={{header|zkl}}==
<langsyntaxhighlight lang="zkl">var fracs="17/91, 78/85, 19/51, 23/38, 29/33, 77/29, 95/23, 77/19, 1/17,"
"11/13, 13/11, 15/14, 15/2, 55/1";
fcn fractranW(n,fracsAsOneBigString){ //-->Walker (iterator)
Line 4,453:
}
}.fp(Ref(n),fracs))
}</langsyntaxhighlight>
<langsyntaxhighlight lang="zkl">fractranW(2,fracs).walk(20).println();</langsyntaxhighlight>
{{out}}
<pre>
Line 4,460:
</pre>
{{trans|Python}}
<langsyntaxhighlight lang="zkl">var [const] BN=Import("zklBigNum"); // libGMP
fcn fractranPrimes{
foreach n,fr in ([1..].zip(fractranW(BN(2),fracs))){
Line 4,470:
}
}
fractranPrimes();</langsyntaxhighlight>
{{out}}
<pre>
10,333

edits

Cookies help us deliver our services. By using our services, you agree to our use of cookies.