Primality by Wilson's theorem

From Rosetta Code
Revision as of 14:59, 1 January 2020 by PureFox (talk | contribs) (→‎{{header|Go}}: Now generates 1000th to 1015th primes as well to keep Perl 6 company.)
Primality by Wilson's theorem is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.
Task

Write a boolean function that tells whether a given integer is prime.

Remember that   1   and all non-positive numbers are not prime.

Use Wilson's theorem.

A number is prime if p divides (p - 1)! + 1.




Factor

Works with: Factor version 0.99 2019-10-06

<lang factor>USING: formatting grouping io kernel lists lists.lazy math math.functions memoize prettyprint sequences ;

MEMO: factorial ( m -- n )  ! memoize factorial function

   [ 1 ] [ [ 1 - factorial ] [ * ] bi ] if-zero ;
wilson ( n -- ? ) [ 1 - factorial 1 + ] [ divisor? ] bi ;
prime? ( n -- ? ) dup 2 < [ drop f ] [ wilson ] if ;
primes ( -- list ) 1 lfrom [ prime? ] lfilter ;

"n prime?\n--- -----" print { 2 3 9 15 29 37 47 57 67 77 87 97 237 409 659 } [ dup prime? "%-3d %u\n" printf ] each nl

"First 120 primes via Wilson's theorem:" print 120 primes ltake list>array 20 group simple-table. nl

"1000th through 1015th primes:" print 16 primes 1000 [ cdr ] times ltake list>array [ pprint bl ] each nl</lang>

Output:
n    prime?
---  -----
2    t
3    t
9    f
15   f
29   t
37   t
47   t
57   f
67   t
77   f
87   f
97   t
237  f
409  t
659  t

First 120 primes via Wilson's theorem:
2   3   5   7   11  13  17  19  23  29  31  37  41  43  47  53  59  61  67  71
73  79  83  89  97  101 103 107 109 113 127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 277 281
283 293 307 311 313 317 331 337 347 349 353 359 367 373 379 383 389 397 401 409
419 421 431 433 439 443 449 457 461 463 467 479 487 491 499 503 509 521 523 541
547 557 563 569 571 577 587 593 599 601 607 613 617 619 631 641 643 647 653 659

1000th through 1015th primes:
7927 7933 7937 7949 7951 7963 7993 8009 8011 8017 8039 8053 8059 8069 8081 8087 

Go

Needless to say, Wilson's theorem is an extremely inefficient way of testing for primalty with 'big integer' arithmetic being needed to compute factorials greater than 20.

Presumably we're not allowed to make any trial divisions here except by the number two where all even positive integers, except two itself, are obviously composite. <lang go>package main

import (

   "fmt"
   "math/big"

)

var (

   zero = big.NewInt(0)
   one  = big.NewInt(1)
   prev = big.NewInt(factorial(20))

)

// Only usable for n <= 20. func factorial(n int64) int64 {

   res := int64(1)
   for k := n; k > 1; k-- {
       res *= k
   }
   return res

}

// If memo == true, stores previous sequential // factorial calculation for odd n > 21. func wilson(n int64, memo bool) bool {

   if n <= 1 || (n%2 == 0 && n != 2) {
       return false
   }
   if n <= 21 {
       return (factorial(n-1)+1)%n == 0
   }
   b := big.NewInt(n)
   r := big.NewInt(0)
   z := big.NewInt(0)
   if !memo {
       z.MulRange(2, n-1) // computes factorial from scratch
   } else {
       prev.Mul(prev, r.MulRange(n-2, n-1)) // uses previous calculation
       z.Set(prev)
   }
   z.Add(z, one)
   return r.Rem(z, b).Cmp(zero) == 0    

}

func main() {

   numbers := []int64{2, 3, 9, 15, 29, 37, 47, 57, 67, 77, 87, 97, 237, 409, 659}
   fmt.Println("  n  prime")
   fmt.Println("---  -----")
   for _, n := range numbers {
       fmt.Printf("%3d  %t\n", n, wilson(n, false))
   }
   // sequential memoized calculation
   fmt.Println("\nThe first 120 prime numbers are:")
   for i, count := int64(2), 0; count < 1015; i += 2 {
       if wilson(i, true) {
           count++
           if count <= 120 {
               fmt.Printf("%3d ", i)
               if count%20 == 0 {
                   fmt.Println()
               }
           } else if count >= 1000 {
               if count == 1000 {
                   fmt.Println("\nThe 1,000th to 1,015th prime numbers are:") 
               }
               fmt.Printf("%4d ", i)
           }            
       }
       if i == 2 {
           i--
       }
   }
   fmt.Println()    

}</lang>

Output:
  n  prime
---  -----
  2  true
  3  true
  9  false
 15  false
 29  true
 37  true
 47  true
 57  false
 67  true
 77  false
 87  false
 97  true
237  false
409  true
659  true

The first 120 prime numbers are:
  2   3   5   7  11  13  17  19  23  29  31  37  41  43  47  53  59  61  67  71 
 73  79  83  89  97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 
179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 277 281 
283 293 307 311 313 317 331 337 347 349 353 359 367 373 379 383 389 397 401 409 
419 421 431 433 439 443 449 457 461 463 467 479 487 491 499 503 509 521 523 541 
547 557 563 569 571 577 587 593 599 601 607 613 617 619 631 641 643 647 653 659

The 1,000th to 1,015th prime numbers are:
7919 7927 7933 7937 7949 7951 7963 7993 8009 8011 8017 8039 8053 8059 8069 8081 

Perl 6

Works with: Rakudo version 2019.11

Not a particularly recommended way to test for primality, especially for larger numbers. It works, but is slow and memory intensive.

<lang perl6>sub postfix:<!> (Int $n) { (constant f = 1, |[\*] 1..*)[$n] }

sub is-wilson-prime (Int $p where * > 1) { (($p - 1)! + 1) %% $p }

  1. Pre initialize factorial routine (not thread safe)

9000!;

  1. Testing

put ' p prime?'; printf("%4d %s\n", $_, .&is-wilson-prime) for 2, 3, 9, 15, 29, 37, 47, 57, 67, 77, 87, 97, 237, 409, 659;

put "\nFirst 120 primes:"; put (2..*).hyper.grep( *.&is-wilson-prime )[^120].rotor(20)».fmt('%3d').join: "\n";

put "\n1000th through 1015th primes:"; put (2..*).hyper.grep( *.&is-wilson-prime )[1000..1015];</lang>

Output:
   p  prime?
   2  True
   3  True
   9  False
  15  False
  29  True
  37  True
  47  True
  57  False
  67  True
  77  False
  87  False
  97  True
 237  False
 409  True
 659  True

First 120 primes:
  2   3   5   7  11  13  17  19  23  29  31  37  41  43  47  53  59  61  67  71
 73  79  83  89  97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 277 281
283 293 307 311 313 317 331 337 347 349 353 359 367 373 379 383 389 397 401 409
419 421 431 433 439 443 449 457 461 463 467 479 487 491 499 503 509 521 523 541
547 557 563 569 571 577 587 593 599 601 607 613 617 619 631 641 643 647 653 659

1000th through 1015th primes:
7927 7933 7937 7949 7951 7963 7993 8009 8011 8017 8039 8053 8059 8069 8081 8087