Posit numbers/decoding
Posit is a quantization of the real projective line proposed by John Gustafson in 2015. It is claimed to be an improvement over IEEE 754.
The purpose of this task is to write a program capable of decoding a posit number. You will use the example provided by Gustafson in his paper : 0b0000110111011101, representing a 16-bit long real number with three bits for the exponent. Once decoded, you should obtain either the fraction 477/134217728 or the floating point value 3.55393E−6.
Jeff Johnson from Facebook research, described posit numbers as such:
- A more efficient representation for tapered floating points is the recent posit format by Gustafson. It has no explicit size field; the exponent is encoded using a Golomb-Rice prefix-free code, with the exponent encoded as a Golomb-Rice quotient and remainder with in unary and in binary (in posit terminology, is the regime). Remainder encoding size is defined by the exponent scale , where is the Golomb-Rice divisor. Any space not used by the exponent encoding is used by the significand, which unlike IEEE 754 always has a leading 1; gradual underflow (and overflow) is handled by tapering. A posit number system is characterized by , where is the word length in bits and is the exponent scale. The minimum and maximum positive finite numbers in are Failed to parse (syntax error): {\displaystyle f_\mathrm{min} = 2^{−(N−2)2^s}} and Failed to parse (syntax error): {\displaystyle f_\mathrm{max} = 2^{(N−2)2^s}} . The number line is represented much as the projective reals, with a single point at bounding Failed to parse (syntax error): {\displaystyle −f_\mathrm{max}} and . and 0 have special encodings; there is no NaN. The number system allows any choice of and Failed to parse (syntax error): {\displaystyle 0\le s\le N − 3} .
- controls the dynamic range achievable; e.g., 8-bit (8, 5)-posit is larger than in float32. (8, 0) and (8, 1) are more reasonable values to choose for 8-bit floating point representations, with of 64 and 4096 accordingly. Precision is maximized in the range Failed to parse (syntax error): {\displaystyle \pm\left[2^{−(s+1)}, 2^{s+1}\right)} with Failed to parse (syntax error): {\displaystyle N − 3 − s} significand fraction bits, tapering to no fraction bits at .
- — Jeff Johnson, Rethinking floating point for deep learning, Facebook research.
ALGOL 68
There are some differences in how e.g., Algol 68G shows floating point numbers and how FreeBASIC and Phix show them.
BEGIN # decode posit format numbers - translated from the FreeBASIC sample #
# returns a formatted representation of v#
OP TOSTRING = ( LONG REAL v )STRING:
BEGIN
STRING result := IF v > -100 000 AND v < 100 000 AND ABS v >= 0.1
THEN fixed( v, -14, 12 )
ELSE float( v, -22, 15, 4 )
FI;
IF result[ LWB result ] = "."
THEN "0" +=: result
ELIF result[ LWB result : LWB result + 1 ] = "-."
THEN result := "-0" + result[ LWB result + 2 : ]
FI;
IF NOT char in string( "e", NIL, result ) THEN
WHILE result[ UPB result ] = "0" DO result := result[ LWB result : UPB result - 1 ] OD;
IF result[ UPB result ] = "." THEN result := result[ LWB result : UPB result - 1 ] FI
FI;
result
END # TOSTRING # ;
# returns the length of s #
OP LENGTH = ( STRING s )INT: ( UPB s - LWB s ) + 1;
# returns v in converted to a binary digit string of width w #
PRIO TOBITSTRING = 9;
OP TOBITSTRING = ( INT v in, w )STRING:
BEGIN
STRING result := "";
INT v := v in;
WHILE v > 0 DO IF ODD v THEN "1" ELSE "0" FI +=: result; v OVERAB 2 OD;
IF LENGTH result < w THEN ( "0" * ( w - LENGTH result ) ) +=: result FI;
result
END # TOBITSTRING # ;
# returns s converted to an INT, assuming s is a valid binary number #
OP FROMBITSTRING = ( STRING s )INT:
BEGIN
INT result := 0;
FOR pos FROM LWB s TO UPB s DO
result *:= 2;
IF s[ pos ] = "1" THEN result +:= 1 FI
OD;
result
END # FROMBITSTRING # ;
# TASK #
PROC min = ( INT a, b )INT: IF a < b THEN a ELSE b FI;
PROC twos compliment = ( STRING sbits, INT nbits )STRING:
BEGIN
STRING result := sbits[ @ 1 ];
FOR i TO nbits DO
result[ i ] := IF result[ i ] = "0" THEN "1" ELSE "0" FI
OD;
BOOL found0 := FALSE;
FOR i FROM nbits BY - 1 TO 1 WHILE NOT found0 DO
IF found0 := result[ i ] = "0"
THEN result[ i ] := "1"
ELSE result[ i ] := "0"
FI
OD;
result
END # twos compliment # ;
PROC posit decode = ( INT nbits, es, bits in )STRING:
IF STRING sbits := bits in TOBITSTRING nbits;
STRING ibits = sbits;
LENGTH ibits /= nbits
THEN
print( ( "Length of """, ibits, """ is not ", whole( nbits, 0 ), newline ) );
stop
ELSE
STRING result := "";
BOOL s = sbits[ 1 ] = "1";
IF s THEN sbits[ 2 : ] := twos compliment( sbits[ 2 : ], nbits - 1 ) FI;
BOOL b2z = sbits[ 2 ] = "0";
INT r := 0;
IF NOT char in string( IF b2z THEN "1" ELSE "0" FI, r, sbits[ 3 : ] ) THEN r := -2 FI;
LONG REAL fs := 1;
LONG REAL useed = 2.0 ^ ( 2 ^ es );
INT exponent := 0;
INT fraction := 0;
IF r < 0 THEN
IF b2z THEN
result := IF s THEN """NaR""" ELSE """zero""" FI
FI;
r := nbits - 1
ELSE
INT estart = r + 3;
INT efinish = min( r + 2 + es, nbits );
exponent := FROMBITSTRING sbits[ estart : efinish ];
fraction := FROMBITSTRING sbits[ efinish + 1 : ];
fs := 2.0 ^ ( nbits - efinish )
FI;
IF result = "" THEN
INT k = IF b2z THEN -r ELSE r - 1 FI;
result :=
TOSTRING ( IF s THEN -1 ELSE 1 FI * useed ^ k * 2 ^ exponent * ( 1 + fraction / fs ) )
FI;
ibits + " (es=" + whole( es, 0 ) + ") ==> " + result
FI # positDecode # ;
[,]INT tests = ( ( 16, 3, ABS 2r0000110111011101 ), ( 16, 3, ABS 2r1000000000000000 )
, ( 16, 3, ABS 2r0000000000000000 ), ( 16, 1, ABS 2r0110110010101000 )
, ( 16, 1, ABS 2r1001001101011000 ), ( 16, 2, ABS 2r0000000000000001 )
, ( 16, 0, ABS 2r0111111111111111 ), ( 16, 2, ABS 2r0111111111111111 )
, ( 16, 6, ABS 2r0111111111111110 )
, ( 8, 1, ABS 2r01000000 ), ( 8, 1, ABS 2r11000000 ), ( 8, 1, ABS 2r00110000 )
, ( 8, 1, ABS 2r00100000 ), ( 8, 2, ABS 2r00000001 ), ( 8, 2, ABS 2r01111111 )
, ( 8, 7, ABS 2r01111110 )
, ( 32, 2, ABS 2r00000000000000000000000000000001 )
, ( 32, 2, ABS 2r01111111111111111111111111111111 )
, ( 32, 5, ABS 2r01111111111111111111111111111110 )
);
FOR i FROM LWB tests TO UPB tests DO
print( ( posit decode( tests[ i, 1 ], tests[ i, 2 ], tests[ i, 3 ] ), newline ) )
OD
END
- Output:
0000110111011101 (es=3) ==> 0.355392694473267e -5 1000000000000000 (es=3) ==> "NaR" 0000000000000000 (es=3) ==> "zero" 0110110010101000 (es=1) ==> 12.65625 1001001101011000 (es=1) ==> -12.65625 0000000000000001 (es=2) ==> 0.138777878078145e -16 0111111111111111 (es=0) ==> 16384 0111111111111111 (es=2) ==> 0.720575940379279e +17 0111111111111110 (es=6) ==> 0.286389039184749e+251 01000000 (es=1) ==> 1 11000000 (es=1) ==> -1 00110000 (es=1) ==> 0.5 00100000 (es=1) ==> 0.25 00000001 (es=2) ==> 0.596046447753906e -7 01111111 (es=2) ==> 0.167772160000000e +8 01111110 (es=7) ==> 0.456244061762219e+193 00000000000000000000000000000001 (es=2) ==> 0.752316384526264e -36 01111111111111111111111111111111 (es=2) ==> 0.132922799578492e +37 01111111111111111111111111111110 (es=5) ==> 0.226900773388334e+280
FreeBASIC
#define MIN(a, b) iif((a) < (b), (a), (b))
Function twosCompliment2On(bits As String, nbits As Integer) As String
Dim As Integer i
Dim result As String = bits
For i = 2 To nbits
Mid(result, i, 1) = Iif(Mid(bits, i, 1) = "0", "1", "0")
Next
For i = nbits To 2 Step -1
If Mid(result, i, 1) = "0" Then
Mid(result, i, 1) = "1"
Exit For
End If
Mid(result, i, 1) = "0"
Next
Return result
End Function
Function positDecode(nbits As Integer, es As Integer, bits As String) As String
If Len(Str(bits)) <> 8 Then
Dim fmt As String = Right("0000000000000000", nbits)
bits = Right(fmt & bits, nbits)
End If
Assert(Len(bits) = nbits)
Dim ibits As String = bits
Dim s As Integer = Iif(Mid(bits, 1, 1) = "1", 1, 0)
If s Then bits = twosCompliment2On(bits, nbits)
Dim r As Integer = Instr(3, bits, Iif(Mid(bits, 2, 1) = "0", "1", "0")) - 2
Dim b2z As Integer = Iif(Mid(bits, 2, 1) = "0", 1, 0)
Dim exponent As Integer = 0
Dim fraction As Integer = 0
Dim fs As Double = 1
Dim useed As Double = 2 ^ (2 ^ es)
Dim As Integer estart, efinish, k
If r < 0 Then
If b2z Then
If s Then Return ibits & " (es=" & es & ") ==> " & """NaR"""
Return ibits & " (es=" & es & ") ==> " & """zero"""
End If
r = nbits - 1
Else
estart = r + 3
efinish = min(r + 2 + es, nbits)
exponent = Val("&b" & Mid(bits, estart, efinish - estart + 1))
fraction = Val("&b" & Mid(bits, efinish + 1))
fs = 2 ^ (nbits - efinish)
End If
k = Iif(b2z, -r, r - 1)
Dim res As Double = Iif(s, -1, 1) * useed ^ k * 2 ^ exponent * (1 + fraction / fs)
Return ibits & " (es=" & es & ") ==> " & res
End Function
Dim tests(1 To 19) As String = { _
"16,3,0000110111011101", "16,3,1000000000000000", "16,3,0000000000000000", _
"16,1,0110110010101000", "16,1,1001001101011000", "16,2,0000000000000001", _
"16,0,0111111111111111", "16,2,0111111111111111", "16,6,0111111111111110", _
"8,1,01000000", "8,1,11000000", "8,1,00110000", _
"8,1,00100000", "8,2,00000001", "8,2,01111111", "8,7,01111110", _
"32,2,00000000000000000000000000000001", _
"32,2,01111111111111111111111111111111", _
"32,5,01111111111111111111111111111110" }
Dim As Integer i, pos1, pos2, nbits, es
Dim As String test, bits
For i = 1 To Ubound(tests)
test = tests(i)
pos1 = Instr(test, ",")
pos2 = Instr(pos1 + 1, test, ",")
nbits = Val(Mid(test, 1, pos1 - 1))
es = Val(Mid(test, pos1 + 1, pos2 - pos1 - 1))
bits = Mid(test, pos2 + 1)
Print positDecode(nbits, es, bits)
Next
Sleep
- Output:
0000110111011101 (es=3) ==> 3.553926944732666e-006 1000000000000000 (es=3) ==> "NaR" 0000000000000000 (es=3) ==> "zero" 0110110010101000 (es=1) ==> 12.65625 1001001101011000 (es=1) ==> -12.65625 0000000000000001 (es=2) ==> 1.387778780781446e-017 0111111111111111 (es=0) ==> 16384 0111111111111111 (es=2) ==> 7.205759403792794e+016 0111111111111110 (es=6) ==> 2.863890391847496e+250 01000000 (es=1) ==> 1 11000000 (es=1) ==> -1 00110000 (es=1) ==> 0.5 00100000 (es=1) ==> 0.25 00000001 (es=2) ==> 5.960464477539063e-008 01111111 (es=2) ==> 16777216 01111110 (es=7) ==> 4.562440617622195e+192 00000000000000000000000000000001 (es=2) ==> 7.52316384526264e-037 01111111111111111111111111111111 (es=2) ==> 1.329227995784916e+036 01111111111111111111111111111110 (es=5) ==> 2.269007733883336e+279
Julia
""" Posit number, a quotient of integers, variable size and exponent length """
struct PositType3{T<:Integer}
numbits::UInt16
es::UInt16
bits::T
PositType3(nb, ne, i) = new{typeof(i)}(UInt16(nb), UInt16(ne), i)
end
""" Convert PositType3 to Rational. See also posithub.org/docs/Posits4.pdf """
function Base.Rational(p::PositType3)
s = signbit(signed(p.bits)) # s for S signbit, is 1 if negative
pabs = p.bits << 1 # Shift off signbit (adds a 0 to F at LSB)
pabs == 0 && return s ? 1 // 0 : 0 // 1 # If p is 0, return 0 or if s 1 error
s && (pabs = (-p.bits) << 1) # If p is negative, flip to 2's complement
expsign = signbit(signed(pabs)) # Exponent sign from 2nd bit now MSB
r = expsign == 1 ? leading_ones(pabs) : leading_zeros(pabs) # r regime R size
k = expsign ? r - 1 : -r # k for the exponent calculation
pabs <<= (r + 1) # Shift off unwanted R bits
pabs >>= (r + 2) # Shift back for E, F
fsize = p.numbits - 1 - r - 1 - p.es # Check how many F bits explicit
e = fsize < 1 ? pabs : pabs >> fsize # Get E value
f = fsize < 1 ? 1 // 1 : 1 + (pabs & (2^fsize - 1)) // 2^fsize # Get F value
pw = 2^p.es * k + e
return pw >= 0 ? (-1)^s * f * big"2"^pw // 1 : (-1)^s * f // big"2"^(-pw)
end
@show Rational(PositType3(16, 3, 0b0000110111011101)) == 477 // 134217728
const tests = [
(16, 3, 0b0000110111011101),
(16, 3, 0b1000000000000000),
(16, 3, 0b0000000000000000),
(16, 1, 0b0110110010101000),
(16, 1, 0b1001001101011000),
(16, 2, 0b0000000000000001),
(16, 0, 0b0111111111111111),
(16, 6, 0b0111111111111110),
(8, 1, 0b01000000),
(8, 1, 0b11000000),
(8, 1, 0b00110000),
(8, 1, 0b00100000),
(8, 2, 0b00000001),
(8, 2, 0b01111111),
(8, 7, 0b01111110),
(32, 2, 0b00000000000000000000000000000001),
(32, 2, 0b01111111111111111111111111111111),
(32, 5, 0b01111111111111111111111111111110),
]
for t in tests
r = Rational(PositType3(t...))
println(string(t[3], base = 2, pad = t[1]), " => $r = ", float(r))
end
- Output:
Rational(PositType3(16, 3, 0x0ddd)) == 477 // 134217728 = true 0000110111011101 => 477//134217728 = 3.553926944732666015625e-06 1000000000000000 => 1//0 = Inf 0000000000000000 => 0//1 = 0.0 0110110010101000 => 405//32 = 12.65625 1001001101011000 => -405//32 = -12.65625 0000000000000001 => 1//72057594037927936 = 1.387778780781445675529539585113525390625e-17 0111111111111111 => 16384//1 = 16384.0 0111111111111110 => 28638903918474961204418783933674838490721739172170652529441449702311064005352904159345284265824628375429359509218999720074396860757073376700445026041564579620512874307979212102266801261478978776245040008231745247475930553606737583615358787106474295296//1 = 2.86389039184749612044187839336748384907217391721706525294414497023110640053529e+250 01000000 => 1//1 = 1.0 11000000 => -1//1 = -1.0 00110000 => 1//2 = 0.5 00100000 => 1//4 = 0.25 00000001 => 1//16777216 = 5.9604644775390625e-08 01111111 => 16777216//1 = 1.6777216e+07 01111110 => 4562440617622195218641171605700291324893228507248559930579192517899275167208677386505912811317371399778642309573594407310688704721375437998252661319722214188251994674360264950082874192246603776//1 = 4.562440617622195218641171605700291324893228507248559930579192517899275167208677e+192 00000000000000000000000000000001 => 1//1329227995784915872903807060280344576 = 7.523163845262640050999913838222372338039459563341360137656010920181870460510254e-37 01111111111111111111111111111111 => 1329227995784915872903807060280344576//1 = 1.329227995784915872903807060280344576e+36 01111111111111111111111111111110 => 2269007733883335972287082669296112915239349672942191252221331572442536403137824056312817862695551072066953619064625508194663368599769448406663254670871573830845597595897613333042429214224697474472410882236254024057110212260250671521235807709272244389361641091086035023229622419456//1 = 2.269007733883335972287082669296112915239349672942191252221331572442536403137824e+279
Mathematica
Using code written by John Gustafson himself. Reproduced here with minor, mainly stylistic modifications (mostly to convert graphical symbols to their text equivalent). License is included as legally required by copyright laws.
(* Copyright © 2017 John L. Gustafson
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sub-license, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
This copyright and permission notice shall be included in all copies or substantial portions of the software.
THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY,
WHETHER IN AN ACTION OR CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*)
setpositenv[{n_Integer /; n >= 2, e_Integer /; e >= 0}] := (
{nbits, es} = {n, e};
npat = 2^nbits;
useed = 2^2^es;
{minpos, maxpos} = {useed^(-nbits + 2), useed^(nbits - 2)};
qsize = Power[2, Ceiling[Log[2, (nbits - 2) 2^(es + 2) + 5]]];
qextra = qsize - (nbits - 2) 2^(es + 2);
)
positQ[p_Integer] := 0 <= p < npat
twoscomp[sign_, p_] := Mod[If[sign > 0, p, npat - p], npat]
signbit[p_ /; positQ[p]] := IntegerDigits[p, 2, nbits][[1]]
regimebits[p_ /; positQ[p]] :=
Module[
{q = twoscomp[1 - signbit[p], p], bits, bit2, npower, tempbits},
bits = IntegerDigits[q, 2, nbits];
bit2 = bits[[2]]; (* Look for the run length after the sign bit. *)
tempbits = Join[Drop[bits, 1], {1 - bit2}]; (* Drop the sign bit,
but append a complement bit as a sure-fire way to end the run. *)
npower = (Position[tempbits, 1 - bit2, 1, 1])[[1]] - 1; (*
Find first opposite bit. *)
Take[bits, {2, Min[npower + 1, nbits]}]
]
regimevalue[bits_] := If[bits[[1]] == 1, Length[bits] - 1, -Length[bits]]
exponentbits[p_ /; positQ[p]] :=
Module[{q = twoscomp[1 - signbit[p], p], bits, startbit},
startbit = Length[regimebits[q]] + 3;
bits = IntegerDigits[q, 2, nbits];
If[startbit > nbits, {},
Take[bits, {startbit, Min[startbit + es - 1, nbits]}]]]
fractionbits[p_ /; positQ[p]] :=
Module[{q = twoscomp[1 - signbit[p], p], bits, startbit},
startbit = Length[regimebits[q]] + 3 + es;
bits = IntegerDigits[q, 2, nbits];
If[startbit > nbits, {}, Take[bits, {startbit, nbits}]]]
p2x[p_ /; positQ[p]] :=
Module[{s = (-1)^signbit[p], k = regimevalue[regimebits[p]],
e = exponentbits[p], f = fractionbits[p]},
e = Join[e, Table[0, es - Length[e]]]; (*
Pad with 0s on the right if they are clipped off. *)
e = FromDigits[e, 2];
If[f == {}, f = 1, f = 1 + FromDigits[f, 2] 2^(-Length[f])];
Which[
p == 0, 0,
p == npat/2, ComplexInfinity, (* The two exception values,
0 and \[PlusMinus]\[Infinity] *)
True, s useed^k*2^e*f]
]
setpositenv[{16, 3}];
p2x @ 2^^0000110111011101 // TraditionalForm
- Output:
477/134217728
Perl
# 20240929 Perl programming solution
use strict;
use warnings;
use Math::BigRat;
use constant { NBITS => 16, ES => 3, NPAT => 2**16, USEED => 256, };
sub twoscomp {
my ($sign, $p) = @_;
return ($sign > 0 ? $p : NPAT - $p) % NPAT;
}
sub sign_bit {
my ($p) = @_;
return ($p >> (NBITS - 1)) & 1;
}
sub regime_bits {
my ($p) = @_;
my $q = twoscomp(1 - sign_bit($p), $p);
my $bit_str = sprintf("%0*b", NBITS, $q);
my $first_data_bit = substr($bit_str, 1, 1);
my $count = 0;
foreach my $i (1 .. length($bit_str) - 1) {
last if substr($bit_str, $i, 1) ne $first_data_bit;
$count++;
}
return ($first_data_bit eq '1') ? $count : -($count);
}
sub regime_value {
my ($p) = @_;
return regime_bits($p);
}
sub exponent_bits {
my ($p) = @_;
my $q = twoscomp(1 - sign_bit($p), $p);
my $bit_str = sprintf("%0*b", NBITS, $q);
my $regime_len = abs(regime_bits($p));
my $start_bit = 1 + $regime_len + 1;
return substr($bit_str, $start_bit, ES);
}
sub fraction_bits {
my ($p) = @_;
my $q = twoscomp(1 - sign_bit($p), $p);
my $bit_str = sprintf("%0*b", NBITS, $q);
my $regime_len = abs(regime_bits($p));
my $start_bit = 1 + $regime_len + ES + 1;
return substr($bit_str, $start_bit);
}
sub bin_to_dec {
my ($bin) = @_;
return unpack("N", pack("B32", substr("0" x 32 . $bin, -32)));
}
sub fraction_value {
my ($bits) = @_;
my $value = Math::BigRat->new(1);
my $frac_len = length($bits);
for my $i (0 .. $frac_len - 1) {
my $bit = substr($bits, $i, 1);
$value += Math::BigRat->new($bit) / (2 ** ($i + 1));
}
return $value;
}
sub p2x {
my ($p) = @_;
my $sign = (-1) ** sign_bit($p);
my $k = regime_value($p);
my $e_bits = exponent_bits($p);
my $e = bin_to_dec($e_bits);
my $f_bits = fraction_bits($p);
my $f = fraction_value($f_bits);
if ($p == 0) {
return Math::BigRat->new(0);
} elsif ($p == NPAT / 2) {
return "Inf";
} else {
my $USEED_k = Math::BigRat->new(USEED) ** $k;
my $two_e = Math::BigRat->new(2) ** $e;
my $result = Math::BigRat->new($sign) * $USEED_k * $two_e * $f;
return $result;
}
}
print p2x(0b0000110111011101), "\n";
You may Attempt This Online!
Phix
with javascript_semantics function twos_compliment_2_on(string bits, integer nbits) for i=2 to nbits do bits[i] = iff(bits[i]='0'?'1':'0') end for for i=nbits to 2 by -1 do if bits[i]='0' then bits[i] = '1' exit end if bits[i] = '0' end for return bits end function function posit_decode(integer nbits, es, object bits) -- -- nbits: number of bits (aka n) -- es: exponent scale -- bits: (binary) integer or string of nbits 0|1 -- if not string(bits) then string fmt = sprintf("%%0%db",nbits) bits = sprintf(fmt,bits) end if assert(length(bits)==nbits) string ibits = bits -- save for return integer s = bits[1]='1' if s then bits = twos_compliment_2_on(bits,nbits) end if integer r = find(xor_bits(bits[2],1),bits,3)-2, b2z = bits[2]='0', exponent = 0, fraction = 0 atom fs = 1, useed = power(2,power(2,es)) if r<0 then if b2z then if s then return {ibits,es,"NaR"} -- aka inf end if return {ibits,es,"zero"} end if r = nbits-1 else integer estart = r+3, efinish = min(r+2+es,nbits) exponent = to_integer(bits[estart..efinish],0,2) fraction = to_integer(bits[efinish+1..$],0,2) fs = power(2,nbits-efinish) end if integer k = iff(b2z?-r:r-1) atom res = iff(s?-1:+1)*power(useed,k)*power(2,exponent)*(1+fraction/fs) return {ibits,es,res} end function constant tests = {{16,3,0b0000110111011101}, {16,3,0b1000000000000000}, {16,3,0b0000000000000000}, {16,1,0b0110110010101000}, {16,1,0b1001001101011000}, {16,2,0b0000000000000001}, {16,0,0b0111111111111111}, {16,2,0b0111111111111111}, {16,6,0b0111111111111110}, {8,1,0b01000000}, {8,1,0b11000000}, {8,1,0b00110000}, {8,1,0b00100000}, {8,2,0b00000001}, {8,2,0b01111111}, {8,7,0b01111110}, {32,2,0b00000000000000000000000000000001}, {32,2,0b01111111111111111111111111111111}, {32,5,0b01111111111111111111111111111110}} for t in tests do printf(1,"%s (es=%d) ==> %v\n",call_func(posit_decode,t)) end for
- Output:
0000110111011101 (es=3) ==> 3.553926944e-6 1000000000000000 (es=3) ==> "NaR" 0000000000000000 (es=3) ==> "zero" 0110110010101000 (es=1) ==> 12.65625 1001001101011000 (es=1) ==> -12.65625 0000000000000001 (es=2) ==> 1.38777878e-17 0111111111111111 (es=0) ==> 16384 0111111111111111 (es=2) ==> 7.205759404e+16 0111111111111110 (es=6) ==> 2.863890392e+250 01000000 (es=1) ==> 1 11000000 (es=1) ==> -1 00110000 (es=1) ==> 0.5 00100000 (es=1) ==> 0.25 00000001 (es=2) ==> 5.960464478e-8 01111111 (es=2) ==> 16777216 01111110 (es=7) ==> 4.562440618e+192 00000000000000000000000000000001 (es=2) ==> 7.523163846e-37 01111111111111111111111111111111 (es=2) ==> 1.329227996e+36 01111111111111111111111111111110 (es=5) ==> 2.269007734e+279
Raku
=begin LICENSE
Copyright © 2017 John L. Gustafson
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sub-license, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
This copyright and permission notice shall be included in all copies or substantial portions of the software.
THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY,
WHETHER IN AN ACTION OR CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
=end LICENSE
constant nbits = 16;
constant es = 3;
constant npat = 2**nbits;
constant useed = 2**2**es;
constant minpos = useed**(-nbits + 2);
constant maxpos = useed**(+nbits - 2);
constant qsize = 2**((nbits-2)*2**(es+2)+5).log2.ceiling;
constant qextra = qsize - (nbits - 2)*2**(es+2);
constant posit-range = 0..^2**nbits;
sub twoscomp($sign, $p) { ($sign > 0 ?? $p !! npat - $p) mod npat }
sub sign-bit(UInt $p where posit-range) { +$p.polymod(2 xx nbits - 1).tail }
sub regime-bits(UInt $p where posit-range) {
my $q = twoscomp(1 - sign-bit($p), $p);
my @bits = $q.polymod(2 xx nbits - 1).reverse;
my $bit2 = @bits[1];
my @temp-bits = flat @bits[1..*], 1 - $bit2;
my $npower = @temp-bits.first(1 - $bit2, :k) - 1;
@bits[1..($npower+1)];
}
sub regime-value(@bits) { @bits.head ?? @bits.elems - 1 !! -@bits; }
sub exponent-bits(UInt $p where posit-range) {
my $q = twoscomp(1 - sign-bit($p), $p);
my $startbit = regime-bits($q).elems + 3;
my @bits = $q.polymod(2 xx nbits - 1).reverse;
@bits[$startbit-1 .. $startbit-1 + es - 1]
}
sub fraction-bits(UInt $p where posit-range) {
my $q = twoscomp(1 - sign-bit($p), $p);
my $startbit = regime-bits($q).elems + 3 + es;
my @bits = $q.polymod(2 xx nbits - 1).reverse;
@bits[$startbit-1 .. *];
}
sub p2x(UInt $p where posit-range) {
my $s = (-1)**sign-bit($p);
my $k = regime-value regime-bits $p;
my @e = exponent-bits $p;
my @f = fraction-bits $p;
@e.push: 0 until @e == es;
my $e = @e.reduce: 2 * * + *;
my $f = @f == 0 ?? 1 !! 1.FatRat + @f.reduce(2 * * + *)/2**@f;
given $p {
when 0 { 0 }
when npat div 2 { Inf }
default { $s * useed**$k * 2**$e * $f }
}
}
dd p2x 0b0000110111011101;
- Output:
FatRat.new(477, 134217728)
You may Attempt This Online!
Wren
import "./fmt" for Conv, Fmt
import "./big" for BigRat, BigInt
var positDecode = Fn.new { |ps, maxExpSize|
var p = ps.map { |c| c == "0" ? 0 : 1 }.toList
// Deal with exceptional values.
if (p[1..-1].all { |i| i == 0 }) {
return (p[0] == 0) ? BigRat.zero : Conv.infinity
}
// Convert bits after sign bit to two's complement if negative.
var n = p.count
if (p[0] == 1) {
for (i in 1...n) p[i] = (p[i] == 0) ? 1 : 0
for (i in n-1..1) {
if (p[i] == 1) {
p[i] = 0
} else {
p[i] = 1
break
}
}
}
var first = p[1]
var rs = n - 1 // regime size
for (i in 2...n) {
if (p[i] != first) {
rs = i - 1
break
}
}
var regime = p[1..rs]
var es = (rs == n - 1) ? 0 : maxExpSize.min(n - 2 -rs) // actual exponent size
var exponent = [0]
if (es > 0) exponent = p[rs + 2...rs + 2 + es]
var fs = (es == 0) ? 0 : n - 2 - rs - es // function size
var s = (p[0] == 0) ? 1 : -1 // sign
var k = regime.all { |i| i == 0 } ? -rs : rs - 1
var u = BigInt.two.pow(2.pow(maxExpSize))
var e = Conv.atoi(exponent.join(""), 2)
var f = BigRat.one
if (fs > 0) {
var fraction = p.join("")[-fs..-1]
f = Conv.atoi(fraction, 2)
f = BigRat.one + BigRat.new(f, 2.pow(fs))
}
return f * BigRat.new(u, 1).pow(k) * s * 2.pow(e)
}
var tests = [
[3, "0000110111011101"],
[3, "1000000000000000"],
[3, "0000000000000000"],
[1, "0110110010101000"],
[1, "1001001101011000"],
[2, "0000000000000001"],
[0, "0111111111111111"],
[6, "0111111111111110"],
[1, "01000000"],
[1, "11000000"],
[1, "00110000"],
[1, "00100000"],
[2, "00000001"],
[2, "01111111"],
[7, "01111110"],
[2, "00000000000000000000000000000001"],
[2, "01111111111111111111111111111111"],
[5, "01111111111111111111111111111110"]
]
for (test in tests) {
var res = positDecode.call(test[1], test[0])
var res2 = (res is BigRat) ? res.toFloat : Num.infinity
Fmt.print("$s(es = $d) -> $s or $n", test[1], test[0], res, res2)
}
- Output:
0000110111011101(es = 3) -> 477/134217728 or 3.5539269447327e-06 1000000000000000(es = 3) -> ∞ or infinity 0000000000000000(es = 3) -> 0/1 or 0 0110110010101000(es = 1) -> 405/32 or 12.65625 1001001101011000(es = 1) -> -405/32 or -12.65625 0000000000000001(es = 2) -> 1/72057594037927936 or 1.3877787807814e-17 0111111111111111(es = 0) -> 16384/1 or 16384 0111111111111110(es = 6) -> 28638903918474961204418783933674838490721739172170652529441449702311064005352904159345284265824628375429359509218999720074396860757073376700445026041564579620512874307979212102266801261478978776245040008231745247475930553606737583615358787106474295296/1 or 2.8638903918475e+250 01000000(es = 1) -> 1/1 or 1 11000000(es = 1) -> -1/1 or -1 00110000(es = 1) -> 1/2 or 0.5 00100000(es = 1) -> 1/4 or 0.25 00000001(es = 2) -> 1/16777216 or 5.9604644775391e-08 01111111(es = 2) -> 16777216/1 or 16777216 01111110(es = 7) -> 4562440617622195218641171605700291324893228507248559930579192517899275167208677386505912811317371399778642309573594407310688704721375437998252661319722214188251994674360264950082874192246603776/1 or 4.5624406176222e+192 00000000000000000000000000000001(es = 2) -> 1/1329227995784915872903807060280344576 or 7.5231638452626e-37 01111111111111111111111111111111(es = 2) -> 1329227995784915872903807060280344576/1 or 1.3292279957849e+36 01111111111111111111111111111110(es = 5) -> 2269007733883335972287082669296112915239349672942191252221331572442536403137824056312817862695551072066953619064625508194663368599769448406663254670871573830845597595897613333042429214224697474472410882236254024057110212260250671521235807709272244389361641091086035023229622419456/1 or 2.2690077338833e+279