Numerical integration/Gauss-Legendre Quadrature: Difference between revisions

m
(Adjust epsilon)
m (→‎{{header|Sidef}}: updated code)
Line 2,010:
<lang ruby>func legendre_pair((1), x) { (x, 1) }
func legendre_pair( n, x) {
var (m1, m2) = legendre_pair(n - 1, x);
var u = (1 - 1/n);
((1 + u)*x*m1 - u*m2, m1);
}
 
Line 2,022:
 
func legendre_prime(n, x) {
var (m0, m1) = legendre_pair(n, x);
(m1 - x*m0) * n / (1 - x**2);
}
 
func approximate_legendre_root(n, k) {
# Approximation due to Francesco Tricomi
var t = ((4*k - 1) / (4*n + 2));
(1 - ((n - 1)/(8 * n**3))) * cos(Num.pi * t -> cos);
}
 
func newton_raphson(f, f_prime, r, eps = 2e-16) {
loop {
while (var dr = float(-f(r) / f_prime(r)) -> abs >= eps) {
rvar dr += dr;(-f(r) / f_prime(r))
dr.abs >= eps || break
r += dr
}
return r;
}
 
func legendre_root(n, k) {
newton_raphson(legendre.method(:call, n), legendre_prime.method(:call, n),
approximate_legendre_root(n, k));
}
 
Line 2,048 ⟶ 2,050:
func nodes(n) {
gather {
take(Pair(0, weight(n, 0))) if n.is_odd;
(n >> 1).times { |i|
var r = legendre_root(n, i);
var w = weight(n, r);
take(Pair(r, w), Pair(-r, w));
}.each(1 .. (n >> 1))
}
}
Line 2,059 ⟶ 2,061:
func quadrature(n, f, a, b, nds = nodes(n)) {
func scale(x) { (x*(b - a) + a + b) / 2 }
(b - a) / 2 * nds.mapsum { .second * f(scale(.first)) }.sum
}
 
2,747

edits