Knapsack problem/Unbounded: Difference between revisions

From Rosetta Code
Content added Content deleted
(added ocaml)
Line 915: Line 915:
| hd::tl ->
| hd::tl ->
let acc =
let acc =
List.fold_left
List.concat
(fun _ac l ->
(List.map
List.fold_left (fun _ac v -> (v::l)::_ac) _ac hd
(fun l ->
) [] acc
List.map (fun v -> (v::l)) hd
) acc
)
in
in
aux acc tl
aux acc tl

Revision as of 20:58, 16 December 2009

Task
Knapsack problem/Unbounded
You are encouraged to solve this task according to the task description, using any language you may know.

A traveller gets diverted and has to make an unscheduled stop in what turns out to be Shangri La. Opting to leave, he is allowed to take as much as he likes of the following items, so long as it will fit in his knapsack, and he can carry it. He knows that he can carry no more than 25 'weights' in total; and that the capacity of his knapsack is 0.25 'cubic lengths'.

Looking just above the bar codes on the items he finds their weights and volumes. He digs out his recent copy of a financial paper and gets the value of each item.

ItemExplanationValue (each)weightVolume (each)
panacea (vials of)Incredible healing properties30000.30.025
ichor (ampules of)Vampires blood18000.20.015
gold (bars)Shiney shiney25002.00.002
KnapsackFor the carrying of-<=25<=0.25 

He can only take whole units of any item, but there is much more of any item than he could ever carry

How many of each item does he take to maximise the value of items he is carrying away with him?

Note:

  1. There are four solutions that maximise the value taken. Only one need be given.


ALGOL 68

Translation of: Python

<lang algol68>MODE BOUNTY = STRUCT(STRING name, INT value, weight, volume);

[]BOUNTY items = (

              ("panacea", 3000,   3,  25),
              ("ichor",   1800,   2,  15),
              ("gold",    2500,  20,   2)
     );

BOUNTY sack := ("sack", 0, 250, 250);

OP * = ([]INT a,b)INT: ( # dot product operator #

   INT sum := 0;
   FOR i TO UPB a DO sum +:= a[i]*b[i] OD;
   sum

);

OP INIT = (REF[]INT vector)VOID:

   FOR index FROM LWB vector TO UPB vector DO
       vector[index]:=0
   OD;

OP INIT = (REF[,]INT matrix)VOID:

   FOR row index FROM LWB matrix TO UPB matrix DO
       INIT matrix[row index,]
   OD;

PROC total value = ([]INT items count, []BOUNTY items, BOUNTY sack) STRUCT(INT value, weight, volume):(

   ###
   Given the count of each item in the sack return -1 if they can"t be carried or their total value.
   (also return the negative of the weight and the volume so taking the max of a series of return
   values will minimise the weight if values tie, and minimise the volume if values and weights tie).
   ###
   INT weight = items count * weight OF items;
   INT volume = items count * volume OF items;
   IF weight > weight OF sack OR volume > volume OF sack THEN
       (-1, 0, 0)
   ELSE
       ( items count * value OF items, -weight, -volume)
   FI

);

PRIO WRAP = 5; # wrap negative array indices as per python's indexing regime # OP WRAP = (INT index, upb)INT:

 IF index>=0 THEN index ELSE upb + index + 1 FI;

PROC knapsack dp = ([]BOUNTY items, BOUNTY sack)[]INT:(

   ###
   Solves the Knapsack problem, with two sets of weights,
   using a dynamic programming approach
   ###
   # (weight+1) x (volume+1) table #
   # table[w,v] is the maximum value that can be achieved #
   # with a sack of weight w and volume v. #
   # They all start out as 0 (empty sack) #
   [0:weight OF sack, 0:volume OF sack]INT table; INIT table;
   FOR w TO 1 UPB table DO
       FOR v TO 2 UPB table DO
           ### Consider the optimal solution, and consider the "last item" added
           to the sack. Removing this item must produce an optimal solution
           to the subproblem with the sack"s weight and volume reduced by that
           of the item. So we search through all possible "last items": ###
           FOR item index TO UPB items DO
               BOUNTY item := items[item index];
               # Only consider items that would fit: #
               IF w >= weight OF item AND v >= volume OF item THEN
                   # Optimal solution to subproblem + value of item: #
                   INT candidate := table[w-weight OF item,v-volume OF item] + value OF item;
                   IF candidate > table[w,v] THEN
                       table[w,v] := candidate
                   FI
               FI
           OD
       OD
   OD;
   [UPB items]INT result; INIT result;
   INT w := weight OF sack, v := volume OF sack;
   WHILE table[w,v] /= 0 DO
       # Find the last item that was added: #
       INT needle = table[w,v];
       INT item index;
       FOR i TO UPB items WHILE
           item index := i;
           BOUNTY item = items[item index];
           INT candidate = table[w-weight OF item WRAP UPB table, v-volume OF item WRAP 2 UPB table] + value OF item;
  1. WHILE # candidate NE needle DO
         SKIP
       OD;
       # Record it in the result, and remove it: #
       result[item index] +:= 1;
       w -:= weight OF items[item index];
       v -:= volume OF items[item index]
   OD;
   result

);

[]INT max items = knapsack dp(items, sack); STRUCT (INT value, weight, volume) max := total value(max items, items, sack); max := (value OF max, -weight OF max, -volume OF max);

FORMAT d = $zz-d$;

printf(($"The maximum value achievable (by dynamic programming) is "gl$, value OF max)); printf(($" The number of ("n(UPB items-1)(g", ")g") items to achieve this is: ("n(UPB items-1)(f(d)",")f(d)") respectively"l$,

   name OF items, max items));

printf(($" The weight to carry is "f(d)", and the volume used is "f(d)l$,

   weight OF max, volume OF max))</lang>Output:
The maximum value achievable (by dynamic programming) is      +54500
  The number of (panacea, ichor, gold) items to achieve this is: (   9,   0,  11) respectively
  The weight to carry is  247, and the volume used is  247

C

Translation of: Fortran

<lang c>#include <stdio.h>

double min(double a, double b) {

   return a < b ? a : b;

}

struct Bounty {

   int value;
   double weight, volume;

};

struct Bounty panacea = {3000, 0.3, 0.025},

              ichor   = {1800,  0.2, 0.015},
              gold    = {2500,  2.0, 0.002},
              sack    = {   0, 25.0, 0.25 },
              current, best;

  1. define CALC(V) current.V = npanacea * panacea.V + nichor * ichor.V + ngold * gold.V

int main(void) {

   int npanacea, nichor, ngold, max_panacea, max_ichor, max_gold;
   int best_amounts[3];

   best.value = 0;
   max_panacea = (int)min(sack.weight / panacea.weight, sack.volume / panacea.volume);
   max_ichor   = (int)min(sack.weight / ichor.weight,   sack.volume / ichor.volume);
   max_gold    = (int)min(sack.weight / gold.weight,    sack.volume / gold.volume);
   for (npanacea = 0; npanacea <= max_panacea; npanacea++) {
       for (nichor = 0; nichor <= max_ichor; nichor++) {
           for (ngold = 0; ngold <= max_gold; ngold++) {
               CALC(value);
               CALC(weight);
               CALC(volume);
               
               if (current.value > best.value && current.weight <= sack.weight &&
                   current.volume <= sack.volume) {
                   best.value = current.value;
                   best.weight = current.weight;
                   best.volume = current.volume;                                        
                   best_amounts[0] = npanacea;
                   best_amounts[1] = nichor;
                   best_amounts[2] = ngold;                    
               }
           }
       }
   }

   printf("Maximum value achievable is %d\n", best.value);
   printf("This is achieved by carrying (one solution) %d panacea, %d ichor and %d gold\n",
          best_amounts[0], best_amounts[1], best_amounts[2]);
   printf("The weight to carry is %4.1f and the volume used is %5.3f\n", best.weight, best.volume);
   return 0;

}</lang>

Clojure

<lang lisp>(defstruct item :value :weight :volume)

(defn total [key items quantities]

 (reduce + (map * quantities (map key items))))

(defn max-count [item max-weight max-volume]

 (let [mcw (/ max-weight (:weight item))
       mcv (/ max-volume (:volume item))]
   (min mcw mcv)))</lang>

We have an item struct to contain the data for both contents and the knapsack. The total function returns the sum of a particular attribute across all items times their quantities. Finally, the max-count function returns the most of that item that could fit given the constraints (used as the upper bound on the combination). Now the real work: <lang lisp>(defn knapsacks []

 (let [pan (struct item 3000 0.3 0.025)
       ich (struct item 1800 0.2 0.015)
       gol (struct item 2500 2.0 0.002)
       types [pan ich gol]
       max-w 25.0
       max-v 0.25
       iters #(range (inc (max-count % max-w max-v)))]
   (filter (complement nil?)  
     (pmap 
       #(let [[p i g] %
               w (total :weight types %)
               v (total :volume types %)]
         (if (and (<= w max-w) (<= v max-v))
           (with-meta (struct item (total :value types %) w v) {:p p :i i :g g})))
       (for [p (iters pan)
             i (iters ich)
             g (iters gol)]
         [p i g])))))</lang>

The knapsacks function returns a lazy sequence of all valid knapsacks, with the particular content quantities as metadata. The work of realizing each knapsack is done in parallel via the pmap function. The following then finds the best by value, and prints the result. <lang lisp>(defn best-by-value [ks]

 (reduce #(if (> (:value %1) (:value %2)) %1 %2) ks))
           

(defn print-knapsack[k]

 (let [ {val :value w :weight  v :volume} k
       {p :p i :i g :g} ^k]
   (println "Maximum value:" (float val))
   (println "Total weight: " (float w))
   (println "Total volume: " (float v))
   (println "Containing:   " p "Panacea," i "Ichor," g "Gold")))</lang>

Calling (print-knapsack (best-by-value (knapsacks))) would result in something like:

Maximum value: 54500
Total weight:  24.7
Total volume:  0.247
Containing:    9 Panacea, 0 Ichor, 11 Gold

Further, we could find all "best" knapsacks rather simply (albeit at the cost of some efficiency): <lang lisp>(defn all-best-by-value [ks]

 (let [b (best-by-value ks)]
   (filter #(= (:value b) (:value %)) ks)))

(defn print-knapsacks [ks]

 (doseq [k ks]
   (print-knapsack k)
   (println)))</lang>

Calling (print-knapsacks (all-best-by-value (knapsacks))) would result in something like:

Maximum value: 54500.0
Total weight:  25.0
Total volume:  0.247
Containing:    0 Panacea, 15 Ichor, 11 Gold

Maximum value: 54500.0
Total weight:  24.9
Total volume:  0.247
Containing:    3 Panacea, 10 Ichor, 11 Gold

Maximum value: 54500.0
Total weight:  24.8
Total volume:  0.247
Containing:    6 Panacea, 5 Ichor, 11 Gold

Maximum value: 54500.0
Total weight:  24.7
Total volume:  0.247
Containing:    9 Panacea, 0 Ichor, 11 Gold

Common Lisp

A dynamic programming O(maxVolume × maxWeight × nItems) solution, where volumes and weights are integral values.

<lang lisp>(defun fill-knapsack (items max-volume max-weight)

 "Items is a list of lists of the form (name value weight volume) where weight

and value are integers. max-volume and max-weight, also integers, are the maximum volume and weight of the knapsack. fill-knapsack returns a list of the form (total-value inventory total-volume total-weight) where total-value is the total-value of a knapsack packed with inventory (a list whose elements are elements of items), and total-weight and total-volume are the total weights and volumes of the inventory."

 ;; maxes is a table indexed by volume and weight, where maxes[volume,weight]
 ;; is a list of the form (value inventory used-volume used-weight) where
 ;; inventory is a list of items of maximum value fitting within volume and
 ;; weight, value is the maximum value, and used-volume/used-weight are the
 ;; actual volume/weight of the inventory.
 (let* ((VV (1+ max-volume))
        (WW (1+ max-weight))
        (maxes (make-array (list VV WW))))
   ;; fill in the base cases where volume or weight is 0
   (dotimes (v VV) (setf (aref maxes v 0) (list 0 '() 0 0)))
   (dotimes (w WW) (setf (aref maxes 0 w) (list 0 '() 0 0)))
   ;; populate the rest of the table. The best value for a volume/weight
   ;; combination is the best way of adding an item to any of the inventories
   ;; from [volume-1,weight], [volume,weight-1], or [volume-1,weight-1], or the
   ;; best of these, if no items can be added.
   (do ((v 1 (1+ v))) ((= v VV) (aref maxes max-volume max-weight))
     (do ((w 1 (1+ w))) ((= w WW))
       (let ((options (sort (list (aref maxes v (1- w))
                                  (aref maxes (1- v) w)
                                  (aref maxes (1- v) (1- w)))
                            '> :key 'first)))
         (destructuring-bind (b-value b-items b-volume b-weight) (first options)
           (dolist (option options)
             (destructuring-bind (o-value o-items o-volume o-weight) option
               (dolist (item items)
                 (destructuring-bind (_ i-value i-volume i-weight) item
                   (declare (ignore _))
                   (when (and (<= (+ o-volume i-volume) v)
                              (<= (+ o-weight i-weight) w)
                              (>  (+ o-value  i-value)  b-value))
                     (setf b-value  (+ o-value  i-value)
                           b-volume (+ o-volume i-volume)
                           b-weight (+ o-weight i-weight)
                           b-items  (list* item o-items)))))))
           (setf (aref maxes v w)
                 (list b-value b-items b-volume b-weight))))))))</lang>

Use, having multiplied volumes and weights as to be integral:

> (pprint (fill-knapsack '((panacea 3000  3 25)
                           (ichor   1800  2 15)
                           (gold    2500 20  2))
                         250
                         250))

(54500              ; total-value
 ((ICHOR 1800 2 15) ; 15 ichor
  ...
  (ICHOR 1800 2 15)
  (GOLD 2500 20 2)  ; 11 gold
  ...
  (GOLD 2500 20 2))
 250                ; total volume
 247)               ; total weight

E

This is a mostly brute-force general solution (the first author of this example does not know dynamic programming); the only optimization is that when considering the last (third) treasure type, it does not bother filling with anything but the maximum amount.

<lang e>pragma.enable("accumulator")

/** A data type representing a bunch of stuff (or empty space). */ def makeQuantity(value, weight, volume, counts) {

 def quantity {
   to __printOn(out) { 
     for name => n in counts { out.print(`$n $name  `) }
     out.print(`(val=$value wt=$weight vol=$volume)`)
   }
   to value () { return value  }
   to weight() { return weight }
   to volume() { return volume }
   to counts() { return counts }
   to subtract(other) { return quantity + other * -1 }
   to add(other) {
     return makeQuantity(value  + other.value (),
                         weight + other.weight(),
                         volume + other.volume(),
                         accum counts for name => n in other.counts() { _.with(name, n+counts.fetch(name, fn {0})) })
   }
   to multiply(scalar) {
     return makeQuantity(value  * scalar,
                         weight * scalar,
                         volume * scalar,
                         accum [].asMap() for name => n in counts { _.with(name, n*scalar) })
   }
   /** a.fit(b) the greatest integer k such that a - b * k does not have negative weight or volume. */
   to fit(item) {
     return (weight // item.weight()) \
        .min(volume // item.volume())
   }
 }
 return quantity

}

/** Fill the space with the treasures, returning candidate results as spaceAvailable - the items. */ def fill(spaceAvailable, treasures) {

 if (treasures.size().isZero()) { # nothing to pick
   return [spaceAvailable]
 }
 
 # Pick one treasure type
 def [unit] + otherTreasures := treasures
 
 var results := []
 for count in (0..spaceAvailable.fit(unit)).descending() {
   results += fill(spaceAvailable - unit * count, otherTreasures)
   if (otherTreasures.size().isZero()) {
     break # If there are no further kinds, there is no point in taking less than the most
   }
 }
 return results

}

def chooseBest(emptyKnapsack, treasures) {

 var maxValue := 0
 var best := []
 for result in fill(emptyKnapsack, treasures) {
   def taken := emptyKnapsack - result # invert the backwards result fill() returns
   if (taken.value() > maxValue) {
     best := [taken]
     maxValue := taken.value()
   } else if (taken.value() <=> maxValue) {
     best with= taken
   }
 }
 return best

}

def printBest(emptyKnapsack, treasures) {

 for taken in chooseBest(emptyKnapsack, treasures) { println(`  $taken`) }

}

def panacea := makeQuantity(3000, 0.3, 0.025, ["panacea" => 1]) def ichor  := makeQuantity(1800, 0.2, 0.015, ["ichor" => 1]) def gold  := makeQuantity(2500, 2.0, 0.002, ["gold" => 1]) def emptyKnapsack \

           := makeQuantity(   0,  25, 0.250, [].asMap())

printBest(emptyKnapsack, [panacea, ichor, gold])</lang>

Forth

<lang forth>\ : value ; immediate

weight cell+ ;
volume 2 cells + ;
number 3 cells + ;

\ item value weight volume number create panacea 30 , 3 , 25 , 0 , create ichor 18 , 2 , 15 , 0 , create gold 25 , 20 , 2 , 0 , create sack 0 , 250 , 250 ,

fits? ( item -- ? )
 dup weight @ sack weight @ > if drop false exit then
     volume @ sack volume @ > 0= ;
add ( item -- )
 dup        @        sack        +!
 dup weight @ negate sack weight +!
 dup volume @ negate sack volume +!
 1 swap number +! ;
take ( item -- )
 dup        @ negate sack        +!
 dup weight @        sack weight +!
 dup volume @        sack volume +!
 -1 swap number +! ;

variable max-value variable max-pan variable max-ich variable max-au

.solution
 cr
 max-pan @ . ." Panaceas, "
 max-ich @ . ." Ichors, and "
 max-au  @ . ." Gold for a total value of "
 max-value @ 100 * . ;
check
 sack @ max-value @ <= if exit then
 sack           @ max-value !
 panacea number @ max-pan   !
 ichor   number @ max-ich   !
 gold    number @ max-au    !
 ( .solution ) ;    \ and change <= to < to see all solutions
solve-gold
 gold fits? if gold add  recurse  gold take
 else check then ;
 
solve-ichor
 ichor fits? if ichor add  recurse  ichor take then
 solve-gold ;
solve-panacea
 panacea fits? if panacea add  recurse  panacea take then
 solve-ichor ;

solve-panacea .solution</lang> Or like this... <lang forth>0 VALUE vials 0 VALUE ampules 0 VALUE bars 0 VALUE bag

  1. 250 3 / #250 #25 / MIN 1+ CONSTANT maxvials
  2. 250 2/ #250 #15 / MIN 1+ CONSTANT maxampules
  3. 250 #20 / #250 2/ MIN 1+ CONSTANT maxbars
RESULTS ( v a b -- k )

3DUP #20 * SWAP 2* + SWAP 3 * + #250 > IF 3DROP -1 EXIT ENDIF 3DUP 2* SWAP #15 * + SWAP #25 * + #250 > IF 3DROP -1 EXIT ENDIF #2500 * SWAP #1800 * + SWAP #3000 * + ;

.SOLUTION ( -- )

CR ." The traveller's knapsack contains " vials DEC. ." vials of panacea, " ampules DEC. ." ampules of ichor, " CR bars DEC. ." bars of gold, a total value of " vials ampules bars RESULTS 0DEC.R ." ." ;

KNAPSACK ( -- )

-1 TO bag maxvials 0 ?DO maxampules 0 ?DO maxbars 0 ?DO

                             K J I RESULTS DUP

bag > IF TO bag K TO vials J TO ampules I TO bars ELSE DROP ENDIF LOOP LOOP LOOP .SOLUTION ;</lang> With the result...

FORTH> knapsack
The traveller's knapsack contains 0 vials of panacea, 15 ampules of ichor, 
11 bars of gold, a total value of 54500. ok

Fortran

Works with: Fortran version 90 and later

A straight forward 'brute force' approach <lang fortran>PROGRAM KNAPSACK

 IMPLICIT NONE

 REAL :: totalWeight, totalVolume
 INTEGER :: maxPanacea, maxIchor, maxGold, maxValue = 0
 INTEGER :: i, j, k
 INTEGER :: n(3)  
 TYPE Bounty
   INTEGER :: value
   REAL :: weight
   REAL :: volume
 END TYPE Bounty
 TYPE(Bounty) :: panacea, ichor, gold, sack, current
 panacea = Bounty(3000, 0.3, 0.025)
 ichor   = Bounty(1800, 0.2, 0.015)
 gold    = Bounty(2500, 2.0, 0.002)
 sack    = Bounty(0, 25.0, 0.25)
 maxPanacea = MIN(sack%weight / panacea%weight, sack%volume / panacea%volume)
 maxIchor = MIN(sack%weight / ichor%weight, sack%volume / ichor%volume)
 maxGold = MIN(sack%weight / gold%weight, sack%volume / gold%volume)
 
 DO i = 0, maxPanacea
    DO j = 0, maxIchor
       Do k = 0, maxGold
          current%value = k * gold%value + j * ichor%value + i * panacea%value
          current%weight = k * gold%weight + j * ichor%weight + i * panacea%weight
          current%volume = k * gold%volume + j * ichor%volume + i * panacea%volume       
          IF (current%weight > sack%weight .OR. current%volume > sack%volume) CYCLE
          IF (current%value > maxValue) THEN
             maxValue = current%value
             totalWeight = current%weight
             totalVolume = current%volume
             n(1) = i ; n(2) = j ; n(3) = k
          END IF
       END DO  
    END DO
 END DO
 WRITE(*, "(A,I0)") "Maximum value achievable is ", maxValue
 WRITE(*, "(3(A,I0),A)") "This is achieved by carrying ", n(1), " panacea, ", n(2), " ichor and ", n(3), " gold items"
 WRITE(*, "(A,F4.1,A,F5.3)") "The weight to carry is ", totalWeight, " and the volume used is ", totalVolume

END PROGRAM KNAPSACK</lang> Sample output

Maximum value achievable is 54500
This is achieved by carrying 0 panacea, 15 ichor and 11 gold items
The weight to carry is 25.0 and the volume used is 0.247

Haskell

This is a brute-force solution: it generates a list of every legal combination of items (options) and then finds the option of greatest value.

<lang haskell>import Data.List (maximumBy) import Data.Ord (comparing)

(maxWgt, maxVol) = (25, 0.25) items =

  [Bounty  "panacea"  3000  0.3  0.025,
   Bounty  "ichor"    1800  0.2  0.015,
   Bounty  "gold"     2500  2.0  0.002]

data Bounty = Bounty

  {itemName :: String,
   itemVal :: Int,
   itemWgt, itemVol :: Double}

names = map itemName items vals = map itemVal items wgts = map itemWgt items vols = map itemVol items

dotProduct :: (Num a, Integral b) => [a] -> [b] -> a dotProduct factors = sum . zipWith (*) factors . map fromIntegral

options :: Int options = filter fits $ mapM f items

 where f (Bounty _ _ w v) = [0 .. m]
         where m = floor $ min (maxWgt / w) (maxVol / v)
       fits opt = dotProduct wgts opt <= maxWgt &&
                  dotProduct vols opt <= maxVol

showOpt :: [Int] -> String showOpt opt = concat (zipWith showItem names opt) ++

   "total weight: " ++ show (dotProduct wgts opt) ++
   "\ntotal volume: " ++ show (dotProduct vols opt) ++
   "\ntotal value: " ++ show (dotProduct vals opt) ++ "\n"
 where showItem name num = name ++ ": " ++ show num ++ "\n"

main = putStr $ showOpt $ best options

 where best = maximumBy $ comparing $ dotProduct vals</lang>

Output:

panacea: 9
ichor: 0
gold: 11
total weight: 24.7
total volume: 0.247
total value: 54500

J

Brute force solution. <lang j>mwv=: 25 0.25 prods=: <;. _1 ' panacea: ichor: gold:' hdrs=: <;. _1 ' weight: volume: value:' vls=: 3000 1800 2500 ws=: 0.3 0.2 2.0 vs=: 0.025 0.015 0.002

ip=: +/ .* prtscr=: (1!:2)&2

KS=: 3 : 0

os=. (#:i.@(*/)) mwv >:@<.@<./@:% ws,:vs
bo=.os#~(ws,:vs) mwv&(*./@:>)@ip"_ 1 os
mo=.bo{~{.\: vls ip"1 bo
prtscr &.> prods ([,' ',":@])&.>mo
prtscr &.> hdrs ('total '&,@[,' ',":@])&.> mo ip"1 ws,vs,:vls
LF

)</lang> Example output:

   KS''
panacea: 3
ichor: 10
gold: 11
total weight: 24.9
total volume: 0.247
total value: 54500

JavaScript

Brute force.

Works with: JavaScript version 1.6

<lang javascript>var panacea = { 'value': 3000, 'weight': 0.3, 'volume': 0.025 }; var ichor = { 'value': 1800, 'weight': 0.2, 'volume': 0.015 }; var gold = { 'value': 2500, 'weight': 2.0, 'volume': 0.002 };

var knapsack = {'weight': 25, 'volume': 0.25}

for each (var item in [panacea, ichor, gold])

   item.max = Math.min(
       Math.floor(knapsack.weight / item.weight),
       Math.floor(knapsack.volume / item.volume)
   );

var max_val = 0; var solutions = [];

for (var g = 0; g <= gold.max; g++) {

   for (var p = 0; p <= panacea.max; p++) {
       for (var i = 0; i <= ichor.max; i++) {
           if (i*ichor.weight + g*gold.weight + p*panacea.weight > knapsack.weight) 
               continue;
           if (i*ichor.volume + g*gold.volume + p*panacea.volume > knapsack.volume) 
               continue;
           var val = i*ichor.value + g*gold.value + p*panacea.value;
           if (val > max_val) {
               max_val = val;
               solutions = [ [g,p,i] ];
           }
           else if (val == max_val) 
               solutions.push([g,p,i]);
       }
   }

}

print("maximum value: " + max_val); for each (var soln in solutions)

   print("(gold: " + soln[0] + ", panacea: " + soln[1] + ", ichor: " + soln[2] + ")");</lang>

output:

maximum value: 54500
(gold: 11, panacea: 0, ichor: 15)
(gold: 11, panacea: 3, ichor: 10)
(gold: 11, panacea: 6, ichor: 5)
(gold: 11, panacea: 9, ichor: 0)

M4

A brute force solution: <lang M4>divert(-1) define(`set2d',`define(`$1[$2][$3]',`$4')') define(`get2d',`defn(`$1[$2][$3]')') define(`for',

  `ifelse($#,0,``$0,
  `ifelse(eval($2<=$3),1,
  `pushdef(`$1',$2)$4`'popdef(`$1')$0(`$1',incr($2),$3,`$4')')')')

define(`min',

  `define(`ma',eval($1))`'define(`mb',eval($2))`'ifelse(eval(ma<mb),1,ma,mb)')

define(`setv',

  `set2d($1,$2,1,$3)`'set2d($1,$2,2,$4)`'set2d($1,$2,3,$5)`'set2d($1,$2,4,$6)')

dnl name,value (each),weight,volume setv(a,0,`knapsack',0,250,250) setv(a,1,`panacea',3000,3,25) setv(a,2,`ichor',1800,2,15) setv(a,3,`gold',2500,20,2)

define(`mv',0) for(`x',0,min(get2d(a,0,3)/get2d(a,1,3),get2d(a,0,4)/get2d(a,1,4)),

  `for(`y',0,min((get2d(a,0,3)-x*get2d(a,1,3))/get2d(a,2,3),
        (get2d(a,0,4)-x*get2d(a,1,4))/get2d(a,2,4)),
     `

define(`z',min((get2d(a,0,3)-x*get2d(a,1,3)-y*get2d(a,2,3))/get2d(a,3,3),

  (get2d(a,0,4)-x*get2d(a,1,4)-y*get2d(a,2,4))/get2d(a,3,4)))

define(`cv',eval(x*get2d(a,1,2)+y*get2d(a,2,2)+z*get2d(a,3,2))) ifelse(eval(cv>mv),1,

  `define(`mv',cv)`'define(`best',(x,y,z))',
  `ifelse(cv,mv,`define(`best',best (x,y,z))')')
     ')')

divert mv best</lang>

Output:

54500 (0,15,11) (3,10,11) (6,5,11) (9,0,11)

Mathematica

Brute force algorithm: <lang Mathematica>{pva,pwe,pvo}={3000,3/10,1/40}; {iva,iwe,ivo}={1800,2/10,3/200}; {gva,gwe,gvo}={2500,2,2/1000}; wemax=25; vomax=1/4; {pmax,imax,gmax}=Floor/@{Min[vomax/pvo,wemax/pwe],Min[vomax/ivo,wemax/iwe],Min[vomax/gvo,wemax/gwe]};

data=Flatten[Table[{{p,i,g}.{pva,iva,gva},{p,i,g}.{pwe,iwe,gwe},{p,i,g}.{pvo,ivo,gvo},{p,i,g}},{p,0,pmax},{i,0,imax},{g,0,gmax}],2]; data=Select[data,#2<=25&&#3<=1/4&]; First[SplitBy[Sort[data,First[#1]>First[#2]&],First]]</lang> gives back an array of the best solution(s), with each element being value, weight, volume, {number of vials, number of ampules, number of bars}: <lang Mathematica>{{54500,247/10,247/1000,{9,0,11}},{54500,124/5,247/1000,{6,5,11}},{54500,249/10,247/1000,{3,10,11}},{54500,25,247/1000,{0,15,11}}}</lang> if we call the three items by there first letters the best packings are: <lang Mathematica>p:9 i:0 v:11 p:6 i:5 v:11 p:3 i:10 v:11 p:0 i:15 v:11</lang> The volume for all of those is the same, the 'best' solution would be the one that has the least weight: that would the first solution.

Modula-3

Translation of: Fortran

Note that unlike Fortran and C, Modula-3 does not do any hidden casting, which is why FLOAT and FLOOR are used. <lang modula3>MODULE Knapsack EXPORTS Main;

FROM IO IMPORT Put; FROM Fmt IMPORT Int, Real;

TYPE Bounty = RECORD

 value: INTEGER;
 weight, volume: REAL;

END;

VAR totalWeight, totalVolume: REAL;

   maxPanacea, maxIchor, maxGold, maxValue: INTEGER := 0;
   n: ARRAY [1..3] OF INTEGER;
   panacea, ichor, gold, sack, current: Bounty;

BEGIN

 panacea := Bounty{3000, 0.3, 0.025};
 ichor   := Bounty{1800, 0.2, 0.015};
 gold    := Bounty{2500, 2.0, 0.002};
 sack    := Bounty{0, 25.0, 0.25};
 maxPanacea := FLOOR(MIN(sack.weight / panacea.weight, sack.volume / panacea.volume));
 maxIchor := FLOOR(MIN(sack.weight / ichor.weight, sack.volume / ichor.volume));
 maxGold := FLOOR(MIN(sack.weight / gold.weight, sack.volume / gold.volume));
 FOR i := 0 TO maxPanacea DO
   FOR j := 0 TO maxIchor DO
     FOR k := 0 TO maxGold DO
       current.value := k * gold.value + j * ichor.value + i * panacea.value;
       current.weight := FLOAT(k) * gold.weight + FLOAT(j) * ichor.weight + FLOAT(i) * panacea.weight;
       current.volume := FLOAT(k) * gold.volume + FLOAT(j) * ichor.volume + FLOAT(i) * panacea.volume;
       IF current.weight > sack.weight OR current.volume > sack.volume THEN
         EXIT;
       END;
       IF current.value > maxValue THEN
         maxValue := current.value;
         totalWeight := current.weight;
         totalVolume := current.volume;
         n[1] := i; n[2] := j; n[3] := k;
       END;
     END;
   END;
 END;
 Put("Maximum value achievable is " & Int(maxValue) & "\n");
 Put("This is achieved by carrying " & Int(n[1]) & " panacea, " & Int(n[2]) & " ichor and " & Int(n[3]) & " gold items\n");
 Put("The weight of this carry is " & Real(totalWeight) & " and the volume used is " & Real(totalVolume) & "\n");

END Knapsack.</lang>

Output:

Maximum value achievable is 54500
This is achieved by carrying 0 panacea, 15 ichor and 11 gold items
The weight of this carry is 25 and the volume used is 0.247


OCaml

This is a brute-force solution: it generates a list of every legal combination of items and then finds the best results:

<lang ocaml>type bounty = { name:string; value:int; weight:float; volume:float }

let bounty n d w v = { name = n; value = d; weight = w; volume = v }

let items =

 [ bounty "panacea"  3000  0.3  0.025;
   bounty "ichor"    1800  0.2  0.015;
   bounty "gold"     2500  2.0  0.002; ]

let max_wgt = 25.0 and max_vol = 0.25

let itmax =

 let f it =
   let rec aux n =
     if float n *. it.weight >= max_wgt
     || float n *. it.volume >= max_vol
     then (n)
     else aux (succ n)
   in
   aux 0
 in
 List.map f items

let mklist n m =

 let rec aux i acc =
   if i > m then (List.rev acc)
   else aux (succ i) (i::acc)
 in
 aux n []

let comb_items = List.map (mklist 0) itmax

let combs ll =

 let rec aux acc = function
 | [] -> (List.map List.rev acc)
 | hd::tl ->
     let acc =
       List.concat
         (List.map
           (fun l -> 
             List.map (fun v -> (v::l)) hd
           ) acc
         )
     in
     aux acc tl
 in
 aux [[]] ll

let possibles = combs comb_items

let packs =

 let f l =
   let g (v, wgt, vol) n it =
     (v + n * it.value,
      wgt +. float n *. it.weight,
      vol +. float n *. it.volume)
   in
   List.fold_left2 g (0, 0.0, 0.0) l items
 in
 List.map f possibles

let packs = List.combine packs possibles

let results =

 let f (_, wgt, vol) = (wgt <= max_wgt && vol <= max_vol) in
 List.filter (fun v -> f(fst v)) packs

let best_results =

 let max_value = List.fold_left (fun v1 ((v2,_,_),_) -> max v1 v2) 0 results in
 List.filter (fun ((v,_,_),_) -> v = max_value) results

let items_name =

 let f it = it.name in
 List.map f items

let print ((v, wgt, vol), ns) =

 Printf.printf "\
   Maximum value: %d \n \
   Total weight:  %f \n \
   Total volume:  %f \n \
   Containing:    " v wgt vol;
 let f n name = string_of_int n ^ " " ^ name in
 let ss = List.map2 f ns items_name in
 print_endline(String.concat ", " ss);
 print_newline()

let () = List.iter print best_results</lang>

outputs:

Maximum value: 54500 
 Total weight:  24.700000 
 Total volume:  0.247000 
 Containing:    9 panacea, 0 ichor, 11 gold

Maximum value: 54500 
 Total weight:  24.800000 
 Total volume:  0.247000 
 Containing:    6 panacea, 5 ichor, 11 gold

Maximum value: 54500 
 Total weight:  24.900000 
 Total volume:  0.247000 
 Containing:    3 panacea, 10 ichor, 11 gold

Maximum value: 54500 
 Total weight:  25.000000 
 Total volume:  0.247000 
 Containing:    0 panacea, 15 ichor, 11 gold

PARI/GP

Simple brute-force solution, though it avoids the last loop and recalculating values. <lang parigp>best=0; for(a=0,10,

 w1=250-3*a;
 v1=250-25*a;
 for(b=0,16,
   w=w1-2*b;
   v=v1-15*b;
   if(v>=0&&w>=0,
     c=min(w\20,v\2);
     value=3000*a+1800*b+2500*c;
     if(value>=best,
       best=value;
       print("$"best": "a" panecea, "b" ichor, "c" gold")
     )
   )
 )

)</lang>

Python

Simple Solution

<lang python>class Bounty:

   def __init__(self, value, weight, volume):
       self.value, self.weight, self.volume = value, weight, volume

panacea = Bounty(3000, 0.3, 0.025) ichor = Bounty(1800, 0.2, 0.015) gold = Bounty(2500, 2.0, 0.002) sack = Bounty( 0, 25.0, 0.25) best = Bounty( 0, 0, 0) current = Bounty( 0, 0, 0)

best_amounts = (0, 0, 0)

max_panacea = int(min(sack.weight // panacea.weight, sack.volume // panacea.volume)) max_ichor = int(min(sack.weight // ichor.weight, sack.volume // ichor.volume)) max_gold = int(min(sack.weight // gold.weight, sack.volume // gold.volume))

for npanacea in xrange(max_panacea):

   for nichor in xrange(max_ichor):
       for ngold in xrange(max_gold):
           current.value = npanacea * panacea.value + nichor * ichor.value + ngold * gold.value
           current.weight = npanacea * panacea.weight + nichor * ichor.weight + ngold * gold.weight
           current.volume = npanacea * panacea.volume + nichor * ichor.volume + ngold * gold.volume
           if current.value > best.value and current.weight <= sack.weight and \
              current.volume <= sack.volume:
               best = Bounty(current.value, current.weight, current.volume)
               best_amounts = (npanacea, nichor, ngold)

print "Maximum value achievable is", best.value print "This is achieved by carrying (one solution) %d panacea, %d ichor and %d gold" % \

      (best_amounts[0], best_amounts[1], best_amounts[2])

print "The weight to carry is %4.1f and the volume used is %5.3f" % (best.weight, best.volume)</lang>

General Solution

Requires Python V.2.6+ <lang python>from itertools import product, izip from collections import namedtuple

Bounty = namedtuple('Bounty', 'name value weight volume')

sack = Bounty('sack', 0, 25.0, 0.25)

items = [Bounty('panacea', 3000, 0.3, 0.025),

        Bounty('ichor',   1800,  0.2, 0.015),
        Bounty('gold',    2500,  2.0, 0.002)]


def tot_value(items_count):

   """
   Given the count of each item in the sack return -1 if they can't be carried or their total value.
   
   (also return the negative of the weight and the volume so taking the max of a series of return
   values will minimise the weight if values tie, and minimise the volume if values and weights tie).
   """
   global items, sack
   weight = sum(n * item.weight for n, item in izip(items_count, items))
   volume = sum(n * item.volume for n, item in izip(items_count, items))
   if weight <= sack.weight and volume <= sack.volume:
       return sum(n * item.value for n, item in izip(items_count, items)), -weight, -volume    
   else:
       return -1, 0, 0


def knapsack():

   global items, sack 
   # find max of any one item
   max1 = [min(int(sack.weight // item.weight), int(sack.volume // item.volume)) for item in items]
   # Try all combinations of bounty items from 0 up to max1
   return max(product(*[xrange(n + 1) for n in max1]), key=tot_value)


max_items = knapsack() maxvalue, max_weight, max_volume = tot_value(max_items) max_weight = -max_weight max_volume = -max_volume

print "The maximum value achievable (by exhaustive search) is %g." % maxvalue item_names = ", ".join(item.name for item in items) print " The number of %s items to achieve this is: %s, respectively." % (item_names, max_items) print " The weight to carry is %.3g, and the volume used is %.3g." % (max_weight, max_volume)</lang>

Sample output

The maximum value achievable (by exhaustive search) is 54500
  The number of panacea, ichor, gold items to achieve this is: (9, 0, 11), respectively
  The weight to carry is 24.7, and the volume used is 0.247

General Dynamic Programming solution

A dynamic programming approach using a 2-dimensional table (One dimension for weight and one for volume). Because this approach requires that all weights and volumes be integer, I multiplied the weights and volumes by enough to make them integer. This algorithm takes O(w*v) space and O(w*v*n) time, where w = weight of sack, v = volume of sack, n = number of types of items. To solve this specific problem it's much slower than the brute force solution.

<lang python>from itertools import product, izip from collections import namedtuple

Bounty = namedtuple('Bounty', 'name value weight volume')

  1. "namedtuple" is only available in Python 2.6+; for earlier versions use this instead:
  2. class Bounty:
  3. def __init__(self, name, value, weight, volume):
  4. self.name = name
  5. self.value = value
  6. self.weight = weight
  7. self.volume = volume

sack = Bounty('sack', 0, 250, 250)

items = [Bounty('panacea', 3000, 3, 25),

        Bounty('ichor',   1800,   2,  15),
        Bounty('gold',    2500,  20,   2)]


def tot_value(items_count, items, sack):

   """
   Given the count of each item in the sack return -1 if they can't be carried or their total value.
   (also return the negative of the weight and the volume so taking the max of a series of return
   values will minimise the weight if values tie, and minimise the volume if values and weights tie).
   """
   weight = sum(n * item.weight for n, item in izip(items_count, items))
   volume = sum(n * item.volume for n, item in izip(items_count, items))
   if weight <= sack.weight and volume <= sack.volume:
       return sum(n * item.value for n, item in izip(items_count, items)), -weight, -volume
   else:
       return -1, 0, 0


def knapsack_dp(items, sack):

   """
   Solves the Knapsack problem, with two sets of weights,
   using a dynamic programming approach
   """
   # (weight+1) x (volume+1) table
   # table[w][v] is the maximum value that can be achieved
   # with a sack of weight w and volume v.
   # They all start out as 0 (empty sack)
   table = [[0] * (sack.volume + 1) for i in xrange(sack.weight + 1)]
   for w in xrange(sack.weight + 1):
       for v in xrange(sack.volume + 1):
           # Consider the optimal solution, and consider the "last item" added
           # to the sack. Removing this item must produce an optimal solution
           # to the subproblem with the sack's weight and volume reduced by that
           # of the item. So we search through all possible "last items":
           for item in items:
               # Only consider items that would fit:
               if w >= item.weight and v >= item.volume:
                   table[w][v] = max(table[w][v],
                                     # Optimal solution to subproblem + value of item:
                                     table[w - item.weight][v - item.volume] + item.value)
   # Backtrack through matrix to re-construct optimum:
   result = [0] * len(items)
   w = sack.weight
   v = sack.volume
   while table[w][v]:
       # Find the last item that was added:
       aux = [table[w-item.weight][v-item.volume] + item.value for item in items]
       i = aux.index(table[w][v])
       # Record it in the result, and remove it:
       result[i] += 1
       w -= items[i].weight
       v -= items[i].volume
   return result


max_items = knapsack_dp(items, sack) max_value, max_weight, max_volume = tot_value(max_items, items, sack) max_weight = -max_weight max_volume = -max_volume

print "The maximum value achievable (by exhaustive search) is %g." % max_value item_names = ", ".join(item.name for item in items) print " The number of %s items to achieve this is: %s, respectively." % (item_names, max_items) print " The weight to carry is %.3g, and the volume used is %.3g." % (max_weight, max_volume)</lang>

Sample output

The maximum value achievable (by dynamic programming) is 54500
  The number of panacea,ichor,gold items to achieve this is: [9, 0, 11], respectively
  The weight to carry is 247, and the volume used is 247

R

Brute force method <lang r># Define consts weights <- c(panacea=0.3, ichor=0.2, gold=2.0) volumes <- c(panacea=0.025, ichor=0.015, gold=0.002) values <- c(panacea=3000, ichor=1800, gold=2500) sack.weight <- 25 sack.volume <- 0.25 max.items <- floor(pmin(sack.weight/weights, sack.volume/volumes))

  1. Some utility functions

getTotalValue <- function(n) sum(n*values) getTotalWeight <- function(n) sum(n*weights) getTotalVolume <- function(n) sum(n*volumes) willFitInSack <- function(n) getTotalWeight(n) <= sack.weight && getTotalVolume(n) <= sack.volume

  1. Find all possible combination, then eliminate those that won't fit in the sack

knapsack <- expand.grid(lapply(max.items, function(n) seq.int(0, n))) ok <- apply(knapsack, 1, willFitInSack) knapok <- knapsack[ok,]

  1. Find the solutions with the highest value

vals <- apply(knapok, 1, getTotalValue) knapok[vals == max(vals),]</lang>

     panacea ichor gold
2067       9     0   11
2119       6     5   11
2171       3    10   11
2223       0    15   11

Ruby

Brute force method,

Translation of: Tcl

<lang ruby>KnapsackItem = Struct.new(:volume, :weight, :value) panacea = KnapsackItem.new(0.025, 0.3, 3000) ichor = KnapsackItem.new(0.015, 0.2, 1800) gold = KnapsackItem.new(0.002, 2.0, 2500) maximum = KnapsackItem.new(0.25, 25, 0)

max_items = {} for item in [panacea, ichor, gold]

 max_items[item] = [(maximum.volume/item.volume).to_i, (maximum.weight/item.weight).to_i].min

end

maxval = 0 solutions = []

0.upto(max_items[ichor]) do |i|

 0.upto(max_items[panacea]) do |p|
   0.upto(max_items[gold]) do |g|
     next if i*ichor.weight + p*panacea.weight + g*gold.weight > maximum.weight
     next if i*ichor.volume + p*panacea.volume + g*gold.volume > maximum.volume
     val = i*ichor.value + p*panacea.value + g*gold.value
     if val > maxval
       maxval = val
       solutions = i, p, g
     elsif val == maxval
       solutions << [i, p, g]
     end
   end
 end

end

puts "The maximal solution has value #{maxval}" solutions.each do |i, p, g|

 printf "  ichor=%2d, panacea=%2d, gold=%2d -- weight:%.1f, volume=%.3f\n",
   i, p, g,
   i*ichor.weight + p*panacea.weight + g*gold.weight,
   i*ichor.volume + p*panacea.volume + g*gold.volume 

end</lang>

The maximal solution has value 54500
  ichor= 0, panacea= 9, gold=11 -- weight:24.7, volume=0.247
  ichor= 5, panacea= 6, gold=11 -- weight:24.8, volume=0.247
  ichor=10, panacea= 3, gold=11 -- weight:24.9, volume=0.247
  ichor=15, panacea= 0, gold=11 -- weight:25.0, volume=0.247

Tcl

The following code uses brute force, but that's tolerable as long as it takes just a split second to find all 4 solutions. The use of arrays makes the quote quite legible: <lang Tcl>#!/usr/bin/env tclsh proc main argv {

   array set value  {panacea 3000  ichor 1800  gold 2500}
   array set weight {panacea 0.3   ichor 0.2   gold 2.0   max 25}
   array set volume {panacea 0.025 ichor 0.015 gold 0.002 max 0.25}
   foreach i {panacea ichor gold} {
       set max($i) [expr {min(int($volume(max)/$volume($i)),
                              int($weight(max)/$weight($i)))}]
   }
   set maxval 0
   for {set i 0} {$i < $max(ichor)} {incr i} {
       for {set p 0} {$p < $max(panacea)} {incr p} {
           for {set g 0} {$g < $max(gold)} {incr g} {
               if {$i*$weight(ichor) + $p*$weight(panacea) + $g*$weight(gold) 
                   > $weight(max)} continue
               if {$i*$volume(ichor) + $p*$volume(panacea) + $g*$volume(gold) 
                   > $volume(max)} continue
               set val [expr {$i*$value(ichor)+$p*$value(panacea)+$g*$value(gold)}]
               if {$val == $maxval} {
                   lappend best [list i $i p $p g $g]
               } elseif {$val > $maxval} {
                   set maxval $val
                   set best [list [list i $i p $p g $g]]
               }
           }
       }
   }
   puts "maxval: $maxval, best: $best"

} main $argv</lang>

$ time tclsh85 /Tcl/knapsack.tcl
maxval: 54500, best: {i 0 p 9 g 11} {i 5 p 6 g 11} {i 10 p 3 g 11} {i 15 p 0 g 11}

real    0m0.188s
user    0m0.015s
sys     0m0.015s

Ursala

The algorithm is to enumerate all packings with up to the maximum of each item, filter them by the volume and weight restrictions, partition the remaining packings by value, and search for the maximum value class. <lang Ursala>#import nat

  1. import flo

vol = iprod/<0.025,0.015,0.002>+ float* val = iprod/<3000.,1800.,2500.>+ float* wgt = iprod/<0.3,0.2,2.0>+ float*

packings = ~&lrlrNCCPCS ~&K0=> iota* <11,17,13>

solutions = fleq$^rS&hl |=&l ^(val,~&)* (fleq\25.+ wgt)*~ (fleq\0.25+ vol)*~ packings

  1. cast %nmL

human_readable = ~&p/*<'panacea','ichor','gold'> solutions</lang> output:

<
   <'panacea': 0,'ichor': 15,'gold': 11>,
   <'panacea': 3,'ichor': 10,'gold': 11>,
   <'panacea': 6,'ichor': 5,'gold': 11>,
   <'panacea': 9,'ichor': 0,'gold': 11>>

Visual Basic

See: Knapsack Problem/Visual Basic