Greatest common divisor: Difference between revisions

From Rosetta Code
Content added Content deleted
No edit summary
Line 3: Line 3:


=={{header|Ada}}==
=={{header|Ada}}==
<ada>with Ada.Text_Io; use Ada.Text_Io;
<lang ada>with Ada.Text_Io; use Ada.Text_Io;


procedure Gcd_Test is
procedure Gcd_Test is
Line 25: Line 25:
Put_Line("GCD of 5, 100 is" & Integer'Image(Gcd(5, 100)));
Put_Line("GCD of 5, 100 is" & Integer'Image(Gcd(5, 100)));
Put_Line("GCD of 7, 23 is" & Integer'Image(Gcd(7, 23)));
Put_Line("GCD of 7, 23 is" & Integer'Image(Gcd(7, 23)));
end Gcd_Test;</ada>
end Gcd_Test;</lang>


Output:
Output:
Line 70: Line 70:
=={{header|C}}==
=={{header|C}}==
===Iterative Euclid algorithm===
===Iterative Euclid algorithm===
<c>int
<lang c>int
gcd_iter(int u, int v) {
gcd_iter(int u, int v) {
int t;
int t;
Line 79: Line 79:
}
}
return u < 0 ? -u : u; /* abs(u) */
return u < 0 ? -u : u; /* abs(u) */
}</c>
}</lang>


===Recursive Euclid algorithm===
===Recursive Euclid algorithm===
<c>int
<lang c>int
gcd(int u, int v) {
gcd(int u, int v) {
if (v)
if (v)
Line 88: Line 88:
else
else
return u < 0 ? -u : u; /* abs(u) */
return u < 0 ? -u : u; /* abs(u) */
}</c>
}</lang>


===Iterative binary algorithm===
===Iterative binary algorithm===
<c>int
<lang c>int
gcd_bin(int u, int v) {
gcd_bin(int u, int v) {
int t, k;
int t, k;
Line 124: Line 124:
}
}
return u * k;
return u * k;
}</c>
}</lang>


===Notes on performance===
===Notes on performance===
<code>gcd_iter(40902, 24140)</code> takes us about '''2.87''' usec
<tt>gcd_iter(40902, 24140)</tt> takes us about '''2.87''' usec


<code>gcd_bin(40902, 24140)</code> takes us about '''2.47''' usec
<tt>gcd_bin(40902, 24140)</tt> takes us about '''2.47''' usec


<code>gcd(40902, 24140)</code> takes us about '''2.86''' usec
<tt>gcd(40902, 24140)</tt> takes us about '''2.86''' usec


=={{header|Forth}}==
=={{header|Forth}}==
Line 207: Line 207:


===Notes on performance===
===Notes on performance===
<code>gcd_iter(40902, 24140)</code> takes us about '''2.8''' usec
<tt>gcd_iter(40902, 24140)</tt> takes us about '''2.8''' usec


<code>gcd_bin(40902, 24140)</code> takes us about '''2.5''' usec
<tt>gcd_bin(40902, 24140)</tt> takes us about '''2.5''' usec


=={{header|Haskell}}==
=={{header|Haskell}}==
Line 226: Line 226:
=={{header|Java}}==
=={{header|Java}}==
===Iterative===
===Iterative===
<java>public static long gcd(long a, long b){
<lang java>public static long gcd(long a, long b){
long factor= Math.max(a, b);
long factor= Math.max(a, b);
for(long loop= factor;loop > 1;loop--){
for(long loop= factor;loop > 1;loop--){
Line 234: Line 234:
}
}
return 1;
return 1;
}</java>
}</lang>


===Recursive===
===Recursive===
<java>public static long gcd(long a, long b){
<lang java>public static long gcd(long a, long b){
if(a == 0) return b;
if(a == 0) return b;
if(b == 0) return a;
if(b == 0) return a;
if(a > b) return gcd(b, a % b);
if(a > b) return gcd(b, a % b);
return gcd(a, b % a);
return gcd(a, b % a);
}</java>
}</lang>


=={{header|Joy}}==
=={{header|Joy}}==
Line 340: Line 340:


=={{header|OCaml}}==
=={{header|OCaml}}==
<ocaml>let rec gcd a b =
<lang ocaml>let rec gcd a b =
if a = 0 then b
if a = 0 then b
else if b = 0 then a
else if b = 0 then a
else if a > b then gcd b (a mod b)
else if a > b then gcd b (a mod b)
else gcd a (b mod a)</ocaml>
else gcd a (b mod a)</lang>


=={{header|Pascal}}==
=={{header|Pascal}}==
<pascal>function gcd(a, b: integer): integer;
<lang pascal>function gcd(a, b: integer): integer;
var
var
tmp: integer;
tmp: integer;
Line 358: Line 358:
end;
end;
gcd := a
gcd := a
end;</pascal>
end;</lang>


=={{header|Perl}}==
=={{header|Perl}}==
===Iterative Euclid algorithm===
===Iterative Euclid algorithm===
<perl>sub gcd_iter($$) {
<lang perl>sub gcd_iter($$) {
my ($u, $v) = @_;
my ($u, $v) = @_;
while ($v) {
while ($v) {
Line 368: Line 368:
}
}
return abs($u);
return abs($u);
}</perl>
}</lang>


===Recursive Euclid algorithm===
===Recursive Euclid algorithm===
<perl>sub gcd($$) {
<lang perl>sub gcd($$) {
my ($u, $v) = @_;
my ($u, $v) = @_;
if ($v) {
if ($v) {
Line 378: Line 378:
return abs($u);
return abs($u);
}
}
}</perl>
}</lang>


===Iterative binary algorithm===
===Iterative binary algorithm===
<perl>sub gcd_bin($$) {
<lang perl>sub gcd_bin($$) {
my ($u, $v) = @_;
my ($u, $v) = @_;
$u = abs($u);
$u = abs($u);
Line 410: Line 410:
}
}
return $u * $k;
return $u * $k;
}</perl>
}</lang>


===Notes on performance===
===Notes on performance===
<perl>use Benchmark qw(cmpthese);
<lang perl>use Benchmark qw(cmpthese);


my $u = 40902;
my $u = 40902;
Line 421: Line 421:
'gcd_iter' => sub { gcd_iter($u, $v); },
'gcd_iter' => sub { gcd_iter($u, $v); },
'gcd_bin' => sub { gcd_bin($u, $v); },
'gcd_bin' => sub { gcd_bin($u, $v); },
});</perl>
});</lang>


Output on 'Intel(R) Pentium(R) 4 CPU 1.50GHz' / Linux / Perl 5.8.8:
Output on 'Intel(R) Pentium(R) 4 CPU 1.50GHz' / Linux / Perl 5.8.8:
Line 468: Line 468:
=={{header|Python}}==
=={{header|Python}}==
===Iterative Euclid algorithm===
===Iterative Euclid algorithm===
<python>def gcd_iter(u, v):
<lang python>def gcd_iter(u, v):
while v:
while v:
u, v = v, u % v
u, v = v, u % v
return abs(u)</python>
return abs(u)</lang>


===Recursive Euclid algorithm===
===Recursive Euclid algorithm===
'''Interpreter:''' [[Python]] 2.5
'''Interpreter:''' [[Python]] 2.5
<python>def gcd(u, v):
<lang python>def gcd(u, v):
return gcd(v, u % v) if v else abs(u)</python>
return gcd(v, u % v) if v else abs(u)</lang>


===Tests===
===Tests===
Line 492: Line 492:
===Iterative binary algorithm===
===Iterative binary algorithm===
See [[The Art of Computer Programming]] by Knuth (Vol.2)
See [[The Art of Computer Programming]] by Knuth (Vol.2)
<python>def gcd_bin(u, v):
<lang python>def gcd_bin(u, v):
u, v = abs(u), abs(v) # u >= 0, v >= 0
u, v = abs(u), abs(v) # u >= 0, v >= 0
if u < v:
if u < v:
Line 514: Line 514:
v = -t
v = -t
t = u - v
t = u - v
return u * k</python>
return u * k</lang>


===Notes on performance===
===Notes on performance===
<code>gcd(40902, 24140)</code> takes us about '''17''' usec
<tt>gcd(40902, 24140)</tt> takes us about '''17''' usec


<code>gcd_iter(40902, 24140)</code> takes us about '''11''' usec
<tt>gcd_iter(40902, 24140)</tt> takes us about '''11''' usec


<code>gcd_bin(40902, 24140)</code> takes us about '''41''' usec
<tt>gcd_bin(40902, 24140)</tt> takes us about '''41''' usec


=={{header|Ruby}}==
=={{header|Ruby}}==
Line 532: Line 532:


Here's an implementation:
Here's an implementation:
<ruby>def gcd(u, v)
<lang ruby>def gcd(u, v)
u, v = u.abs, v.abs
u, v = u.abs, v.abs
while v > 0
while v > 0
Line 538: Line 538:
end
end
u
u
end</ruby>
end</lang>


=={{header|SETL}}==
=={{header|SETL}}==
Line 562: Line 562:
the gcd of 49865 and 69811 is 9973
the gcd of 49865 and 69811 is 9973
=={{header|Scheme}}==
=={{header|Scheme}}==
<scheme>(define (gcd a b)
<lang scheme>(define (gcd a b)
(cond ((= a 0) b)
(cond ((= a 0) b)
((= b 0) a)
((= b 0) a)
((> a b) (gcd b (modulo a b)))
((> a b) (gcd b (modulo a b)))
(else (gcd a (modulo b a)))))</scheme>
(else (gcd a (modulo b a)))))</lang>


or using the standard function included with Scheme (takes any number of arguments):
or using the standard function included with Scheme (takes any number of arguments):
<scheme>(gcd a b)</scheme>
<lang scheme>(gcd a b)</lang>


=={{header|TI-83 BASIC}}==
=={{header|TI-83 BASIC}}==

Revision as of 15:35, 3 February 2009

Task
Greatest common divisor
You are encouraged to solve this task according to the task description, using any language you may know.

This task requires the finding of the greatest common divisor of two integers.

Ada

<lang ada>with Ada.Text_Io; use Ada.Text_Io;

procedure Gcd_Test is

  function Gcd (A, B : Integer) return Integer is
  begin
     if A = 0 then
        return B;
     end if;
     if B = 0 then
        return A;
     end if;
     if A > B then
        return Gcd(B, A mod B);
     else
        return Gcd(A, B mod A);
     end if;
  end Gcd;
  

begin

  Put_Line("GCD of 100, 5 is" & Integer'Image(Gcd(100, 5)));
  Put_Line("GCD of 5, 100 is" & Integer'Image(Gcd(5, 100)));
  Put_Line("GCD of 7, 23 is" & Integer'Image(Gcd(7, 23)));

end Gcd_Test;</lang>

Output:

GCD of 100, 5 is 5
GCD of 5, 100 is 5
GCD of 7, 23 is 1

ALGOL 68

PROC gcd = (INT a, b) INT: (
  IF a = 0 THEN
    b
  ELIF b = 0 THEN
    a
  ELIF a > b  THEN
    gcd(b, a MOD b)
  ELSE
    gcd(a, b MOD a)
  FI     
);

main : (
  INT a = 33, b = 77;
  printf(($x"The gcd of"g" and "g" is "gl$,a,b,gcd(a,b)));
  INT c = 49865, d = 69811;
  printf(($x"The gcd of"g" and "g" is "gl$,c,d,gcd(c,d)))
)

The output is:

The gcd of        +33 and         +77 is         +11
The gcd of     +49865 and      +69811 is       +9973

APL

Works with: Dyalog APL
       33 49865 ∨ 77 69811 
11 9973

If you're interested in how you'd write GCD in Dyalog, if Dyalog didn't have a primitive for it, (i.e. using other algorithms mentioned on this page: iterative, recursive, binary recursive), see different ways to write GCD in Dyalog.

Works with: APL2
       ⌈/(^/0=A∘.|X)/A←⍳⌊/X←49865 69811 
9973

C

Iterative Euclid algorithm

<lang c>int gcd_iter(int u, int v) {

 int t;
 while (v) {
   t = u; 
   u = v; 
   v = t % v;
 }
 return u < 0 ? -u : u; /* abs(u) */

}</lang>

Recursive Euclid algorithm

<lang c>int gcd(int u, int v) {

 if (v)
   return gcd(v, u % v);
 else 
   return u < 0 ? -u : u; /* abs(u) */

}</lang>

Iterative binary algorithm

<lang c>int gcd_bin(int u, int v) {

 int t, k;
 u = u < 0 ? -u : u; /* abs(u) */
 v = v < 0 ? -v : v; 
 if (u < v) {
   t = u;
   u = v;
   v = t;
 }
 if (v == 0)
   return u;
 k = 1;
 while (u & 1 == 0 && v & 1 == 0) { /* u, v - even */
   u >>= 1; v >>= 1;
   k <<= 1;
 }
 t = (u & 1) ? -v : u;
 while (t) {
   while (t & 1 == 0) 
     t >>= 1;
   if (t > 0)
     u = t;
   else
     v = -t;
   t = u - v;
 }
 return u * k;        

}</lang>

Notes on performance

gcd_iter(40902, 24140) takes us about 2.87 usec

gcd_bin(40902, 24140) takes us about 2.47 usec

gcd(40902, 24140) takes us about 2.86 usec

Forth

: gcd ( a b -- n )
  begin dup while tuck mod repeat drop ;

Fortran

Recursive Euclid algorithm

In ISO Fortran 95 or later, use RECURSIVE function:

   recursive function gcd_rec(u, v) result(gcd)
       integer             :: gcd
       integer, intent(in) :: u, v
       
       if (mod(u, v) /= 0) then
           gcd = gcd_rec(v, mod(u, v))
       else
           gcd = v
       end if
   end function gcd_rec

Iterative Euclid algorithm

      subroutine gcd_iter(value, u, v)
Cf2py integer, intent(out) :: value
      integer value, u, v, t
      intrinsic abs, mod
C
      do while( v.NE.0 )
         t = u
         u = v
         v = mod(t, v)
      enddo
      value = abs(u)
      end subroutine gcd_iter

Iterative binary algorithm

      subroutine gcd_bin(value, u, v)
Cf2py integer, intent(out) :: value
      integer value, u, v, k, t, abs, mod
      intrinsic abs, mod
      u = abs(u)
      v = abs(v)
      if( u.lt.v ) then
         t = u
         u = v
         v = t
      endif
      if( v.eq.0 ) then
         value = u
         return
      endif
      k = 1
      do while( (mod(u, 2).eq.0).and.(mod(v, 2).eq.0) )
         u = u / 2
         v = v / 2
         k = k * 2
      enddo
      if( (mod(u, 2).eq.0) ) then
         t = u
      else
         t = -v
      endif
      do while( t.ne.0 )
         do while( (mod(t, 2).eq.0) )
            t = t / 2
         enddo
         if( t.gt.0 ) then
            u = t
         else
            v = -t
         endif
         t = u - v
      enddo
      value = u * k
      end subroutine gcd_bin

Notes on performance

gcd_iter(40902, 24140) takes us about 2.8 usec

gcd_bin(40902, 24140) takes us about 2.5 usec

Haskell

That is already available as the function gcd in the Prelude. Here's the implementation:

gcd :: (Integral a) => a -> a -> a
gcd 0 0 =  error "Prelude.gcd: gcd 0 0 is undefined"
gcd x y =  gcd' (abs x) (abs y) where
  gcd' a 0  =  a
  gcd' a b  =  gcd' b (a `rem` b)

J

x+.y

Java

Iterative

<lang java>public static long gcd(long a, long b){

  long factor= Math.max(a, b);
  for(long loop= factor;loop > 1;loop--){
     if(a % loop == 0 && b % loop == 0){
        return loop;
     }
  }
  return 1;

}</lang>

Recursive

<lang java>public static long gcd(long a, long b){

  if(a == 0) return b;
  if(b == 0) return a;
  if(a > b) return gcd(b, a % b);
  return gcd(a, b % a);

}</lang>

Joy

gcd == [0 >] [dup rollup rem] while pop;

to gcd :a :b
  if :b = 0 [output :a]
  output gcd :b  modulo :a :b
end

Lucid

dataflow algorithm

gcd(n,m) where
   z = [% n, m %] fby if x > y then [% x - y, y %] else [% x, y - x%] fi;
   x = hd(z);
   y = hd(tl(z));
   gcd(n, m) = (x asa x*y eq 0) fby eod;
end

Mathematica

GCD[a, b]

MAXScript

Iterative Euclid algorithm

fn gcdIter a b =
(
    while b > 0 do
    (
        c = mod a b
        a = b
        b = c
    )
    abs a
)

Recursive Euclid algorithm

fn gcdRec a b =
(
    if b > 0 then gcdRec b (mod a b) else abs a
)

Modula-3

MODULE GCD EXPORTS Main;

IMPORT IO, Fmt;

PROCEDURE GCD(a, b: CARDINAL): CARDINAL =
  BEGIN
    IF a = 0 THEN
      RETURN b;
    ELSIF b = 0 THEN
      RETURN a;
    ELSIF a > b THEN
      RETURN GCD(b, a MOD b);
    ELSE
      RETURN GCD(a, b MOD a);
    END;
  END GCD;

BEGIN
  IO.Put("GCD of 100, 5 is " & Fmt.Int(GCD(100, 5)) & "\n");
  IO.Put("GCD of 5, 100 is " & Fmt.Int(GCD(5, 100)) & "\n");
  IO.Put("GCD of 7, 23 is " & Fmt.Int(GCD(7, 23)) & "\n");
END GCD.

Output:

GCD of 100, 5 is 5
GCD of 5, 100 is 5
GCD of 7, 23 is 1

Nial

Nial provides gcd in the standard lib.

|loaddefs 'niallib/gcd.ndf'
|gcd 6 4
=2

defining it for arrays

# red is the reduction operator for a sorted list
# one is termination condition
red is cull filter (0 unequal) link [mod [rest, first] , first]
one is or [= [1 first, tally], > [2 first,  first]]
gcd is fork [one, first, gcd red] sort <=

Using it

|gcd 9 6 3
=3

OCaml

<lang ocaml>let rec gcd a b =

 if      a = 0 then b
 else if b = 0 then a
 else if a > b then gcd b (a mod b)
 else               gcd a (b mod a)</lang>

Pascal

<lang pascal>function gcd(a, b: integer): integer;

var
 tmp: integer;
begin
 while b <> 0 do
  begin
   tmp := a mod b;
   a := b;
   b := tmp
  end;
 gcd := a
end;</lang>

Perl

Iterative Euclid algorithm

<lang perl>sub gcd_iter($$) {

 my ($u, $v) = @_;
 while ($v) {
   ($u, $v) = ($v, $u % $v);
 }
 return abs($u);

}</lang>

Recursive Euclid algorithm

<lang perl>sub gcd($$) {

 my ($u, $v) = @_;
 if ($v) {
   return gcd($v, $u % $v);
 } else {
   return abs($u);
 }

}</lang>

Iterative binary algorithm

<lang perl>sub gcd_bin($$) {

 my ($u, $v) = @_;
 $u = abs($u);
 $v = abs($v);
 if ($u < $v) {
   ($u, $v) = ($v, $u);
 }
 if ($v == 0) {
   return $u;
 }
 my $k = 1;
 while ($u & 1 == 0 && $v & 1 == 0) {
   $u >>= 1;
   $v >>= 1;
   $k <<= 1;
 }
 my $t = ($u & 1) ? -$v : $u;
 while ($t) {
   while ($t & 1 == 0) {
     $t >>= 1;
   }
   if ($t > 0) {
     $u = $t;
   } else {
     $v = -$t;
   }
   $t = $u - $v;
 }
 return $u * $k;

}</lang>

Notes on performance

<lang perl>use Benchmark qw(cmpthese);

my $u = 40902; my $v = 24140; cmpthese(-5, {

 'gcd' => sub { gcd($u, $v); },
 'gcd_iter' => sub { gcd_iter($u, $v); },
 'gcd_bin' => sub { gcd_bin($u, $v); },

});</lang>

Output on 'Intel(R) Pentium(R) 4 CPU 1.50GHz' / Linux / Perl 5.8.8:

             Rate  gcd_bin gcd_iter      gcd
gcd_bin  321639/s       --     -12%     -20%
gcd_iter 366890/s      14%       --      -9%
gcd      401149/s      25%       9%       --

Pop11

Built-in gcd

gcd_n(15, 12, 2) =>

Note: the last argument gives the number of other arguments (in this case 2).

Iterative Euclid algorithm

define gcd(k, l) -> r;
    lvars k , l, r = l;
    abs(k) -> k;
    abs(l) -> l;
    if k < l then (k, l) -> (l, k) endif;
    while l /= 0 do
        (l, k rem l) -> (k, l)
    endwhile;
    k -> r;
enddefine;

Prolog

Recursive Euclid Algorithm

gcd(X, 0, X).
gcd(0, X, X).
gcd(X, X, X).
gcd(X, Y, D) :- X > Y, Z is X mod Y, gcd(Y, Z, D).
gcd(X, Y, D) :- X < Y, Z is Y mod X, gcd(X, Z, D).

Repeated Subtraction

gcd(X, X, X).
gcd(X, Y, D) :- X < Y, Z is Y - X, gcd(X, Z, D).
gcd(X, Y, D) :- Y < X, gcd(Y, X, D).

Python

Iterative Euclid algorithm

<lang python>def gcd_iter(u, v):

   while v:
       u, v = v, u % v
   return abs(u)</lang>

Recursive Euclid algorithm

Interpreter: Python 2.5 <lang python>def gcd(u, v):

   return gcd(v, u % v) if v else abs(u)</lang>

Tests

>>> gcd(0,0)
0
>>> gcd(0, 10) == gcd(10, 0) == gcd(-10, 0) == gcd(0, -10) == 10
True
>>> gcd(9, 6) == gcd(6, 9) == gcd(-6, 9) == gcd(9, -6) == gcd(6, -9) == gcd(-9, 6) == 3
True
>>> gcd(8, 45) == gcd(45, 8) == gcd(-45, 8) == gcd(8, -45) == gcd(-8, 45) == gcd(45, -8) == 1
True
>>> gcd(40902, 24140) # check Knuth :)
34

Iterative binary algorithm

See The Art of Computer Programming by Knuth (Vol.2) <lang python>def gcd_bin(u, v):

   u, v = abs(u), abs(v) # u >= 0, v >= 0
   if u < v:
       u, v = v, u # u >= v >= 0
   if v == 0:
       return u
  
   # u >= v > 0
   k = 1
   while u & 1 == 0 and v & 1 == 0: # u, v - even
       u >>= 1; v >>= 1
       k <<= 1
      
   t = -v if u & 1 else u
   while t:
       while t & 1 == 0:
           t >>= 1
       if t > 0:
           u = t
       else:
           v = -t
       t = u - v
   return u * k</lang>

Notes on performance

gcd(40902, 24140) takes us about 17 usec

gcd_iter(40902, 24140) takes us about 11 usec

gcd_bin(40902, 24140) takes us about 41 usec

Ruby

That is already available as the gcd method of integers:

irb(main):001:0> require 'rational'
=> true
irb(main):002:0> 40902.gcd(24140)
=> 34

Here's an implementation: <lang ruby>def gcd(u, v)

 u, v = u.abs, v.abs
 while v > 0
   u, v = v, u % v
 end
 u

end</lang>

SETL

a := 33; b := 77;
print(" the gcd of",a," and ",b," is ",gcd(a,b));

c := 49865; d := 69811;
print(" the gcd of",c," and ",d," is ",gcd(c,d));

procedure gcd(a, b);
  return if a = 0 then
    b
  elseif b = 0 then
    a
  elseif a > b  then
    gcd(b, a mod b)
  else
    gcd(a, b mod a)
  end if;
end gcd;

Output:

the gcd of 33  and  77  is  11
the gcd of 49865  and  69811  is  9973

Scheme

<lang scheme>(define (gcd a b)

 (cond ((= a 0) b)
       ((= b 0) a)
       ((> a b) (gcd b (modulo a b)))
       (else    (gcd a (modulo b a)))))</lang>

or using the standard function included with Scheme (takes any number of arguments): <lang scheme>(gcd a b)</lang>

TI-83 BASIC

gcd(A,B)

V

like joy

iterative

[gcd
   [0 >] [dup rollup %]
   while
   pop
].

recursive

like python

[gcd
   [zero?] [pop]
      [swap [dup] dip swap %]
   tailrec].

same with view: (swap [dup] dip swap % is replaced with a destructuring view)

[gcd
   [zero?] [pop]
     [[a b : [b a b %]] view i]
   tailrec].

running it

|1071 1029 gcd
=21