Exponentiation order: Difference between revisions

m
→‎{{header|Wren}}: Changed to Wren S/H
m (used a bigger font for some special symbols.)
m (→‎{{header|Wren}}: Changed to Wren S/H)
 
(41 intermediate revisions by 24 users not shown)
Line 30:
*   [[Exponentiation_operator|exponentiation operator]]
*   [[Arbitrary-precision_integers_(included)|arbitrary-precision integers (included)]]
*   [[Exponentiation with infix operators in (or operating on) the base]]
<br><br>
 
=={{header|11l}}==
<langsyntaxhighlight lang="11l">print(5 ^ 3 ^ 2)
print((5 ^ 3) ^ 2)
print(5 ^ (3 ^ 2))</langsyntaxhighlight>
{{out}}
<pre>
Line 41 ⟶ 42:
15625
1.95313e+06
</pre>
 
=={{header|Action!}}==
There is no power operator in Action! Power function for REAL type is used. But the precision is insufficient.
{{libheader|Action! Tool Kit}}
<syntaxhighlight lang="action!">INCLUDE "D2:REAL.ACT" ;from the Action! Tool Kit
 
PROC Main()
REAL r2,r3,r5,tmp1,tmp2
 
Put(125) PutE() ;clear screen
 
IntToReal(2,r2)
IntToReal(3,r3)
IntToReal(5,r5)
 
PrintE("There is no power operator in Action!")
PrintE("Power function for REAL type is used.")
PrintE("But the precision is insufficient.")
Power(r5,r3,tmp1)
Power(tmp1,r2,tmp2)
Print("(5^3)^2=")
PrintRE(tmp2)
 
Power(r3,r2,tmp1)
Power(r5,tmp1,tmp2)
Print("5^(3^2)=")
PrintRE(tmp2)
RETURN</syntaxhighlight>
{{out}}
[https://gitlab.com/amarok8bit/action-rosetta-code/-/raw/master/images/Exponentiation_order.png Screenshot from Atari 8-bit computer]
<pre>
There is no power operator in Action!
Power function for REAL type is used.
But the precision is insufficient.
(5^3)^2=15624.9977
5^(3^2)=1953124.17
</pre>
 
Line 46 ⟶ 84:
5**3**2 is not a valid Ada expression. Parenthesis are mandatory.
 
<langsyntaxhighlight Adalang="ada">with Ada.Text_IO;
 
procedure Exponentation_Order is
Line 54 ⟶ 92:
Put_Line ("(5**3)**2 : " & Natural'((5**3)**2)'Image);
Put_Line ("5**(3**2) : " & Natural'(5**(3**2))'Image);
end Exponentation_Order;</langsyntaxhighlight>
 
{{out}}
Line 62 ⟶ 100:
=={{header|ALGOL 68}}==
Algol 68 provides various alternative symbols for the exponentiation operator generally, "**", "^" and "UP" can be used.
<langsyntaxhighlight lang="algol68">print( ( "5**3**2: ", 5**3**2, newline ) );
print( ( "(5**3)**2: ", (5**3)**2, newline ) );
print( ( "5**(3**2): ", 5**(3**2), newline ) )</langsyntaxhighlight>
{{out}}
<pre>
Line 70 ⟶ 108:
(5**3)**2: +15625
5**(3**2): +1953125
</pre>
 
=={{header|ALGOL-M}}==
The eponentiation operator ** in ALGOL-M works only on integer operands.
<syntaxhighlight lang = "ALGOL">
begin
 
write("5**3**2 = ", 5**3**2);
write("(5**3)**2 = ", (5**3)**2);
write("5**(3**2) = ", 5**(3**2));
 
end
</syntaxhighlight>
{{out}}
The third expression results in a value that exceeds the maximum integer value of 16383. Sadly, ALGOL-M emits no warning or error message when this occurs but simply gives the wrong answer.
<pre>
5**3**2 = 15625
(5**3)**2 = 15625
5**(3**2) = -12955
</pre>
 
=={{header|ALGOL W}}==
The Algol W exponentiation operator always produces a real result and requires an integer right operand, hence the round functions in the following.
<langsyntaxhighlight lang="algolw">begin
write( "5**3**2: ", round( 5 ** 3 ** 2 ) );
write( "(5**3)**2: ", round( ( 5 ** 3 ) ** 2 ) );
write( "5**(3**2): ", round( 5 ** round( 3 ** 2 ) ) )
end.</langsyntaxhighlight>
{{out}}
<pre>
Line 101 ⟶ 158:
AppleScript's compiler inserts its own parentheses with 5 ^ 3 ^ 2.
 
<langsyntaxhighlight lang="applescript">set r1 to 5 ^ 3 ^ 2 -- Changes to 5 ^ (3 ^ 2) when compiled.
set r2 to (5 ^ 3) ^ 2
set r3 to 5 ^ (3 ^ 2)
Line 107 ⟶ 164:
return "5 ^ 3 ^ 2 = " & r1 & "
(5 ^ 3) ^ 2 = " & r2 & "
5 ^ (3 ^ 2) = " & r3</langsyntaxhighlight>
 
{{output}}
Line 113 ⟶ 170:
(5 ^ 3) ^ 2 = 1.5625E+4
5 ^ (3 ^ 2) = 1.953125E+6"</pre>
 
=={{header|Arturo}}==
 
<syntaxhighlight lang="rebol">print 5^3^2
print (5^3)^2
print 5^(3^2)</syntaxhighlight>
 
{{out}}
 
<pre>1953125
15625
1953125</pre>
 
=={{header|AWK}}==
<syntaxhighlight lang="awk">
<lang AWK>
# syntax: GAWK -f EXPONENTIATION_ORDER.AWK
BEGIN {
Line 123 ⟶ 192:
exit(0)
}
</syntaxhighlight>
</lang>
<p>output:</p>
<pre>
Line 132 ⟶ 201:
 
=={{header|BASIC}}==
==={{header|Sinclair ZX81Applesoft BASIC}}===
<syntaxhighlight lang="gwbasic">?"5^3^2 = "5 ^ 3 ^ 2 CHR$ (13)"(5^3)^2 = "(5 ^ 3) ^ 2 CHR$ (13)"5^(3^2) = "5 ^ (3 ^ 2);</syntaxhighlight>
<lang basic>10 PRINT "5**3**2 = ";5**3**2
20 PRINT "(5**3)**2 = ";(5**3)**2
30 PRINT "5**(3**2) = ";5**(3**2)</lang>
{{out}}
<pre>5**^3**^2 = 15625
(5**^3)**^2 = 15625
5**^(3**^2) = 1953125.01</pre>
==={{header|BASIC256}}===
{{works with|QBasic}}
{{works with|FreeBASIC}}
{{works with|True BASIC}}
{{works with|Run BASIC}}
<syntaxhighlight lang="freebasic">print "5^3^2 = "; 5^3^2
print "(5^3)^2 = "; (5^3)^2
print "5^(3^2) = "; 5^(3^2)
end</syntaxhighlight>
{{out}}
<pre>5^3^2 = 15625
(5^3)^2 = 15625
5^(3^2) = 1953125</pre>
 
==={{header|BBC BASIC}}===
<langsyntaxhighlight lang="bbcbasic">PRINT "5^3^2 = "; 5^3^2
PRINT "(5^3)^2 = "; (5^3)^2
PRINT "5^(3^2) = "; 5^(3^2)</langsyntaxhighlight>
{{out}}
<pre>5^3^2 = 15625
(5^3)^2 = 15625
5^(3^2) = 1953125</pre>
 
==={{header|Chipmunk Basic}}===
{{works with|Chipmunk Basic|3.6.4}}
<syntaxhighlight lang="qbasic">10 print "5^3^2 = "5^3^2
20 print "(5^3)^2 = "(5^3)^2
30 print "5^(3^2) = "5^(3^2)</syntaxhighlight>
{{out}}
<pre>5^3^2 = 15625
(5^3)^2 = 15625
5^(3^2) = 1953125</pre>
 
==={{header|GW-BASIC}}===
{{works with|Applesoft BASIC}}
{{works with|Chipmunk Basic}}
{{works with|MSX_BASIC}}
{{works with|PC-BASIC|any}}
{{works with|QBasic}}
<syntaxhighlight lang="qbasic">10 PRINT "5^3^2 =" 5^3^2
20 PRINT "(5^3)^2 =" (5^3)^2
30 PRINT "5^(3^2) =" 5^(3^2)</syntaxhighlight>
{{out}}
<pre>5^3^2 = 15625
Line 151 ⟶ 255:
 
==={{header|IS-BASIC}}===
<langsyntaxhighlight ISlang="is-BASICbasic">100 PRINT "5^3^2 =";5^3^2
110 PRINT "(5^3)^2 =";(5^3)^2
120 PRINT "5^(3^2) =";5^(3^2)</langsyntaxhighlight>
{{out}}
<pre>5^3^2 = 15625
(5^3)^2 = 15625
5^(3^2) = 1953125</pre>
 
==={{header|MSX Basic}}===
<syntaxhighlight lang="qbasic">10 PRINT "5^3^2 =" 5^3^2
20 PRINT "(5^3)^2 =" (5^3)^2
30 PRINT "5^(3^2) =" 5^(3^2)</syntaxhighlight>
{{out}}
<pre>5^3^2 = 15625
(5^3)^2 = 15625
5^(3^2) = 1953125</pre>
 
==={{header|PureBasic}}===
In the PureBasic it is impossible to show the result of: 5^3^2
<syntaxhighlight lang="vb">OpenConsole()
PrintN("(5^3)^2 = " + Str(Pow(Pow(5, 3), 2)))
PrintN("5^(3^2) = " + Str(Pow(5, (Pow(3, 2)))))
CloseConsole()</syntaxhighlight>
{{out}}
<pre>(5^3)^2 = 15625
5^(3^2) = 1953125</pre>
 
==={{header|QBasic}}===
{{works with|QBasic|1.1}}
{{works with|QuickBasic|4.5}}
{{works with|FreeBASIC}}
{{works with|True BASIC}}
{{works with|BASIC256}}
{{works with|Run BASIC}}
<syntaxhighlight lang="qbasic">PRINT "5^3^2 ="; 5^3^2
PRINT "(5^3)^2 ="; (5^3)^2
PRINT "5^(3^2) ="; 5^(3^2)
END</syntaxhighlight>
{{out}}
<pre>5^3^2 = 15625
(5^3)^2 = 15625
5^(3^2) = 1953125</pre>
 
==={{header|Run BASIC}}===
{{works with|QBasic}}
{{works with|FreeBASIC}}
{{works with|True BASIC}}
{{works with|BASIC256}}
<syntaxhighlight lang="freebasic">print "5^3^2 = "; 5^3^2
print "(5^3)^2 = "; (5^3)^2
print "5^(3^2) = "; 5^(3^2)
end</syntaxhighlight>
{{out}}
<pre>5^3^2 = 15625
(5^3)^2 = 15625
5^(3^2) = 1953125</pre>
 
==={{header|True BASIC}}===
{{works with|QBasic}}
{{works with|FreeBASIC}}
{{works with|BASIC256}}
{{works with|Run BASIC}}
<syntaxhighlight lang="qbasic">PRINT "5^3^2 ="; 5^3^2
PRINT "(5^3)^2 ="; (5^3)^2
PRINT "5^(3^2) ="; 5^(3^2)
END</syntaxhighlight>
{{out}}
<pre>5^3^2 = 15625
(5^3)^2 = 15625
5^(3^2) = 1953125</pre>
 
==={{header|XBasic}}===
{{works with|Windows XBasic}}
<syntaxhighlight lang="qbasic">PROGRAM "Exponentiation order"
VERSION "0.0000"
 
DECLARE FUNCTION Entry ()
 
FUNCTION Entry ()
PRINT "5^3^2 ="; 5**3**2
PRINT "(5^3)^2 ="; (5**3)**2
PRINT "5^(3^2) ="; 5**(3**2)
END FUNCTION
END PROGRAM</syntaxhighlight>
{{out}}
<pre>5^3^2 = 15625
(5^3)^2 = 15625
5^(3^2) = 1953125</pre>
 
==={{header|Yabasic}}===
{{works with|QBasic}}
{{works with|FreeBASIC}}
{{works with|True BASIC}}
{{works with|BASIC256}}
<syntaxhighlight lang="freebasic">print "5^3^2 = ", 5^3^2
print "(5^3)^2 = ", (5^3)^2
print "5^(3^2) = ", 5^(3^2)
end</syntaxhighlight>
{{out}}
<pre>5^3^2 = 15625
(5^3)^2 = 15625
5^(3^2) = 1953125</pre>
 
==={{header|Sinclair ZX81 BASIC}}===
<syntaxhighlight lang="basic">10 PRINT "5**3**2 = ";5**3**2
20 PRINT "(5**3)**2 = ";(5**3)**2
30 PRINT "5**(3**2) = ";5**(3**2)</syntaxhighlight>
{{out}}
<pre>5**3**2 = 15625
(5**3)**2 = 15625
5**(3**2) = 1953125</pre>
 
=={{header|Bracmat}}==
<langsyntaxhighlight Bracmatlang="bracmat">put$str$("5^3^2: " 5^3^2 "\n(5^3)^2: " (5^3)^2 "\n5^(3^2): " 5^(3^2) \n) </langsyntaxhighlight>
{{out}}
<pre>5^3^2: 1953125
Line 169 ⟶ 377:
C does not have an exponentiation operator. The caret operator '^' performs xor bitwise operation in C. The function pow in the standard C Math library takes two arguments.
 
<langsyntaxhighlight Clang="c">#include<stdio.h>
#include<math.h>
 
Line 178 ⟶ 386:
return 0;
}</langsyntaxhighlight>
 
{{out}}
Line 187 ⟶ 395:
 
=={{header|C++}}==
<langsyntaxhighlight lang="cpp">#include <iostream>
#include <cmath>
 
Line 195 ⟶ 403:
return EXIT_SUCCESS;
}</langsyntaxhighlight>
 
With permissive flag:
<langsyntaxhighlight lang="cpp">#include <iostream>
#include <cmath>
 
Line 210 ⟶ 418:
return EXIT_SUCCESS;
}</langsyntaxhighlight>
 
{{out}}
Line 218 ⟶ 426:
</pre>
 
=={{header|C sharp|C#}}==
<langsyntaxhighlight lang="csharp">using System;
 
namespace exponents
Line 239 ⟶ 447:
}
}
</syntaxhighlight>
</lang>
{{out}}
<pre>
Line 249 ⟶ 457:
Clojure uses prefix notation and expt only takes 2 arguments for exponentiation, so "5**3**2" isn't represented.
 
<langsyntaxhighlight lang="clojure">(use 'clojure.math.numeric-tower)
;; (5**3)**2
(expt (expt 5 3) 2) ; => 15625
Line 261 ⟶ 469:
;; 5**(3**2) alternative: evaluating right-to-left with reduce requires a small modification
(defn rreduce [f coll] (reduce #(f %2 %) (reverse coll)))
(rreduce expt [5 3 2]) ; => 1953125</langsyntaxhighlight>
 
=={{header|CLU}}==
<syntaxhighlight lang="clu">start_up = proc ()
po: stream := stream$primary_output()
stream$putl(po, "5**3**2 = " || int$unparse(5**3**2))
stream$putl(po, "(5**3)**2 = " || int$unparse((5**3)**2))
stream$putl(po, "5**(3**2) = " || int$unparse(5**(3**2)))
end start_up</syntaxhighlight>
{{out}}
<pre>5**3**2 = 1953125
(5**3)**2 = 15625
5**(3**2) = 1953125</pre>
 
=={{header|Common Lisp}}==
Because Common Lisp uses prefix notation and <code>expt</code> accepts only two arguments, it doesn't have an expression for <code>5**3**2</code>. Just showing expressions for the latter two.
<langsyntaxhighlight lang="lisp">(expt (expt 5 3) 2)
(expt 5 (expt 3 2))</langsyntaxhighlight>
{{out}}
<pre>15625
Line 272 ⟶ 493:
 
=={{header|D}}==
<langsyntaxhighlight lang="d">void main() {
import std.stdio, std.math, std.algorithm;
 
Line 279 ⟶ 500:
writefln("5 ^^ (3 ^^ 2) = %7d", 5 ^^ (3 ^^ 2));
writefln("[5, 3, 2].reduce!pow = %7d", [5, 3, 2].reduce!pow);
}</langsyntaxhighlight>
{{out}}
<pre>5 ^^ 3 ^^ 2 = 1953125
Line 285 ⟶ 506:
5 ^^ (3 ^^ 2) = 1953125
[5, 3, 2].reduce!pow = 15625</pre>
 
=={{header|Delphi}}==
{{works with|Delphi|6.0}}
{{libheader|Math,SysUtils,StdCtrls}}
Delphi doesn't have exponentiation but it does have the "Power" function in the math library
 
<syntaxhighlight lang="Delphi">
procedure ExponentDemo(Memo: TMemo);
begin
Memo.Lines.Add('5^3^2 = '+FloatToStrF(Power(5,Power(3,2)),ffNumber,18,0));
Memo.Lines.Add('(5^3)^2 = '+FloatToStrF(Power(Power(5,3),2),ffNumber,18,0));
Memo.Lines.Add('5^(3^2) = '+FloatToStrF(Power(5,Power(3,2)),ffNumber,18,0));
end;
 
 
</syntaxhighlight>
{{out}}
<pre>
5^3^2 = 1,953,125
(5^3)^2 = 15,625
5^(3^2) = 1,953,125
 
</pre>
 
=={{header|Dart}}==
<syntaxhighlight lang="dart">import 'dart:math' show pow;
 
void main() {
print('(5 ^ 3) ^ 2 = ${pow(pow(5, 3), 2)}');
print('5 ^ (3 ^ 2) = ${pow(5, (pow(3, 2)))}');
}</syntaxhighlight>
{{out}}
<pre>(5 ^ 3) ^ 2 = 15625
5 ^ (3 ^ 2) = 1953125</pre>
 
=={{header|EasyLang}}==
<syntaxhighlight>
print "(5 ^ 3) ^ 2 = " & pow (pow 5 3) 2
print "5 ^ (3 ^ 2) = " & pow 5 pow 3 2
</syntaxhighlight>
 
=={{header|EchoLisp}}==
<langsyntaxhighlight lang="scheme">
;; the standard and secure way is to use the (expt a b) function
(expt 5 (expt 3 2)) ;; 5 ** ( 3 ** 2)
Line 304 ⟶ 565:
(5 ** (3 ** 2))
→ 1953125
</syntaxhighlight>
</lang>
 
=={{header|Factor}}==
Factor is a stack language where expressions take the form of reverse Polish notation, so there is no ambiguity here. It is up to you, the programmer, to perform operations in the order you intend.
<langsyntaxhighlight lang="factor">USING: formatting math.functions ;
 
5 3 2 ^ ^
Line 314 ⟶ 575:
 
5 3 ^ 2 ^
"5 3 ^ 2 ^ %d\n" printf</langsyntaxhighlight>
{{out}}
<pre>
Line 323 ⟶ 584:
Factor also has syntax for infix arithmetic via the the <code>infix</code> vocabulary.
 
<langsyntaxhighlight lang="factor">USING: formatting infix ;
 
[infix 5**3**2 infix]
Line 332 ⟶ 593:
 
[infix 5**(3**2) infix]
"5**(3**2) = %d\n" printf</langsyntaxhighlight>
{{out}}
<pre>
Line 341 ⟶ 602:
 
=={{header|Fortran}}==
<langsyntaxhighlight Fortranlang="fortran">write(*, "(a, i0)") "5**3**2 = ", 5**3**2
write(*, "(a, i0)") "(5**3)**2 = ", (5**3)**2
write(*, "(a, i0)") "5**(3**2) = ", 5**(3**2)</langsyntaxhighlight>
{{out}}
<pre>5**3**2 = 1953125
Line 350 ⟶ 611:
 
=={{header|FreeBASIC}}==
<langsyntaxhighlight lang="freebasic">' FB 1.05.0
 
' The exponentation operator in FB is ^ rather than **.
Line 360 ⟶ 621:
Print "(5^3)^2 =>"; (5^3)^2
Print "5^(3^2) =>"; 5^(3^2)
Sleep</langsyntaxhighlight>
 
{{out}}
Line 372 ⟶ 633:
Frink correctly follows standard mathematical notation that exponent towers are performed from "top to bottom" or "right to left."
 
<langsyntaxhighlight Frinklang="frink">println["5^3^2 = " + 5^3^2]
println["(5^3)^2 = " + (5^3)^2]
println["5^(3^2) = " + 5^(3^2)]
</syntaxhighlight>
</lang>
 
{{out}}
Line 382 ⟶ 643:
(5^3)^2 = 15625
5^(3^2) = 1953125
</pre>
 
=={{header|FutureBasic}}==
FB is translated into C which does not have an exponentiation operator. The caret operator '^' performs xor bitwise operation. FB also has an fn pow function, translated from the the standard C Math library, which takes two arguments.
<syntaxhighlight lang="futurebasic">
print "(5^3)^2 = "; (5^3)^2
print "5^(3^2) = "; 5^(3^2)
print
print "fn pow( fn pow(5,3), 2 ) = "; fn pow( fn pow(5,3), 2 )
print "fn pow( 5, fn pow(3,2 ) ) = "; fn pow( 5, fn pow(3,2 ) )
 
HandleEvents
</syntaxhighlight>
{{output}}
<pre>
(5^3)^2 = 15625
5^(3^2) = 1953125
 
fn pow( fn pow(5,3), 2 ) = 15625
fn pow( 5, fn pow(3,2 ) ) = 1953125
</pre>
 
=={{header|Go}}==
<langsyntaxhighlight Golang="go">package main
 
import "fmt"
Line 398 ⟶ 679:
fmt.Printf("(5^3)^2 = %.0f\n", b)
fmt.Printf("5^(3^2) = %.0f\n", c)
}</langsyntaxhighlight>
 
{{out}}
Line 410 ⟶ 691:
 
Solution:
<langsyntaxhighlight lang="groovy">println(" 5 ** 3 ** 2 == " + 5**3**2)
println("(5 ** 3)** 2 == " + (5**3)**2)
println(" 5 **(3 ** 2)== " + 5**(3**2))</langsyntaxhighlight>
 
Output:
Line 473 ⟶ 754:
J uses the same evaluation order for exponentiation as it does for assignment. That is to say: the bottom up view is right-to-left and the top-down view is left-to-right.
 
<langsyntaxhighlight Jlang="j"> 5^3^2
1.95312e6
(5^3)^2
15625
5^(3^2)
1.95312e6</langsyntaxhighlight>
 
----
Line 490 ⟶ 771:
jq's built-in for exponentiation is an arity-two function and thus no ambiguity arising from infix-notation is possible. Here's an example:
 
<langsyntaxhighlight lang="jq">jq -n 'pow(pow(5;3);2)'
15625</langsyntaxhighlight>
 
For chaining, one could use `reduce`:
 
<langsyntaxhighlight lang="jq"> def pow: reduce .[1:] as $i (.[0]; pow(.;$i))
 
[5,3,2] | pow</langsyntaxhighlight>
 
Result: 15625
Line 504 ⟶ 785:
{{works with|Julia|0.6}}
 
<langsyntaxhighlight lang="julia">@show 5 ^ 3 ^ 2 # default: power operator is read right-to-left
@show (5 ^ 3) ^ 2
@show 5 ^ (3 ^ 2)
@show reduce(^, [5, 3, 2])
@show foldl(^, [5, 3, 2]) # guarantees left associativity
@show foldr(^, [5, 3, 2]) # guarantees right associativity</langsyntaxhighlight>
 
{{out}}
Line 521 ⟶ 802:
=={{header|Kotlin}}==
Kotlin does not have a dedicated exponentiation operator and we would normally use Java's Math.pow function instead. However, it's possible to define an infix function which would look like an operator and here we do so for integer base and exponent. For simplicity we disallow negative exponents altogether and consider 0 ** 0 == 1. Associativity would, of course, be the same as for a normal function call.
<langsyntaxhighlight lang="scala">// version 1.0.5-2
 
infix fun Int.ipow(exp: Int): Int = when {
Line 543 ⟶ 824:
println("(5**3)**2 = ${(5 ipow 3) ipow 2}")
println("5**(3**2) = ${5 ipow (3 ipow 2)}")
}</langsyntaxhighlight>
 
{{out}}
Line 556 ⟶ 837:
Because lambdatalk uses prefix notation and {pow a b} accepts only two arguments, it doesn't have an expression for 5**3**2. Just showing expressions for the latter two.
 
<langsyntaxhighlight lang="scheme">
'{pow {pow 5 3} 2}
-> {pow {pow 5 3} 2}
'{pow 5 {pow 3 2}}
-> {pow 5 {pow 3 2}}
</syntaxhighlight>
</lang>
 
=={{header|langur}}==
<syntaxhighlight lang="langur">writeln " 5^3^2: ", 5^3^2
writeln "(5^3)^2: ", (5^3)^2
writeln "5^(3^2): ", 5^(3^2)
</syntaxhighlight>
 
{{out}}
<pre> 5^3^2: 1953125
(5^3)^2: 15625
5^(3^2): 1953125
</pre>
 
=={{header|Latitude}}==
<langsyntaxhighlight lang="latitude">5 ^ 3 ^ 2. ;; 1953125
(5 ^ 3) ^ 2. ;; 15625
5 ^ (3 ^ 2). ;; 1953125</langsyntaxhighlight>
 
=={{header|Lua}}==
<langsyntaxhighlight Lualang="lua">print("5^3^2 = " .. 5^3^2)
print("(5^3)^2 = " .. (5^3)^2)
print("5^(3^2) = " .. 5^(3^2))</langsyntaxhighlight>
{{out}}
<pre>5^3^2 = 1953125
Line 579 ⟶ 872:
 
=={{header|Maple}}==
<langsyntaxhighlight Maplelang="maple">5^3^2;
(5^3)^2;
5^(3^2);</langsyntaxhighlight>
{{Out|Output}}
<pre>Error, ambiguous use of `^`, please use parentheses
Line 588 ⟶ 881:
 
=={{header|Mathematica}} / {{header|Wolfram Language}}==
<langsyntaxhighlight Mathematicalang="mathematica">a = "5^3^2";
Print[a <> " = " <> ToString[ToExpression[a]]]
b = "(5^3)^2";
Print[b <> " = " <> ToString[ToExpression[b]]]
c = "5^(3^2)";
Print[c <> " = " <> ToString[ToExpression[c]]]</langsyntaxhighlight>
{{out}}
<pre>5^3^2 = 1953125
Line 602 ⟶ 895:
As with other postfix languages, there is no ambiguity because all operators have the same precedence.
{{works with|min|0.19.6}}
<langsyntaxhighlight lang="min">5 3 2 pow pow
"5 3 2 ^ ^ " print! puts!
 
5 3 pow 2 pow
"5 3 ^ 2 ^ " print! puts!</langsyntaxhighlight>
{{out}}
<pre>
5 3 2 ^ ^ 1953125.0
5 3 ^ 2 ^ 15625.0
</pre>
 
=={{header|MiniScript}}==
REPL output.
{{out}}
<pre>
]5^3^2
15625
](5^3)^2
15625
]5^(3^2)
1953125
</pre>
 
=={{header|Nanoquery}}==
Nanoquery uses the '^' operator, which performs exponentiation in order like multiplication. Parenthesis are often needed to perform operations like 5^3^2 correctly.
<langsyntaxhighlight Nanoquerylang="nanoquery">% println 5^3^2
15625
% println (5^3)^2
15625
% println 5^(3^2)
1953125</langsyntaxhighlight>
 
=={{header|Nim}}==
<syntaxhighlight lang="nim">import math, sequtils
 
echo "5^3^2 = ", 5^3^2
echo "(5^3)^2 = ", (5^3)^2
echo "5^(3^2) = ", 5^(3^2)
echo "foldl([5, 3, 2], a^b) = ", foldl([5, 3, 2], a^b)
echo "foldr([5, 3, 2], a^b) = ", foldr([5, 3, 2], a^b)</syntaxhighlight>
 
{{out}}
<pre>5^3^2 = 1953125
(5^3)^2 = 15625
5^(3^2) = 1953125
foldl([5, 3, 2], a^b) = 15625
foldr([5, 3, 2], a^b) = 1953125</pre>
 
=={{header|OCaml}}==
OCaml language has '**' as an exponentiation symbol for floating point integers
<syntaxhighlight lang="ocaml">
<OCaml code>
# 5. ** 3. ** 2. ;;
# 5. **( 3. ** 2.) ;;
#(5. ** 3. ) **2. ;;
</syntaxhighlight>
 
{{out}}
<pre>
Line 639 ⟶ 960:
=={{header|PARI/GP}}==
Exponentiation is right-associative in GP.
<langsyntaxhighlight lang="parigp">f(s)=print(s" = "eval(s));
apply(f, ["5^3^2", "(5^3)^2", "5^(3^2)"]);</langsyntaxhighlight>
{{out}}
<pre>5^3^2 = 1953125
Line 647 ⟶ 968:
 
=={{header|Perl}}==
<langsyntaxhighlight lang="perl">say "$_ = " . eval($_) for qw/5**3**2 (5**3)**2 5**(3**2)/;</langsyntaxhighlight>
{{out}}
<pre>
Line 656 ⟶ 977:
 
=={{header|Phix}}==
{{libheader|Phix/basics}}
Phix has a power function rather than an infix power operator, hence there is no possible confusion.
<!--<syntaxhighlight lang="phix">-->
<lang Phix>?power(power(5,3),2)
<span style="color: #0000FF;">?<span style="color: #7060A8;">power<span style="color: #0000FF;">(<span style="color: #7060A8;">power<span style="color: #0000FF;">(<span style="color: #000000;">5<span style="color: #0000FF;">,<span style="color: #000000;">3<span style="color: #0000FF;">)<span style="color: #0000FF;">,<span style="color: #000000;">2<span style="color: #0000FF;">)</span>
?power(5,power(3,2))</lang>
<span style="color: #0000FF;">?<span style="color: #7060A8;">power<span style="color: #0000FF;">(<span style="color: #000000;">5<span style="color: #0000FF;">,<span style="color: #7060A8;">power<span style="color: #0000FF;">(<span style="color: #000000;">3<span style="color: #0000FF;">,<span style="color: #000000;">2<span style="color: #0000FF;">)<span style="color: #0000FF;">)
<!--</syntaxhighlight>-->
{{out}}
<pre>
15625
1953125
</pre>
 
 
=={{header|Picat}}==
<syntaxhighlight lang="picat">main =>
X = 5**3**2, Y = (5**3)**2, Z = 5**(3**2),
print("5**3**2 = "), println(X),
print("(5**3)**2 = "), println(Y),
print("5**(3**2) = "), print(Z).
</syntaxhighlight>
 
{{out}}
<pre>
5**3**2 = 1953125
(5**3)**2 = 15625
5**(3**2) = 1953125
</pre>
 
=={{header|PicoLisp}}==
The PicoLisp '**' exponentiation function takes 2 arguments
<langsyntaxhighlight PicoLisplang="picolisp">: (** (** 5 3) 2)
-> 15625
 
: (** 5 (** 3 2))
-> 1953125</langsyntaxhighlight>
 
=={{header|PL/I}}==
<syntaxhighlight lang="pli">exponentiation: procedure options(main);
put skip edit('5**3**2 = ', 5**3**2) (A,F(7));
put skip edit('(5**3)**2 = ', (5**3)**2) (A,F(7));
put skip edit('5**(3**2) = ', 5**(3**2)) (A,F(7));
end exponentiation;</syntaxhighlight>
{{out}}
<pre>5**3**2 = 15625
(5**3)**2 = 15625
5**(3**2) = 1953125</pre>
 
=={{header|Python}}==
<langsyntaxhighlight lang="python">>>> 5**3**2
1953125
>>> (5**3)**2
Line 686 ⟶ 1,037:
>>> reduce(pow, (5, 3, 2))
15625
>>> </langsyntaxhighlight>
 
=={{header|Quackery}}==
Quackery uses Reverse Polish Notation, so there is no ambiguity and no need for parenthesising.
 
As a dialogue in the Quackery Shell…
 
<pre>Welcome to Quackery.
 
Enter "leave" to leave the shell.
 
/O> $ "5 3 2 ** **" dup echo$ say " returns " quackery echo cr
... $ "5 3 ** 2 **" dup echo$ say " returns " quackery echo cr
...
5 3 2 ** ** returns 1953125
5 3 ** 2 ** returns 15625
 
Stack empty.</pre>
 
=={{header|R}}==
The 'Operator Syntax and Precedence' documentation tells us that "^" is "exponentiation (right to left)". The 'Arithmetic Operators' documentation also tells us that the parser translates "**" to "^", but its depreciation status is complicated.
 
It turns out that the parser is so blind to "**" that we cannot even quote it. The following are identical:
<syntaxhighlight lang="rsplus">print(quote(5**3))
print(quote(5^3))</syntaxhighlight>
 
Another method is to use "^" as if it is an ordinary function of two arguments. It appears that "**" does not support this. As there is no potential for ambiguity in the operator precedence, we will not print this result below. For example:
<syntaxhighlight lang="rsplus">'^'('^'(5, 3), 2)</syntaxhighlight>
is clearly (5^3)^2 i.e. 15625, whereas
<syntaxhighlight lang="rsplus">'^'(5, '^'(3, 2))</syntaxhighlight>
is clearly 5^(3^2) i.e. 1953125.
 
As for actually solving the task, the requirement that each output be on a new line causes us a surprising amount of difficulty. To avoid repeating ourselves, we must almost resort to metaprogramming:
<syntaxhighlight lang="rsplus">inputs <- alist(5^3^2, (5^3)^2, 5^(3^2), 5**3**2, (5**3)**2, 5**(3**2))
invisible(sapply(inputs, function(x) cat(deparse(x), "returns: ", eval(x), "\n")))</syntaxhighlight>
 
Alternatively, we could print out a matrix or data frame:
<syntaxhighlight lang="rsplus">print(matrix(sapply(inputs, eval), dimnames = list(inputs, "Outputs")))
print(data.frame(Inputs = sapply(inputs, deparse), Outputs = sapply(inputs, eval))))</syntaxhighlight>
{{out}}
<pre>> print(quote(5**3))
5^3
> print(quote(5^3))
5^3
> invisible(sapply(inputs, function(x) cat(deparse(x), "returns: ", eval(x), "\n")))
5^3^2 returns: 1953125
(5^3)^2 returns: 15625
5^(3^2) returns: 1953125
5^3^2 returns: 1953125
(5^3)^2 returns: 15625
5^(3^2) returns: 1953125
> print(matrix(sapply(inputs, eval), dimnames = list(inputs, "Outputs")))
Outputs
5^3^2 1953125
(5^3)^2 15625
5^(3^2) 1953125
5^3^2 1953125
(5^3)^2 15625
5^(3^2) 1953125
> print(data.frame(Inputs = sapply(inputs, deparse), Outputs = sapply(inputs, eval)))
Inputs Outputs
1 5^3^2 1953125
2 (5^3)^2 15625
3 5^(3^2) 1953125
4 5^3^2 1953125
5 (5^3)^2 15625
6 5^(3^2) 1953125</pre>
 
=={{header|Racket}}==
<langsyntaxhighlight lang="racket">#lang racket
;; 5**3**2 depends on associativity of ** : Racket's (scheme's) prefix function
;; calling syntax only allows for pairs of arguments for expt.
Line 710 ⟶ 1,127:
(require (only-in srfi/1 reduce reduce-right))
(reduce expt 1 '(5 3 2))
(reduce-right expt 1 '(5 3 2))</langsyntaxhighlight>
{{out}}
<pre>prefix
Line 728 ⟶ 1,145:
Note that the reduction forms automatically go right-to-left because the base operator is right-associative. Most other operators are left-associative and would automatically reduce left-to-right instead.
 
<syntaxhighlight lang="raku" perl6line>use MONKEY-SEE-NO-EVAL;
sub demo($x) { say " $x\t───► ", EVAL $x }
 
Line 742 ⟶ 1,159:
demo '(5³)²';
demo '5³²';
</syntaxhighlight>
</lang>
 
{{out}}
Line 756 ⟶ 1,173:
 
The Unicode exponent form without parentheses ends up raising to the 32nd power. Nor are you even allowed to parenthesize it the other way: <tt>5(³²)</tt> would be a syntax error. Despite all that, for programs that do a lot of squaring or cubing, the postfix forms can enhance both readability and concision.
 
=={{header|Red}}==
In Red, operators simply evaluate left to right. As this differs from mathematical order of operations, Red provides the <code>math</code> function which evaluates a block using math rules instead of Red's default evaluation. One could also use the <code>power</code> function, sidestepping the issue of evaluation order entirely. All three approaches are shown.
<syntaxhighlight lang="rebol">Red["Exponentiation order"]
 
exprs: [
[5 ** 3 ** 2]
[(5 ** 3) ** 2]
[5 ** (3 ** 2)]
[power power 5 3 2] ;-- functions too
[power 5 power 3 2]
]
 
foreach expr exprs [
print [mold/only expr "=" do expr]
if find expr '** [
print [mold/only expr "=" math expr "using math"]
]
]</syntaxhighlight>
{{out}}
<pre>
5 ** 3 ** 2 = 15625
5 ** 3 ** 2 = 1953125 using math
(5 ** 3) ** 2 = 15625
(5 ** 3) ** 2 = 15625 using math
5 ** (3 ** 2) = 1953125
5 ** (3 ** 2) = 1953125 using math
power power 5 3 2 = 15625
power 5 power 3 2 = 1953125
</pre>
 
=={{header|REXX}}==
<langsyntaxhighlight lang="rexx">/*REXX program demonstrates various ways of multiple exponentiations. */
/*┌────────────────────────────────────────────────────────────────────┐
│ The REXX language uses ** for exponentiation. │
Line 768 ⟶ 1,215:
say ' (5**3)**2 ───► ' (5**3)**2
say ' 5**(3**2) ───► ' 5**(3**2)
/*stick a fork in it, we're done.*/</langsyntaxhighlight>
'''output'''
<pre>
Line 780 ⟶ 1,227:
In the Ring it is impossible to show the result of: 5^3^2
 
<langsyntaxhighlight lang="ring">
see "(5^3)^2 =>" + pow(pow(5,3),2) + nl
see "5^(3^2) =>" + pow(5,pow(3,2)) + nl
</syntaxhighlight>
</lang>
Output:
<pre>
(5^3)^2 =>15625
5^(3^2) =>1953125
</pre>
 
=={{header|RPL}}==
When using reverse Polish notation, there is no parenthesis: the user must decide the exponentiation order.
When using algebraic notation:
'5^3^2' →NUM
'(5^3)^2' →NUM
'5^(3^2)' →NUM
{{out}}
<pre>
3: 15625
2: 15625
1: 1953125
</pre>
 
=={{header|Ruby}}==
<langsyntaxhighlight lang="ruby">ar = ["5**3**2", "(5**3)**2", "5**(3**2)", "[5,3,2].inject(:**)"]
ar.each{|exp| puts "#{exp}:\t#{eval exp}"}
</syntaxhighlight>
</lang>
{{out}}
<pre>
Line 804 ⟶ 1,264:
=={{header|Rust}}==
 
<langsyntaxhighlight lang="rust">fn main() {
println!("5**3**2 = {:7}", 5u32.pow(3).pow(2));
println!("(5**3)**2 = {:7}", (5u32.pow(3)).pow(2));
println!("5**(3**2) = {:7}", 5u32.pow(3u32.pow(2)));
}</langsyntaxhighlight>
{{out}}
<pre>
Line 814 ⟶ 1,274:
(5**3)**2 = 15625
5**(3**2) = 1953125
</pre>
 
=={{header|S-BASIC}}==
The exponentiation operator ^ works on both integer and real operands. Numeric constants in expressions are taken to be of type real, which is useful here, because the third result exceeds S-BASIC's manximum integer value of 32767.
<syntaxhighlight lang = "BASIC">
print "5^3^2 : "; 5 ^ 3 ^ 2
print "(5^3)^2 : "; (5 ^ 3) ^ 2
print "5^(3^2) : "; 5 ^ (3 ^ 2)
 
end
</syntaxhighlight>
{{out}}
<pre>
5^3^2 : 15625
(5^3)^2 : 15625
5^(3^2) : 1.95312E+6
</pre>
 
Line 820 ⟶ 1,296:
 
=={{header|Seed7}}==
<langsyntaxhighlight lang="seed7">$ include "seed7_05.s7i";
 
const proc: main is func
Line 827 ⟶ 1,303:
writeln("(5**3)**2 = " <& (5**3)**2);
writeln("5**(3**2) = " <& 5**(3**2));
end func;</langsyntaxhighlight>
 
{{out}}
Line 838 ⟶ 1,314:
=={{header|Sidef}}==
In Sidef, the whitespace between the operands and the operator controls the precedence of the operation.
<langsyntaxhighlight lang="ruby">var a = [
'5**3**2',
'(5**3)**2',
Line 850 ⟶ 1,326:
a.each {|e|
"%-12s == %s\n".printf(e, eval(e))
}</langsyntaxhighlight>
{{out}}
<pre>
Line 863 ⟶ 1,339:
 
=={{header|Simula}}==
<langsyntaxhighlight Simulalang="simula">OutText("5** 3 **2: "); OutInt(5** 3 **2, 0); Outimage;
OutText("(5**3)**2: "); OutInt((5**3)**2, 0); Outimage;
OutText("5**(3**2): "); OutInt(5**(3**2), 0); Outimage</langsyntaxhighlight>
{{out}}
<pre>5** 3 **2: 15625
(5**3)**2: 15625
5**(3**2): 1953125</pre>
 
=={{header|Smalltalk}}==
Works in Smalltalk/X &sup1;
<p>Smalltalk strictly evaluates left to right; operators are not known to the language/parser, but instead message sends to the receiver on the left side (aka: virtual function calls) .
<syntaxhighlight lang="smalltalk">Transcript show:'5**3**2 => '; showCR: 5**3**2.
Transcript show:'(5**3)**2 => '; showCR: (5**3)**2.
Transcript show:'5**(3**2) => '; showCR: 5**(3**2).</syntaxhighlight>
{{out}}
<pre>
5**(3**2) => 1953125
5**3**2 => 15625
(5**3)**2 => 15625
</pre>
Note &sup1; other Smalltalk's may define ** to simply call "raisedTo:", which is standard.
 
=={{header|Stata}}==
 
<langsyntaxhighlight lang="stata">. di (5^3^2)
15625
 
Line 880 ⟶ 1,370:
 
. di (5^(3^2))
1953125</langsyntaxhighlight>
 
Likewise in Mata:
 
<langsyntaxhighlight lang="stata">. mata (5^3^2)
15625
 
Line 891 ⟶ 1,381:
 
. mata (5^(3^2))
1953125</langsyntaxhighlight>
 
 
=={{header|Swift}}==
 
Swift doesn't have an exponentiation operator, however it's possible to define one, including the precedence and associativity.
 
<syntaxhighlight lang="swift">precedencegroup ExponentiationPrecedence {
associativity: left
higherThan: MultiplicationPrecedence
}
 
infix operator ** : ExponentiationPrecedence
 
@inlinable
public func ** <T: BinaryInteger>(lhs: T, rhs: T) -> T {
guard lhs != 0 else {
return 1
}
 
var x = lhs
var n = rhs
var y = T(1)
 
while n > 1 {
switch n & 1 {
case 0:
n /= 2
case 1:
y *= x
n = (n - 1) / 2
case _:
fatalError()
}
 
x *= x
}
 
return x * y
}
 
print(5 ** 3 ** 2)
print((5 ** 3) ** 2)
print(5 ** (3 ** 2))</syntaxhighlight>
 
{{out}}
 
<pre>15625
15625
1953125</pre>
 
=={{header|Tcl}}==
<langsyntaxhighlight lang="tcl">foreach expression {5**3**2 (5**3)**2 5**(3**2)} {
puts "${expression}:\t[expr $expression]"
}</langsyntaxhighlight>
{{out}}
<pre>
Line 906 ⟶ 1,445:
 
=={{header|VBA}}==
<langsyntaxhighlight lang="vb">Public Sub exp()
Debug.Print "5^3^2", 5 ^ 3 ^ 2
Debug.Print "(5^3)^2", (5 ^ 3) ^ 2
Debug.Print "5^(3^2)", 5 ^ (3 ^ 2)
End Sub</langsyntaxhighlight>{{out}}
<pre>5^3^2 15625
(5^3)^2 15625
Line 917 ⟶ 1,456:
 
=={{header|VBScript}}==
<syntaxhighlight lang="vb">
<lang vb>
WScript.StdOut.WriteLine "5^3^2 => " & 5^3^2
WScript.StdOut.WriteLine "(5^3)^2 => " & (5^3)^2
WScript.StdOut.WriteLine "5^(3^2) => " & 5^(3^2)
</syntaxhighlight>
</lang>
 
{{Out}}
Line 931 ⟶ 1,470:
 
=={{header|Verbexx}}==
<langsyntaxhighlight lang="verbexx">// Exponentiation order example:
 
@SAY "5**3**2 = " ( 5**3**2 );
Line 941 ⟶ 1,480:
5**3**2 = 1953125
(5**3)**2 = 15625
5**(3**2) = 1953125</langsyntaxhighlight>
 
=={{header|Wren}}==
{{libheader|Wren-fmt}}
Wren doesn't have an exponentiation operator as such but the Num class has a ''pow'' method which does the same thing.
<langsyntaxhighlight ecmascriptlang="wren">import "./fmt" for Fmt
 
var ops = [ "5**3**2", "(5**3)**2", "5**(3**2)" ]
var results = [ 5.pow(3).pow(2), (5.pow(3)).pow(2), 5.pow(3.pow(2)) ]
for (i in 0...ops.count) {
SystemFmt.print("%(Fmt.s($-99s -> $d", ops[i])), -> %(results[i])")
}</langsyntaxhighlight>
 
{{out}}
Line 959 ⟶ 1,498:
(5**3)**2 -> 15625
5**(3**2) -> 1953125
</pre>
 
=={{header|XPL0}}==
XPL0 doesn't have an exponentiation operator, but it does have a Pow intrinsic (in the 32-bit versions).
<syntaxhighlight lang "XPL0">[Format(1, 0);
Text(0, "5**3**2 = "); RlOut(0, Pow(5., Pow(3., 2.))); CrLf(0); \right associative
Text(0, "(5**3)**2 = "); RlOut(0, Pow(Pow(5., 3.), 2.)); CrLf(0);
Text(0, "5**(3**2) = "); RlOut(0, Pow(5., Pow(3., 2.))); CrLf(0);
]</syntaxhighlight>
{{out}}
<pre>
5**3**2 = 1953125
(5**3)**2 = 15625
5**(3**2) = 1953125
</pre>
 
Line 964 ⟶ 1,517:
{{trans|C}}
zkl does not have an exponentiation operator but floats have a pow method.
<langsyntaxhighlight lang="zkl">println("5 ^ 3 ^ 2 = %,d".fmt((5.0).pow((3.0).pow(2))));
println("(5 ^ 3) ^ 2 = %,d".fmt((5.0).pow(3).pow(2)));
println("5 ^ (3 ^ 2) = %,d".fmt((5.0).pow((3.0).pow(2))));</langsyntaxhighlight>
{{out}}
<pre>
9,482

edits