# Closest-pair problem/Smalltalk

**Closest-pair problem/Smalltalk**is part of

**Closest pair problem**. You may find other members of Closest pair problem at Category:Closest pair problem.

These class methods return a three elements array, where the first two items are the points, while the third is the distance between them (which having the two points, can be computed; but it was easier to keep it already computed in the third position of the array).

```
Object subclass: ClosestPair [
ClosestPair class >> raiseInvalid: arg [
SystemExceptions.InvalidArgument
signalOn: arg
reason: 'specify at least two points'
]
ClosestPair class >> bruteForce: pointsList [ |dist from to points|
(pointsList size < 2) ifTrue: [ ^ FloatD infinity ].
points := pointsList asOrderedCollection.
from := points at: 1. to := points at: 2.
dist := from dist: to.
[ points isEmpty ]
whileFalse: [ |p0|
p0 := points removeFirst.
points do: [ :p |
((p0 dist: p) <= dist)
ifTrue: [ from := p0. to := p. dist := p0 dist: p. ]
]
].
^ { from. to. from dist: to }
]
ClosestPair class >> orderByX: points [
^ points asSortedCollection: [:a :b| (a x) < (b x) ]
]
ClosestPair class >> orderByY: points [
^ points asSortedCollection: [:a :b| (a y) < (b y) ]
]
ClosestPair class >> splitLeft: pointsList [
^ pointsList copyFrom: 1 to: ((pointsList size / 2) ceiling)
]
ClosestPair class >> splitRight: pointsList [ |s|
^ pointsList copyFrom: (((pointsList size / 2) ceiling) + 1) to: (pointsList size).
]
ClosestPair class >> minBetween: a and: b [
(a at: 3) < (b at: 3)
ifTrue: [ ^a ]
ifFalse: [ ^b ]
]
ClosestPair class >> recursiveDAndC: orderedByX and: orderedByY [
|pR pL minL minR minDist middleVLine joiningStrip tDist nP yL yR|
(orderedByX size <= 3)
ifTrue: [ ^ self bruteForce: orderedByX ].
pR := self splitRight: orderedByX.
pL := self splitLeft: orderedByX.
middleVLine := (pL last) x.
yR := OrderedCollection new.
yL := OrderedCollection new.
orderedByY do: [ :e |
(e x) <= middleVLine
ifTrue: [ yL add: e ]
ifFalse: [ yR add: e ]
].
minR := self recursiveDAndC: pR and: yR.
minL := self recursiveDAndC: pL and: yL.
minDist := self minBetween: minR and: minL.
joiningStrip := orderedByY
select: [ :p |
((middleVLine - (p x)) abs) < (minDist at: 3)
].
tDist := minDist.
nP := joiningStrip size.
1 to: (nP - 1) do: [ :i | |k|
k := i + 1.
[ (k <= nP)
& ( (((joiningStrip at: (k min: nP)) y) - ((joiningStrip at: i) y)) < (minDist at: 3) ) ]
whileTrue: [ |d|
d := (joiningStrip at: i) dist: (joiningStrip at: k).
d < (tDist at: 3)
ifTrue: [ tDist := { joiningStrip at: i. joiningStrip at: k. d } ].
k := k + 1.
]
].
^ tDist
]
ClosestPair class >> divideAndConquer: pointsList [
^ self recursiveDAndC: (self orderByX: pointsList)
and: (self orderByY: pointsList)
]
].
```

**Testing**

```
|coll cp ran|
ran := Random seed: 1.
coll := (1 to: 10000 collect: [ :a |
Point x: ((ran next)*20.0 - 10.0) y: ((ran next)*20.0 - 10.0) ]).
cp := ClosestPair bruteForce: coll.
((cp at: 3) asScaledDecimal: 7) displayNl.
"or"
cp := ClosestPair divideAndConquer: coll.
((cp at: 3) asScaledDecimal: 7) displayNl.
```

The brute-force approach with 10000 points, run with the `time` tool, gave

224.21user 1.31system 3:46.84elapsed 99%CPU

while the recursive divide&conquer algorithm gave

2.37user 0.01system 0:02.56elapsed 93%CPU

(Of course these results must be considered relative and taken *cum grano salis*; `time` counts also the time taken to initialize the Smalltalk environment, and I've taken no special measures to avoid the system load falsifying the results)