Church numerals: Difference between revisions

Added FreeBASIC
(Add Scala implementation)
(Added FreeBASIC)
 
Line 1,372:
 
The "churchToInt" function works by applying an integer successor function which takes an "arity zero" value and returns an "arity zero" containing that value plus one, then applying an "arity zero" wrapped integer value of zero to the resulting Church value; the result of that is unwrapped to result in the desired integer returned value. The idea of using "arity zero" values as function values is borrowed from Haskell, which wraps all values as data types including integers, etc. (all other than primitive values are thus "lifted"), which allows them to be used as functions. Since Haskell has Type Classes which F# does not, this is not so obvious in Haskell code which is able to treat values such as "lifted" integers as functions automatically, and thus apply the same Type Class functions to them as to regular (also "lifted") functions. Here in the F# code, the necessary functions that would normally be part of the Functor and Applicative Type Classes as applied to Functions in Haskell are supplied here to work with the Discriminated Union wrapping of this Function idea.
 
=={{header|FreeBASIC}}==
FreeBASIC does not directly support higher-order functions, but we can achieve something similar using pointers to functions or subroutines.
<syntaxhighlight lang="vbnet">Type church
' eg {r_add,1,{a,b}}
op As Integer
n As Integer
x(1 To 2) As Integer
End Type
 
Dim Shared As church zero = Type<church>(1, 0, {0, 1})
 
Function succ(c As church) As church
' eg {r_add,1,{a,b}} => {r_add,2,{a,b}} aka a+b -> a+b+b
c.n += 1
Return c
End Function
 
' three normal integer-handling routines...
Function sum(n As Integer, a As Integer, b As Integer) As Integer
For i As Integer = 1 To n
a += b
Next i
Return a
End Function
 
Function mul(n As Integer, a As Integer, b As Integer) As Integer
For i As Integer = 1 To n
a *= b
Next i
Return a
End Function
 
Function pow(n As Integer, a As Integer, b As Integer) As Integer
For i As Integer = 1 To n
a = a ^ b
Next i
Return a
End Function
 
' ...and three church constructors to match
' (no maths here, just pure static data)
Function churchSum(c As church, d As church) As church
Dim res As church
res.op = 1 ' 1 for add
res.n = 1
res.x(1) = c.n
res.x(2) = d.n
Return res
End Function
 
Function churchMul(c As church, d As church) As church
Dim res As church
res.op = 2 ' 2 for mul
res.n = 1
res.x(1) = c.n
res.x(2) = d.n
Return res
End Function
 
Function churchPow(c As church, d As church) As church
Dim res As church
res.op = 3 ' 3 for pow
res.n = 1
res.x(1) = c.n
res.x(2) = d.n
Return res
End Function
 
Function churchToNum(c As church) As Integer
' note this is where the bulk of any processing happens
Select Case c.op
Case 1
Return sum(c.n, c.x(1), c.x(2))
Case 2
Return mul(c.n, c.x(1), c.x(2))
Case 3
Return pow(c.n, c.x(1), c.x(2))
End Select
End Function
 
Function numToChurch(i As Integer) As church
Return Iif(i = 0, zero, succ(numToChurch(i - 1)))
End Function
 
Dim As church three = succ(succ(succ(zero)))
Dim As church four = succ(three)
Print "three -> "; churchToNum(three)
Print "four -> "; churchToNum(four)
Print "three + four -> "; churchToNum(churchSum(three, four))
Print "three * four -> "; churchToNum(churchMul(three, four))
Print "three ^ four -> "; churchToNum(churchPow(three, four))
Print "four ^ three -> "; churchToNum(churchPow(four, three))
Print "5 -> five -> "; churchToNum(numToChurch(5))
 
Sleep</syntaxhighlight>
{{out}}
<pre>Same as Phix entry.</pre>
 
=={{header|Fōrmulæ}}==
 
2,169

edits