Knapsack problem/Continuous

From Rosetta Code
Revision as of 22:12, 8 June 2011 by Sonia (talk | contribs) (Go solution)
Task
Knapsack problem/Continuous
You are encouraged to solve this task according to the task description, using any language you may know.

See also: Knapsack problem and Wikipedia.

A robber burgles a butcher's shop, where he can select from some items. He knows the weights and prices of each items. Because he has a knapsack with 15 kg maximal capacity, he wants to select the items such that he would have his profit maximized. He may cut the items; the item has a reduced price after cutting that is proportional to the original price by the ratio of masses. That means: half of an item has half the price of the original.

This is the item list in the butcher's:

Table of potential knapsack items
Item Weight (kg) Price (Value)
beef 3.8 36
pork 5.4 43
ham 3.6 90
greaves 2.4 45
flitch 4.0 30
brawn 2.5 56
welt 3.7 67
salami 3.0 95
sausage 5.9 98
Knapsack <=15 kg ?

Which items does the robber carry in his knapsack so that their total weight does not exceed 15 kg, and their total value is maximised?

Ada

<lang Ada>with Ada.Text_IO; with Ada.Strings.Unbounded;

procedure Knapsack_Continuous is

  package US renames Ada.Strings.Unbounded;
  type Item is record
     Name   : US.Unbounded_String;
     Weight : Float;
     Value  : Positive;
     Taken  : Float;
  end record;
  function "<" (Left, Right : Item) return Boolean is
  begin
     return Float (Left.Value) / Left.Weight <
            Float (Right.Value) / Right.Weight;
  end "<";
  type Item_Array is array (Positive range <>) of Item;
  function Total_Weight (Items : Item_Array) return Float is
     Sum : Float := 0.0;
  begin
     for I in Items'Range loop
        Sum := Sum + Items (I).Weight * Items (I).Taken;
     end loop;
     return Sum;
  end Total_Weight;
  function Total_Value (Items : Item_Array) return Float is
     Sum : Float := 0.0;
  begin
     for I in Items'Range loop
        Sum := Sum + Float (Items (I).Value) * Items (I).Taken;
     end loop;
     return Sum;
  end Total_Value;
  procedure Solve_Knapsack_Continuous
    (Items        : in out Item_Array;
     Weight_Limit : Float)
  is
  begin
     -- order items by value per weight unit
     Sorting : declare
        An_Item : Item;
        J       : Natural;
     begin
        for I in Items'First + 1 .. Items'Last loop
           An_Item := Items (I);
           J       := I - 1;
           while J in Items'Range and then Items (J) < An_Item loop
              Items (J + 1) := Items (J);
              J             := J - 1;
           end loop;
           Items (J + 1) := An_Item;
        end loop;
     end Sorting;
     declare
        Rest : Float := Weight_Limit;
     begin
        for I in Items'Range loop
           if Items (I).Weight <= Rest then
              Items (I).Taken := Items (I).Weight;
           else
              Items (I).Taken := Rest;
           end if;
           Rest := Rest - Items (I).Taken;
           exit when Rest <= 0.0;
        end loop;
     end;
  end Solve_Knapsack_Continuous;
  All_Items : Item_Array :=
    ((US.To_Unbounded_String ("beef"), 3.8, 36, 0.0),
     (US.To_Unbounded_String ("pork"), 5.4, 43, 0.0),
     (US.To_Unbounded_String ("ham"), 3.6, 90, 0.0),
     (US.To_Unbounded_String ("greaves"), 2.4, 45, 0.0),
     (US.To_Unbounded_String ("flitch"), 4.0, 30, 0.0),
     (US.To_Unbounded_String ("brawn"), 2.5, 56, 0.0),
     (US.To_Unbounded_String ("welt"), 3.7, 67, 0.0),
     (US.To_Unbounded_String ("salami"), 3.0, 95, 0.0),
     (US.To_Unbounded_String ("sausage"), 5.9, 98, 0.0));

begin

  Solve_Knapsack_Continuous (All_Items, 15.0);
  Ada.Text_IO.Put_Line
    ("Total Weight: " & Float'Image (Total_Weight (All_Items)));
  Ada.Text_IO.Put_Line
    ("Total Value:  " & Float'Image (Total_Value (All_Items)));
  Ada.Text_IO.Put_Line ("Items:");
  for I in All_Items'Range loop
     if All_Items (I).Taken > 0.0 then
        Ada.Text_IO.Put_Line
          ("   " &
           Float'Image (All_Items (I).Taken) &
           " of " &
           US.To_String (All_Items (I).Name));
     end if;
  end loop;

end Knapsack_Continuous;</lang>

C++

<lang cpp>

  1. include<iostream>
  2. include<algorithm>
  3. include<string.h>

using namespace std; double result; double capacity = 15; int NumberOfItems; int number;

struct items {

   char name[32];
   double weight;
   double price;
   double m;

} item[256];

bool cmp(items a,items b) {

   return a.price/a.weight > b.price/b.weight; // the compare function for the sorting algorithm

}

int main() { NumberOfItems=9; strcpy(item[1].name,"beef"); item[1].weight=3.8; item[1].price=36;

strcpy(item[2].name,"pork"); item[2].weight=5.4; item[2].price=43;

strcpy(item[3].name,"ham"); item[3].weight=3.6; item[3].price=90;

strcpy(item[4].name,"greaves"); item[4].weight=2.4; item[4].price=45;

strcpy(item[5].name,"flitch"); item[5].weight=4.0; item[5].price=30;

strcpy(item[6].name,"brawn"); item[6].weight=2.5; item[6].price=56;

strcpy(item[7].name,"welt"); item[7].weight=3.7; item[7].price=67;

strcpy(item[8].name,"salami"); item[8].weight=3.0; item[8].price=95;

strcpy(item[9].name,"sausage"); item[9].weight=5.9; item[9].price=98;


sort(item+1,item+NumberOfItems+1,cmp); // We'll sort using Introsort from STL

number = 1;
while(capacity>0&&number<=NumberOfItems)
{
 if(item[number].weight<=capacity)
   {
       result+=item[number].price;
       capacity-=item[number].weight;
       item[number].m=1;
   }
 else
 {
     result+=(item[number].price)*(capacity/item[number].weight);
     item[number].m=(capacity/item[number].weight);
     capacity=0;
 }
 ++number;
}

cout<<"Total Value = "<<result<<'\n'; cout<<"Total Weight = "<<(double)15-capacity<<'\n'; cout<<"Items Used:\n"; for(int i=1;i<=NumberOfItems;++i)

   if(item[i].m)
   {
      cout<<"We took "<<item[i].m*item[i].weight<<"kg of \""<<item[i].name<<"\" and the value it brought is "<<item[i].price*item[i].m<<"\n";
   }

return 0; }

</lang>

D

<lang d>import std.stdio, std.algorithm, std.string ;

struct Item {

   string name ;
   real amount, value ;
   real valuePerKG() @property { return value/amount ; }
   int opCmp(Item rhs) {
       auto diff = valuePerKG - rhs.valuePerKG ;
       return (diff == 0) ? 0 : (diff > 0) ? 1 : -1 ;
   }
   string toString() {
       return format("%10s %7.2f %7.2f %7.2f",
           name, amount, value, valuePerKG) ;
   }

}

real sum(string Field)(Item[] itms) {

   return reduce!("a + b")(0.0L, map!("a." ~ Field )(itms)) ;

}

void main() {

   Item[] items =
       [{"beef",    3.8, 36.0},
        {"pork",    5.4, 43.0},
        {"ham",     3.6, 90.0},
        {"greaves", 2.4, 45.0},
        {"flitch",  4.0, 30.0},
        {"brawn",   2.5, 56.0},
        {"welt",    3.7, 67.0},
        {"salami",  3.0, 95.0},
        {"sausage", 5.9, 98.0}] ;
   sort!"a > b"(items) ; // reverse sorted by Value per amount
   Item[] selects ;
   real space = 15 ;
   foreach(itm;items)
       if( itm.amount < space) {
           selects ~= itm ;
           space -= itm.amount ;
       } else {
           selects ~= Item(itm.name, space, itm.valuePerKG*space) ;
           break ;
       }
   writefln("%10s %7s %7s %7s", "ITEM", "AMOUNT", "VALUE", "$/unit") ;
   foreach(itm; selects)
       writeln(itm) ;
   writeln(Item("TOTAL", sum!"amount"(selects), sum!"value"(selects))) ;

}</lang> output:

      ITEM  AMOUNT   VALUE  $/unit
    salami    3.00   95.00   31.67
       ham    3.60   90.00   25.00
     brawn    2.50   56.00   22.40
   greaves    2.40   45.00   18.75
      welt    3.50   63.38   18.11
     TOTAL   15.00  349.38   23.29

Fortran

Works with: Fortran version 90 and later

<lang fortran>program KNAPSACK_CONTINUOUS

 implicit none

 real, parameter :: maxweight = 15.0
 real :: total_weight = 0, total_value = 0, frac
 integer :: i, j
 
 type Item
   character(7) :: name
   real :: weight
   real :: value
 end type Item
 type(Item) :: items(9), temp
 
 items(1) = Item("beef",    3.8, 36.0)
 items(2) = Item("pork",    5.4, 43.0)
 items(3) = Item("ham",     3.6, 90.0)
 items(4) = Item("greaves", 2.4, 45.0)
 items(5) = Item("flitch",  4.0, 30.0)
 items(6) = Item("brawn",   2.5, 56.0)
 items(7) = Item("welt",    3.7, 67.0)
 items(8) = Item("salami",  3.0, 95.0)
 items(9) = Item("sausage", 5.9, 98.0)
 ! sort items in desending order of their value per unit weight
 do i = 2, size(items)
    j = i - 1
    temp = items(i)
    do while (j>=1 .and. items(j)%value / items(j)%weight < temp%value / temp%weight)
      items(j+1) = items(j)
      j = j - 1
    end do
   items(j+1) = temp
 end do

 i = 0
 write(*, "(a4, a13, a6)") "Item", "Weight", "Value"
 do while(i < size(items) .and. total_weight < maxweight)
   i = i + 1
   if(total_weight+items(i)%weight < maxweight) then
     total_weight = total_weight + items(i)%weight
     total_value = total_value + items(i)%value
     write(*, "(a7, 2f8.2)") items(i)
   else
     frac = (maxweight-total_weight) / items(i)%weight
     total_weight = total_weight + items(i)%weight * frac
     total_value = total_value + items(i)%value * frac
     write(*, "(a7, 2f8.2)") items(i)%name, items(i)%weight * frac, items(i)%value * frac
   end if 
 end do
 write(*, "(f15.2, f8.2)") total_weight, total_value

end program KNAPSACK_CONTINUOUS</lang>

Go

<lang go>package main

import (

   "fmt"
   "sort"

)

type item struct {

   item   string
   weight float64
   price  float64

}

type items []item

var all = items{

   {"beef", 3.8, 36},
   {"pork", 5.4, 43},
   {"ham", 3.6, 90},
   {"greaves", 2.4, 45},
   {"flitch", 4.0, 30},
   {"brawn", 2.5, 56},
   {"welt", 3.7, 67},
   {"salami", 3.0, 95},
   {"sausage", 5.9, 98},

}

// satisfy sort interface func (z items) Len() int { return len(z) } func (z items) Swap(i, j int) { z[i], z[j] = z[j], z[i] } func (z items) Less(i, j int) bool {

   return z[i].price/z[i].weight > z[j].price/z[j].weight

}

func main() {

   left := 15.
   sort.Sort(all)
   for _, i := range all {
       if i.weight <= left {
           fmt.Println("take all the", i.item)
           if i.weight == left {
               return
           }
           left -= i.weight
       } else {
           fmt.Printf("take %.1fkg %s\n", left, i.item)
           return
       }
   }

}</lang> Output:

take all the salami
take all the ham
take all the brawn
take all the greaves
take 3.5kg welt

Haskell

We use a greedy algorithm.

<lang haskell>import Control.Monad import Data.List (sortBy) import Data.Ord (comparing) import Data.Ratio (numerator, denominator) import Text.Printf

maxWgt = 15

data Bounty = Bounty

  {itemName :: String,
   itemVal, itemWgt :: Rational}

items =

  [Bounty  "beef"     36  3.8,
   Bounty  "pork"     43  5.4,
   Bounty  "ham"      90  3.6,
   Bounty  "greaves"  45  2.4,
   Bounty  "flitch"   30  4.0,
   Bounty  "brawn"    56  2.5,
   Bounty  "welt"     67  3.7,
   Bounty  "salami"   95  3.0,
   Bounty  "sausage"  98  5.9]

solution :: [(Rational, Bounty)] solution = g maxWgt $ sortBy (flip $ comparing f) items

 where g room (b@(Bounty _ _ w) : bs) = if w < room
         then (w, b) : g (room - w) bs
         else [(room, b)]
       f (Bounty _ v w) = v / w

main = do

   forM_ solution $ \(w, b) ->
       printf "%s kg of %s\n" (mixedNum w) (itemName b)
   printf "Total value: %s\n" $ mixedNum $ sum $ map f solution
 where f (w, Bounty _ v wtot) = v * (w / wtot)
       mixedNum q = if b == 0
           then show a
           else printf "%d %d/%d" a (numerator b) (denominator b)
         where a = floor q
               b = q - toEnum a</lang>

J

We take as much as we can of the most valuable items first, and continue until we run out of space. Only one item needs to be cut.

<lang J>'names numbers'=:|:;:;._2]0 :0 beef 3.8 36 pork 5.4 43 ham 3.6 90 greaves 2.4 45 flitch 4.0 30 brawn 2.5 56 welt 3.7 67 salami 3.0 95 sausage 5.9 98 ) 'weights prices'=:|:".numbers order=: \:prices%weights take=: 15&<.&.(+/\) order{weights result=: (*take)#(order{names),.' ',.":,.take</lang>

This gives the result:

salami    3
ham     3.6
brawn   2.5
greaves 2.4
welt    3.5

For a total value of: <lang J> +/prices * (take/:order) % weights 349.378</lang>


Java

Greedy solution.

<lang java> package hu.pj.alg.test;

import hu.pj.alg.ContinuousKnapsack; import hu.pj.obj.Item; import java.util.*; import java.text.*;

public class ContinousKnapsackForRobber {

   final private double tolerance = 0.0005;
   public ContinousKnapsackForRobber() {
       ContinuousKnapsack cok = new ContinuousKnapsack(15); // 15 kg
       // making the list of items that you want to bring
       cok.add("beef",     3.8, 36); // marhahús
       cok.add("pork",     5.4, 43); // disznóhús
       cok.add("ham",      3.6, 90); // sonka
       cok.add("greaves",  2.4, 45); // tepertő
       cok.add("flitch",   4.0, 30); // oldalas
       cok.add("brawn",    2.5, 56); // disznósajt
       cok.add("welt",     3.7, 67); // hurka
       cok.add("salami",   3.0, 95); // szalámi
       cok.add("sausage",  5.9, 98); // kolbász
       // calculate the solution:
       List<Item> itemList = cok.calcSolution();
       // write out the solution in the standard output
       if (cok.isCalculated()) {
           NumberFormat nf  = NumberFormat.getInstance();
           System.out.println(
               "Maximal weight           = " +
               nf.format(cok.getMaxWeight()) + " kg"
           );
           System.out.println(
               "Total weight of solution = " +
               nf.format(cok.getSolutionWeight()) + " kg"
           );
           System.out.println(
               "Total value (profit)     = " +
               nf.format(cok.getProfit())
           );
           System.out.println();
           System.out.println(
               "You can carry the following materials " +
               "in the knapsack:"
           );
           for (Item item : itemList) {
               if (item.getInKnapsack() > tolerance) {
                   System.out.format(
                       "%1$-10s %2$-15s %3$-15s \n",
                       nf.format(item.getInKnapsack()) + " kg ",
                       item.getName(),
                       "(value = " + nf.format(item.getInKnapsack() *
                                               (item.getValue() / item.getWeight())) + ")"
                   );
               }
           }
       } else {
           System.out.println(
               "The problem is not solved. " +
               "Maybe you gave wrong data."
           );
       }
   }
   public static void main(String[] args) {
       new ContinousKnapsackForRobber();
   }

} // class</lang>

<lang java> package hu.pj.alg;

import hu.pj.obj.Item; import java.util.*;

public class ContinuousKnapsack {

   protected List<Item> itemList   = new ArrayList<Item>();
   protected double maxWeight      = 0;
   protected double solutionWeight = 0;
   protected double profit         = 0;
   protected boolean calculated    = false;
   public ContinuousKnapsack() {}
   public ContinuousKnapsack(double _maxWeight) {
       setMaxWeight(_maxWeight);
   }
   public List<Item> calcSolution() {
       int n = itemList.size();
       setInitialStateForCalculation();
       if (n > 0  &&  maxWeight > 0) {
           Collections.sort(itemList);
           for (int i = 0; (maxWeight - solutionWeight) > 0.0  &&  i < n; i++) {
               Item item = itemList.get(i);
               if (item.getWeight() >= (maxWeight - solutionWeight)) {
                   item.setInKnapsack(maxWeight - solutionWeight);
                   solutionWeight = maxWeight;
                   profit += item.getInKnapsack() / item.getWeight() * item.getValue();
                   break;
               } else {
                   item.setInKnapsack(item.getWeight());
                   solutionWeight += item.getInKnapsack();
                   profit += item.getValue();
               }
           }
           calculated = true;
       }
       
       return itemList;
   }
   // add an item to the item list
   public void add(String name, double weight, double value) {
       if (name.equals(""))
           name = "" + (itemList.size() + 1);
       itemList.add(new Item(name, weight, value));
       setInitialStateForCalculation();
   }
   public double getMaxWeight() {return maxWeight;}
   public double getProfit() {return profit;}
   public double getSolutionWeight() {return solutionWeight;}
   public boolean isCalculated() {return calculated;}
   public void setMaxWeight(double _maxWeight) {
       maxWeight = Math.max(_maxWeight, 0);
   }
   // set the member with name "inKnapsack" by all items:
   private void setInKnapsackByAll(double inKnapsack) {
       for (Item item : itemList)
           item.setInKnapsack(inKnapsack);
   }
   // set the data members of class in the state of starting the calculation:
   protected void setInitialStateForCalculation() {
       setInKnapsackByAll(-0.0001);
       calculated     = false;
       profit         = 0.0;
       solutionWeight = 0.0;
   }

} // class</lang>

<lang java> package hu.pj.obj;

public class Item implements Comparable {

   protected String name       = "";
   protected double weight     = 0;
   protected double value      = 0;
   protected double inKnapsack = 0; // the weight of item in solution
   public Item() {}
   public Item(Item item) {
       setName(item.name);
       setWeight(item.weight);
       setValue(item.value);
   }
   public Item(double _weight, double _value) {
       setWeight(_weight);
       setValue(_value);
   }
   public Item(String _name, double _weight, double _value) {
       setName(_name);
       setWeight(_weight);
       setValue(_value);
   }
   public void setName(String _name) {name = _name;}
   public void setWeight(double _weight) {weight = Math.max(_weight, 0);}
   public void setValue(double _value) {value = Math.max(_value, 0);}
   public void setInKnapsack(double _inKnapsack) {
       inKnapsack = Math.max(_inKnapsack, 0);
   }
   public void checkMembers() {
       setWeight(weight);
       setValue(value);
       setInKnapsack(inKnapsack);
   }
   public String getName() {return name;}
   public double getWeight() {return weight;}
   public double getValue() {return value;}
   public double getInKnapsack() {return inKnapsack;}
   // implementing of Comparable interface:
   public int compareTo(Object item) {
       int result = 0;
       Item i2 = (Item)item;
       double rate1 = value / weight;
       double rate2 = i2.value / i2.weight;
       if (rate1 > rate2) result = -1;  // if greater, put it previously
       else if (rate1 < rate2) result = 1;
       return result;
   }

} // class</lang>

output:

Maximal weight           = 15 kg
Total weight of solution = 15 kg
Total value (profit)     = 349,378

You can carry the following materials in the knapsack:
3 kg       salami          (value = 95)    
3,6 kg     ham             (value = 90)    
2,5 kg     brawn           (value = 56)    
2,4 kg     greaves         (value = 45)    
3,5 kg     welt            (value = 63,378)

OCaml

<lang ocaml>let items =

 [ "beef",     3.8,  36;
   "pork",     5.4,  43;
   "ham",      3.6,  90;
   "greaves",  2.4,  45;
   "flitch",   4.0,  30;
   "brawn",    2.5,  56;
   "welt",     3.7,  67;
   "salami",   3.0,  95;
   "sausage",  5.9,  98; ]

let () =

 let items = List.map (fun (name, w, p) -> (name, w, p, float p /. w)) items in
 let items = List.sort (fun (_,_,_,v1) (_,_,_,v2) -> compare v2 v1) items in
 let rec loop acc weight = function
 | ((_,w,_,_) as item) :: tl ->
     if w +. weight > 15.0
     then (weight, acc, item)
     else loop (item::acc) (w +. weight) tl
 | [] -> assert false
 in
 let weight, res, (last,w,p,v) = loop [] 0.0 items in
 print_endline "    Items  Weight Price";
 let price =
   List.fold_left (fun price (name,w,p,_) ->
     Printf.printf " %7s: %6.2f %3d\n" name w p;
     (p + price)
   ) 0 res
 in
 let rem_weight = 15.0 -. weight in
 let last_price = v *. rem_weight in
 Printf.printf " %7s: %6.2f %6.2f\n" last rem_weight last_price;
 Printf.printf " Total Price: %.3f\n" (float price +. last_price);
</lang>

Perl 6

This Solutions sorts the item by WEIGHT/VALUE <lang perl6>class KnapsackItem {

 has $.name;
 has $.weight is rw;
 has $.price is rw;
 has $.ppw;
 method new (Str $n, $w, $p) {
   KnapsackItem.bless(*, :name($n), :weight($w), :price($p), :ppw($w/$p))
 }
 method cut-maybe ($max-weight) {
   return False if $max-weight > $.weight;
   $.price = $max-weight / $.ppw;
   $.weight = $.ppw * $.price;
   return True;
 }
 method Str () { sprintf "%8s %1.2f   %3.2f",
                          $.name,
                              $.weight,
                                      $.price }

}

my $max-w = 15; say "Item Portion Value";

.say for gather

   for < beef    3.8 36
         pork    5.4 43
         ham     3.6 90
         greaves 2.4 45
         flitch  4.0 30
         brawn   2.5 56
         welt    3.7 67
         salami  3.0 95
         sausage 5.9 98 >
       ==> map { KnapsackItem.new($^a, $^b, $^c) }
       ==> sort *.ppw
   {
       my $last-one = .cut-maybe($max-w);
       take $_;
       $max-w -= .weight;
       last if $last-one;
   }</lang>

Output:

%perl6 knapsack_continous.p6
Item    Portion Value
  salami 3.00   95.00
     ham 3.60   90.00
   brawn 2.50   56.00
 greaves 2.40   45.00
    welt 3.50   63.38

PicoLisp

<lang PicoLisp>(scl 2)

(de *Items

  ("beef" 3.8 36.0)
  ("pork" 5.4 43.0)
  ("ham" 3.6 90.0)
  ("greaves" 2.4 45.0)
  ("flitch" 4.0 30.0)
  ("brawn" 2.5 56.0)
  ("welt" 3.7 67.0)
  ("salami" 3.0 95.0)
  ("sausage" 5.9 98.0) )

(let K

  (make
     (let Weight 0
        (for I (by '((L) (*/ (caddr L) -1.0 (cadr L))) sort *Items)
           (T (= Weight 15.0))
           (inc 'Weight (cadr I))
           (T (> Weight 15.0)
              (let W (- (cadr I) Weight -15.0)
                 (link (list (car I) W (*/ W (caddr I) (cadr I)))) ) )
           (link I) ) ) )
  (for I K
     (tab (3 -9 8 8)
        NIL
        (car I)
        (format (cadr I) *Scl)
        (format (caddr I) *Scl) ) )
  (tab (12 8 8)
     NIL
     (format (sum cadr K) *Scl)
     (format (sum caddr K) *Scl) ) )</lang>

Output:

   salami       3.00   95.00
   ham          3.60   90.00
   brawn        2.50   56.00
   greaves      2.40   45.00
   welt         3.50   63.38
               15.00  349.38

Prolog

Works with SWI-Prolog and library(simplex) written by Markus Triska <lang Prolog>:- use_module(library(simplex)). % tuples (name, weights, value). knapsack :- L = [( beef, 3.8, 36), ( pork, 5.4, 43), ( ham, 3.6, 90), ( greaves, 2.4, 45), ( flitch, 4.0, 30), ( brawn, 2.5, 56), ( welt, 3.7, 67), ( salami, 3.0, 95), ( sausage, 5.9, 98)],

gen_state(S0), length(L, N), numlist(1, N, LN), ( ( create_constraint_N(LN, L, S0, S1, [], LW, [], LV), constraint(LW =< 15.0, S1, S2), maximize(LV, S2, S3) )), compute_lenword(L, 0, Len), sformat(A1, '~~w~~t~~~w|', [Len]), sformat(A2, '~~t~~2f~~~w|', [10]), sformat(A3, '~~t~~2f~~~w|', [10]), print_results(S3, A1,A2,A3, L, LN, 0, 0).


create_constraint_N([], [], S, S, LW, LW, LV, LV).

create_constraint_N([HN|TN], [(_, W, V) | TL], S1, SF, LW, LWF, LV, LVF) :- constraint([x(HN)] >= 0, S1, S2), constraint([x(HN)] =< W, S2, S3), X is V/W, create_constraint_N(TN, TL, S3, SF, [x(HN) | LW], LWF, [X * x(HN) | LV], LVF).


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % compute_lenword([], N, N). compute_lenword([(Name, _, _)|T], N, NF):- atom_length(Name, L), ( L > N -> N1 = L; N1 = N), compute_lenword(T, N1, NF).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % print_results(_S, A1, A2, A3, [], [], WM, VM) :- sformat(W1, A1, [' ']), sformat(W2, A2, [WM]), sformat(W3, A3, [VM]), format('~w~w~w~n', [W1,W2,W3]).


print_results(S, A1, A2, A3, [(Name, W, V)|T], [N|TN], W1, V1) :- variable_value(S, x(N), X), ( X = 0 -> W1 = W2, V1 = V2 ; sformat(S1, A1, [Name]), sformat(S2, A2, [X]), Vtemp is X * V/W, sformat(S3, A3, [Vtemp]), format('~w~w~w~n', [S1,S2,S3]), W2 is W1 + X, V2 is V1 + Vtemp ), print_results(S, A1, A2, A3, T, TN, W2, V2).

</lang> Output :

 ?- knapsack.
ham          3.60     90.00
greaves      2.40     45.00
brawn        2.50     56.00
welt         3.50     63.38
salami       3.00     95.00
            15.00    349.38
true .

PureBasic

Using the greedy algorithm. <lang PureBasic>Structure item

 name.s
 weight.f   ;units are kilograms (kg)
 Value.f
 vDensity.f ;the density of the value, i.e. value/weight, and yes I made up the term ;)

EndStructure

  1. maxWeight = 15

Global itemCount = 0 ;this will be increased as needed to match actual count Global Dim items.item(itemCount)

Procedure addItem(name.s, weight.f, Value.f)

 If itemCount >= ArraySize(items())
   Redim items.item(itemCount + 10)
 EndIf
 With items(itemCount)
   \name = name
   \weight = weight
   \Value = Value
   If Not \weight
     \vDensity = \Value
   Else 
     \vDensity = \Value / \weight
   EndIf 
 EndWith
 itemCount + 1

EndProcedure

build item list

addItem("beef", 3.8, 36) addItem("pork", 5.4, 43) addItem("ham", 3.6, 90) addItem("greaves", 2.4, 45) addItem("flitch", 4.0, 30) addItem("brawn", 2.5, 56) addItem("welt", 3.7, 67) addItem("salami", 3.0, 95) addItem("sausage", 5.9, 98) SortStructuredArray(items(), #PB_Sort_descending, OffsetOf(item\vDensity), #PB_Sort_Float, 0, itemCount - 1)

Define TotalWeight.f, TotalValue.f, i NewList knapsack.item() For i = 0 To itemCount

 If TotalWeight + items(i)\weight < #maxWeight
   AddElement(knapsack())
   knapsack() = items(i)
   TotalWeight + items(i)\weight
   TotalValue + items(i)\Value
 Else
   AddElement(knapsack())
   knapsack() = items(i)
   knapsack()\weight = #maxWeight - TotalWeight
   knapsack()\Value = knapsack()\weight * knapsack()\vDensity
   TotalWeight = #maxWeight
   TotalValue + knapsack()\Value
   Break
 EndIf 

Next

If OpenConsole()

 PrintN(LSet("Maximal weight", 26, " ") + "= " + Str(#maxWeight) + " kg")
 PrintN(LSet("Total weight of solution", 26, " ") + "= " + Str(#maxWeight) + " kg")
 PrintN(LSet("Total value", 26, " ") + "= " + StrF(TotalValue, 3) + " " + #CRLF$)
 PrintN("You can carry the following materials in the knapsack: ")
 ForEach knapsack()
   PrintN(RSet(StrF(knapsack()\weight, 1), 5, " ") + " kg  " + LSet(knapsack()\name, 10, " ") + "  (Value = " + StrF(knapsack()\Value, 3) + ")")
 Next 
 
 Print(#CRLF$ + #CRLF$ + "Press ENTER to exit")
 Input()
 CloseConsole()

EndIf </lang> Sample output:

Maximal weight            = 15 kg
Total weight of solution  = 15 kg
Total value               = 349.378

You can carry the following materials in the knapsack:
  3.0 kg  salami      (Value = 95.000)
  3.6 kg  ham         (Value = 90.000)
  2.5 kg  brawn       (Value = 56.000)
  2.4 kg  greaves     (Value = 45.000)
  3.5 kg  welt        (Value = 63.378)

Python

I think this greedy algorithm of taking the largest amounts of items ordered by their value per unit weight is maximal: <lang python># NAME, WEIGHT, VALUE (for this weight) items = [("beef", 3.8, 36.0),

        ("pork",    5.4, 43.0),
        ("ham",     3.6, 90.0),
        ("greaves", 2.4, 45.0),
        ("flitch",  4.0, 30.0),
        ("brawn",   2.5, 56.0),
        ("welt",    3.7, 67.0),
        ("salami",  3.0, 95.0),
        ("sausage", 5.9, 98.0)]

MAXWT = 15.0

sorted_items = sorted(((value/amount, amount, name)

                      for name, amount, value in items),
                     reverse = True)

wt = val = 0 bagged = [] for unit_value, amount, name in sorted_items:

   portion = min(MAXWT - wt, amount)
   wt     += portion
   addval  = portion * unit_value
   val    += addval
   bagged += [(name, portion, addval)]
   if wt >= MAXWT:
       break

print(" ITEM PORTION VALUE") print("\n".join("%10s %6.2f %6.2f" % item for item in bagged)) print("\nTOTAL WEIGHT: %5.2f\nTOTAL VALUE: %5.2f" % (wt, val))</lang>

Sample Output

    ITEM   PORTION VALUE
    salami   3.00  95.00
       ham   3.60  90.00
     brawn   2.50  56.00
   greaves   2.40  45.00
      welt   3.50  63.38

TOTAL WEIGHT: 15.00
TOTAL VALUE: 349.38

REXX

Any resemblence to the Fortran code is 120% coincidental. <lang rexx> /*REXX program to solve the burglar's knapsack (continuous) problem. */

@.=

 /*  name    weight  value   */

@.1='flitch 4 30 ' @.2='beef 3.8 36 ' @.3='pork 5.4 43 ' @.4='greaves 2.4 45 ' @.5='brawn 2.5 56 ' @.6='welt 3.7 67 ' @.7='ham 3.6 90 ' @.8='salami 3 95 ' @.9='sausage 5.9 98 '

nL=length('total weight'); wL=length('weight'); vL=length(' value ') totW=0; totV=0

 do j=1 while @.j\==
 parse var @.j n w v .
 nL=max(nL,length(n));  n.j=n
 totW=totW+w         ;  w.j=w
 totV=totV+v         ;  v.j=v
 end

items=j-1 /*items is the number of items. */ nL=nL+nL%4 /*nL: max length name + 25%. */ wL=max(wL,length(format(totw,,2))) /*wL: max formatted weight width*/ vL=max(vL,length(format(totv,,2))) /*vL: max formatted value width*/ totW=0; totV=0 call show 'before sorting'

                     /*sort items by (desending) value per unit weight.*/
 do j=2 to items
  k=j-1;   _n=n.j;   _w=w.j;   _v=v.j
         do k=k by -1 to 1 while v.k/w.k<_v/_w
         kp1=k+1;  n.kp1=n.k;  w.kp1=w.k;  v.kp1=v.k
         end
 kp1=k+1;  n.kp1=_n;  w.kp1=_w;  v.kp1=_v
 end   /*j*/

call show 'after sorting' call hdr "burgler's knapsack contents" maxW=15 /*burgler's knapsack max weight. */

 do j=1 for items while totW<maxW
 if totW+w.j<maxW then do
                       totW=totW + w.j
                       totV=totV + v.j
                       call syf n.j, w.j, v.j
                       end
                  else do
                       f=(maxW-totW)/w.j
                       totW=totW + w.j*f
                       totV=totV + v.j*f
                       call syf n.j, w.j*f, v.j*f
                       end
 end   /*j*/

call sep call sy left('total weight',nL,'-'), format(totW,,2) call sy left('total value',nL,'-'), , format(totV,,2) exit


/*─────────────────────────────────────one-liner subroutines────────────*/ hdr: indent=left(,5); call verse arg(1); call title; call sep; return sep: call sy copies('=',nL),copies("=",wL),copies('=',vL); return show: call hdr arg(1); do j=1 for items; call syf n.j,w.j,v.j;end; say; return sy: say indent left(arg(1),nL) right(arg(2),wL) right(arg(3),vL); return syf: call sy arg(1),format(arg(2),,2),format(arg(3),,2); return title: call sy center('item',nL),center("weight",wL),center('value',vL); return verse: say; say; say center(arg(1),40,'─'); say; return </lang> Output:


─────────────before sorting─────────────

           item       weight  value
      =============== ====== =======
      flitch            4.00   30.00
      beef              3.80   36.00
      pork              5.40   43.00
      greaves           2.40   45.00
      brawn             2.50   56.00
      welt              3.70   67.00
      ham               3.60   90.00
      salami            3.00   95.00
      sausage           5.90   98.00



─────────────after sorting──────────────

           item       weight  value
      =============== ====== =======
      salami            3.00   95.00
      ham               3.60   90.00
      brawn             2.50   56.00
      greaves           2.40   45.00
      welt              3.70   67.00
      sausage           5.90   98.00
      beef              3.80   36.00
      pork              5.40   43.00
      flitch            4.00   30.00



──────burgler's knapsack contents───────

           item       weight  value
      =============== ====== =======
      salami            3.00   95.00
      ham               3.60   90.00
      brawn             2.50   56.00
      greaves           2.40   45.00
      welt              3.50   63.38
      =============== ====== =======
      total weight---  15.00
      total  value---         349.38

Tcl

<lang tcl>package require Tcl 8.5

  1. Uses the trivial greedy algorithm

proc continuousKnapsack {items massLimit} {

   # Add in the unit prices
   set idx -1
   foreach item $items {

lassign $item name mass value lappend item [expr {$value / $mass}] lset items [incr idx] $item

   }
   # Sort by unit prices
   set items [lsort -decreasing -real -index 3 $items]
   # Add items, using most valuable-per-unit first
   set result {}
   set total 0.0
   set totalValue 0
   foreach item $items {

lassign $item name mass value unit if {$total + $mass < $massLimit} { lappend result [list $name $mass $value] set total [expr {$total + $mass}] set totalValue [expr {$totalValue + $value}] } else { set mass [expr {$massLimit - $total}] set value [expr {$unit * $mass}] lappend result [list $name $mass $value] set totalValue [expr {$totalValue + $value}] break }

   }
   # We return the total value too, purely for convenience
   return [list $result $totalValue]

}</lang> Driver for this particular problem: <lang tcl>set items {

   {beef	3.8	36}
   {pork	5.4	43}
   {ham	3.6	90}
   {greaves	2.4	45}
   {flitch	4.0	30}
   {brawn	2.5	56}
   {welt	3.7	67}
   {salami	3.0	95}
   {sausage	5.9	98}

}

lassign [continuousKnapsack $items 15.0] contents totalValue puts [format "total value of knapsack: %.2f" $totalValue] puts "contents:" foreach item $contents {

   lassign $item name mass value
   puts [format "\t%.1fkg of %s, value %.2f" $mass $name $value]

}</lang> Output:

total value of knapsack: 349.38
contents:
	3.0kg of salami, value 95.00
	3.6kg of ham, value 90.00
	2.5kg of brawn, value 56.00
	2.4kg of greaves, value 45.00
	3.5kg of welt, value 63.38

Ursala

We might as well leave this one to the experts by setting it up as a linear programming problem and handing it off to an external library (which will be either lpsolve or glpk depending on the run-time system configuration). <lang Ursala>#import flo

  1. import lin

items = # name: (weight,price)

<

  'beef   ': (3.8,36.0),
  'pork   ': (5.4,43.0),
  'ham    ': (3.6,90.0),
  'greaves': (2.4,45.0),
  'flitch ': (4.0,30.0),
  'brawn  ': (2.5,56.0),
  'welt   ': (3.7,67.0),
  'salami ': (3.0,95.0),
  'sausage': (5.9,98.0)>

system = # a function to transform the item list to the data structure needed by the solver

linear_system$[

  lower_bounds: *nS ~&\0.,         # all zeros because we can't steal less than zero
  upper_bounds: ~&nmlPXS,          # can't steal more than what's in the shop
  costs: * ^|/~& negative+ vid,    # prices divided by weights, negated so as to maximize
  equations: ~&iNC\15.+ 1.-*@nS]   # 1 equation constraining the total weight to 15
  1. cast %em

main = solution system items</lang> output:

<
   'brawn  ': 2.500000e+00,
   'greaves': 2.400000e+00,
   'ham    ': 3.600000e+00,
   'salami ': 3.000000e+00,
   'welt   ': 3.500000e+00>