Quaternion type
Quaternions are an extension of the idea of complex numbers
A complex number has a real and complex part written sometimes as a + bi
, where a and b stand for real numbers and i stands for the square root of minus 1. An example of a complex number might be -3 + 2i
, where the real part, a is -3.0 and the complex part, b is +2.0.
A quaternion has one real part and three imaginary parts, i, j, and k. A quaternion might be written as a + bi + cj + dk
. In this numbering system, ii = jj = kk = ijk = -1
. The order of multiplication is important, as, in general, for two quaternions q1 and q2; q1q2 != q2q1
. An example of a quaternion might be 1 +2i +3j +4k
There is a list form of notation where just the numbers are shown and the imaginary multipliers i, j, and k are assumed by position. So the example above would be written as (1, 2, 3, 4)
Task Description
Given the three quaternions and their components:
q = (1, 2, 3, 4) = (a, b, c, d ) q1 = (2, 3, 4, 5) = (a1, b1, c1, d1) q2 = (3, 4, 5, 6) = (a2, b2, c2, d2)
And a wholly real number r = 7
.
Your task is to create functions or classes to perform simple maths with quaternions including computing:
- The norm of a quaternion:
- The negative of a quaternion:
=(-a, -b, -c, -d)
- The conjugate of a quaternion:
=( a, -b, -c, -d)
- Addition of a real number r and a quaternion q:
r + q = q + r = (a+r, b, c, d)
- Addition of two quaternions:
q1 + q2 = (a1+a2, b1+b2, c1+c2, d1+d2)
- Multiplication of a real number and a quaternion:
qr = rq = (ar, br, cr, dr)
- Multiplication of two quaternions q1 and q2 is given by:
( a1a2 − b1b2 − c1c2 − d1d2,
a1b2 + b1a2 + c1d2 − d1c2,
a1c2 − b1d2 + c1a2 + d1b2,
a1d2 + b1c2 − c1b2 + d1a2 )
- Show that, for the two quaternions q1 and q2:
q1q2 != q2q1
If your language has built-in support for quaternions then use it.
Ada
The package specification (works with any floating-point type): <lang Ada>generic
type Real is digits <>;
package Quaternions is
type Quaternion is record A, B, C, D : Real; end record; function "abs" (Left : Quaternion) return Real; function Conj (Left : Quaternion) return Quaternion; function "-" (Left : Quaternion) return Quaternion; function "+" (Left, Right : Quaternion) return Quaternion; function "-" (Left, Right : Quaternion) return Quaternion; function "*" (Left : Quaternion; Right : Real) return Quaternion; function "*" (Left : Real; Right : Quaternion) return Quaternion; function "*" (Left, Right : Quaternion) return Quaternion; function Image (Left : Quaternion) return String;
end Quaternions;</lang> The package implementation: <lang Ada>with Ada.Numerics.Generic_Elementary_Functions; package body Quaternions is
package Elementary_Functions is new Ada.Numerics.Generic_Elementary_Functions (Real); use Elementary_Functions; function "abs" (Left : Quaternion) return Real is begin return Sqrt (Left.A**2 + Left.B**2 + Left.C**2 + Left.D**2); end "abs"; function Conj (Left : Quaternion) return Quaternion is begin return (A => Left.A, B => -Left.B, C => -Left.C, D => -Left.D); end Conj; function "-" (Left : Quaternion) return Quaternion is begin return (A => -Left.A, B => -Left.B, C => -Left.C, D => -Left.D); end "-"; function "+" (Left, Right : Quaternion) return Quaternion is begin return ( A => Left.A + Right.A, B => Left.B + Right.B, C => Left.C + Right.C, D => Left.D + Right.D ); end "+"; function "-" (Left, Right : Quaternion) return Quaternion is begin return ( A => Left.A - Right.A, B => Left.B - Right.B, C => Left.C - Right.C, D => Left.D - Right.D ); end "-"; function "*" (Left : Quaternion; Right : Real) return Quaternion is begin return ( A => Left.A * Right, B => Left.B * Right, C => Left.C * Right, D => Left.D * Right ); end "*"; function "*" (Left : Real; Right : Quaternion) return Quaternion is begin return Right * Left; end "*"; function "*" (Left, Right : Quaternion) return Quaternion is begin return ( A => Left.A * Right.A - Left.B * Right.B - Left.C * Right.C - Left.D * Right.D, B => Left.A * Right.B + Left.B * Right.A + Left.C * Right.D - Left.D * Right.C, C => Left.A * Right.C - Left.B * Right.D + Left.C * Right.A + Left.D * Right.B, D => Left.A * Right.D + Left.B * Right.C - Left.C * Right.B + Left.D * Right.A ); end "*"; function Image (Left : Quaternion) return String is begin return Real'Image (Left.A) & " +" & Real'Image (Left.B) & "i +" & Real'Image (Left.C) & "j +" & Real'Image (Left.D) & "k"; end Image;
end Quaternions;</lang> Test program: <lang Ada>with Ada.Text_IO; use Ada.Text_IO; with Quaternions; procedure Test_Quaternion is
package Float_Quaternion is new Quaternions (Float); use Float_Quaternion; q : Quaternion := (1.0, 2.0, 3.0, 4.0); q1 : Quaternion := (2.0, 3.0, 4.0, 5.0); q2 : Quaternion := (3.0, 4.0, 5.0, 6.0); r : Float := 7.0;
begin
Put_Line ("q = " & Image (q)); Put_Line ("q1 = " & Image (q1)); Put_Line ("q2 = " & Image (q2)); Put_Line ("r =" & Float'Image (r)); Put_Line ("abs q =" & Float'Image (abs q)); Put_Line ("abs q1 =" & Float' Image (abs q1)); Put_Line ("abs q2 =" & Float' Image (abs q2)); Put_Line ("-q = " & Image (-q)); Put_Line ("conj q = " & Image (Conj (q))); Put_Line ("q1 + q2 = " & Image (q1 + q2)); Put_Line ("q2 + q1 = " & Image (q2 + q1)); Put_Line ("q * r = " & Image (q * r)); Put_Line ("r * q = " & Image (r * q)); Put_Line ("q1 * q2 = " & Image (q1 * q2)); Put_Line ("q2 * q1 = " & Image (q2 * q1));
end Test_Quaternion;</lang> Sample output:
q = 1.00000E+00 + 2.00000E+00i + 3.00000E+00j + 4.00000E+00k q1 = 2.00000E+00 + 3.00000E+00i + 4.00000E+00j + 5.00000E+00k q2 = 3.00000E+00 + 4.00000E+00i + 5.00000E+00j + 6.00000E+00k r = 7.00000E+00 abs q = 5.47723E+00 abs q1 = 7.34847E+00 abs q2 = 9.27362E+00 -q = -1.00000E+00 +-2.00000E+00i +-3.00000E+00j +-4.00000E+00k conj q = 1.00000E+00 +-2.00000E+00i +-3.00000E+00j +-4.00000E+00k q1 + q2 = 5.00000E+00 + 7.00000E+00i + 9.00000E+00j + 1.10000E+01k q2 + q1 = 5.00000E+00 + 7.00000E+00i + 9.00000E+00j + 1.10000E+01k q * r = 7.00000E+00 + 1.40000E+01i + 2.10000E+01j + 2.80000E+01k r * q = 7.00000E+00 + 1.40000E+01i + 2.10000E+01j + 2.80000E+01k q1 * q2 = -5.60000E+01 + 1.60000E+01i + 2.40000E+01j + 2.60000E+01k q2 * q1 = -5.60000E+01 + 1.80000E+01i + 2.00000E+01j + 2.80000E+01k
ALGOL 68
- note: This specimen retains the original python coding style.
<lang algol68>MODE QUAT = STRUCT(REAL re, i, j, k); MODE QUATERNION = QUAT; MODE SUBQUAT = UNION(QUAT, #COMPL, # REAL#, INT, [4]REAL, [4]INT # );
MODE CLASSQUAT = STRUCT(
PROC (REF QUAT #new#, REAL #re#, REAL #i#, REAL #j#, REAL #k#)REF QUAT new, PROC (REF QUAT #self#)QUAT conjugate, PROC (REF QUAT #self#)REAL norm sq, PROC (REF QUAT #self#)REAL norm, PROC (REF QUAT #self#)QUAT reciprocal, PROC (REF QUAT #self#)STRING repr, PROC (REF QUAT #self#)QUAT neg, PROC (REF QUAT #self#, SUBQUAT #other#)QUAT add, PROC (REF QUAT #self#, SUBQUAT #other#)QUAT radd, PROC (REF QUAT #self#, SUBQUAT #other#)QUAT sub, PROC (REF QUAT #self#, SUBQUAT #other#)QUAT mul, PROC (REF QUAT #self#, SUBQUAT #other#)QUAT rmul, PROC (REF QUAT #self#, SUBQUAT #other#)QUAT div, PROC (REF QUAT #self#, SUBQUAT #other#)QUAT rdiv, PROC (REF QUAT #self#)QUAT exp
);
CLASSQUAT class quat = (
# PROC new =#(REF QUAT new, REAL re, i, j, k)REF QUAT: ( # 'Defaults all parts of quaternion to zero' # IF new ISNT REF QUAT(NIL) THEN new ELSE HEAP QUAT FI := (re, i, j, k) ),
# PROC conjugate =#(REF QUAT self)QUAT: (re OF self, -i OF self, -j OF self, -k OF self),
# PROC norm sq =#(REF QUAT self)REAL: re OF self**2 + i OF self**2 + j OF self**2 + k OF self**2,
# PROC norm =#(REF QUAT self)REAL: sqrt((norm sq OF class quat)(self)),
# PROC reciprocal =#(REF QUAT self)QUAT:( REAL n2 = (norm sq OF class quat)(self); QUAT conj = (conjugate OF class quat)(self); (re OF conj/n2, i OF conj/n2, j OF conj/n2, k OF conj/n2) ),
# PROC repr =#(REF QUAT self)STRING: ( # 'Shorter form of Quaternion as string' # FILE f; STRING s; associate(f, s); putf(f, (squat fmt, re OF self>=0, re OF self, i OF self>=0, i OF self, j OF self>=0, j OF self, k OF self>=0, k OF self)); close(f); s ),
# PROC neg =#(REF QUAT self)QUAT: (-re OF self, -i OF self, -j OF self, -k OF self),
# PROC add =#(REF QUAT self, SUBQUAT other)QUAT: CASE other IN (QUAT other): (re OF self + re OF other, i OF self + i OF other, j OF self + j OF other, k OF self + k OF other), (REAL other): (re OF self + other, i OF self, j OF self, k OF self) ESAC,
# PROC radd =#(REF QUAT self, SUBQUAT other)QUAT: (add OF class quat)(self, other),
# PROC sub =#(REF QUAT self, SUBQUAT other)QUAT: CASE other IN (QUAT other): (re OF self - re OF other, i OF self - i OF other, j OF self - j OF other, k OF self - k OF other), (REAL other): (re OF self - other, i OF self, j OF self, k OF self) ESAC,
# PROC mul =#(REF QUAT self, SUBQUAT other)QUAT: CASE other IN (QUAT other):( re OF self*re OF other - i OF self*i OF other - j OF self*j OF other - k OF self*k OF other, re OF self*i OF other + i OF self*re OF other + j OF self*k OF other - k OF self*j OF other, re OF self*j OF other - i OF self*k OF other + j OF self*re OF other + k OF self*i OF other, re OF self*k OF other + i OF self*j OF other - j OF self*i OF other + k OF self*re OF other ), (REAL other): ( re OF self * other, i OF self * other, j OF self * other, k OF self * other) ESAC,
# PROC rmul =#(REF QUAT self, SUBQUAT other)QUAT: CASE other IN (QUAT other): (mul OF class quat)(LOC QUAT := other, self), (REAL other): (mul OF class quat)(self, other) ESAC,
# PROC div =#(REF QUAT self, SUBQUAT other)QUAT: CASE other IN (QUAT other): (mul OF class quat)(self, (reciprocal OF class quat)(LOC QUAT := other)), (REAL other): (mul OF class quat)(self, 1/other) ESAC,
# PROC rdiv =#(REF QUAT self, SUBQUAT other)QUAT: CASE other IN (QUAT other): (div OF class quat)(LOC QUAT := other, self), (REAL other): (div OF class quat)(LOC QUAT := (other, 0, 0, 0), self) ESAC,
# PROC exp =#(REF QUAT self)QUAT: ( QUAT fac := self; QUAT sum := 1.0 + fac; FOR i FROM 2 WHILE ABS(fac + small real) /= small real DO VOID(sum +:= (fac *:= self / REAL(i))) OD; sum )
);
FORMAT real fmt = $g(-0, 4)$; FORMAT signed fmt = $b("+", "")f(real fmt)$;
FORMAT quat fmt = $f(real fmt)"+"f(real fmt)"i+"f(real fmt)"j+"f(real fmt)"k"$; FORMAT squat fmt = $f(signed fmt)f(signed fmt)"i"f(signed fmt)"j"f(signed fmt)"k"$;
PRIO INIT = 1; OP INIT = (REF QUAT new)REF QUAT: new := (0, 0, 0, 0); OP INIT = (REF QUAT new, []REAL rijk)REF QUAT:
(new OF class quat)(LOC QUAT := new, rijk[1], rijk[2], rijk[3], rijk[4]);
OP + = (QUAT q)QUAT: q,
- = (QUAT q)QUAT: (neg OF class quat)(LOC QUAT := q), CONJ = (QUAT q)QUAT: (conjugate OF class quat)(LOC QUAT := q), ABS = (QUAT q)REAL: (norm OF class quat)(LOC QUAT := q), REPR = (QUAT q)STRING: (repr OF class quat)(LOC QUAT := q);
- missing: Diadic: I, J, K END #
OP +:= = (REF QUAT a, QUAT b)QUAT: a:=( add OF class quat)(a, b),
+:= = (REF QUAT a, REAL b)QUAT: a:=( add OF class quat)(a, b), +=: = (QUAT a, REF QUAT b)QUAT: b:=(radd OF class quat)(b, a), +=: = (REAL a, REF QUAT b)QUAT: b:=(radd OF class quat)(b, a);
- missing: Worthy PLUSAB, PLUSTO for SHORT/LONG INT REAL & COMPL #
OP -:= = (REF QUAT a, QUAT b)QUAT: a:=( sub OF class quat)(a, b),
-:= = (REF QUAT a, REAL b)QUAT: a:=( sub OF class quat)(a, b);
- missing: Worthy MINUSAB for SHORT/LONG INT REAL & COMPL #
PRIO *=: = 1, /=: = 1; OP *:= = (REF QUAT a, QUAT b)QUAT: a:=( mul OF class quat)(a, b),
*:= = (REF QUAT a, REAL b)QUAT: a:=( mul OF class quat)(a, b), *=: = (QUAT a, REF QUAT b)QUAT: b:=(rmul OF class quat)(b, a), *=: = (REAL a, REF QUAT b)QUAT: b:=(rmul OF class quat)(b, a);
- missing: Worthy TIMESAB, TIMESTO for SHORT/LONG INT REAL & COMPL #
OP /:= = (REF QUAT a, QUAT b)QUAT: a:=( div OF class quat)(a, b),
/:= = (REF QUAT a, REAL b)QUAT: a:=( div OF class quat)(a, b), /=: = (QUAT a, REF QUAT b)QUAT: b:=(rdiv OF class quat)(b, a), /=: = (REAL a, REF QUAT b)QUAT: b:=(rdiv OF class quat)(b, a);
- missing: Worthy OVERAB, OVERTO for SHORT/LONG INT REAL & COMPL #
OP + = (QUAT a, b)QUAT: ( add OF class quat)(LOC QUAT := a, b),
+ = (QUAT a, REAL b)QUAT: ( add OF class quat)(LOC QUAT := a, b), + = (REAL a, QUAT b)QUAT: (radd OF class quat)(LOC QUAT := b, a);
OP - = (QUAT a, b)QUAT: ( sub OF class quat)(LOC QUAT := a, b),
- = (QUAT a, REAL b)QUAT: ( sub OF class quat)(LOC QUAT := a, b), - = (REAL a, QUAT b)QUAT:-( sub OF class quat)(LOC QUAT := b, a);
OP * = (QUAT a, b)QUAT: ( mul OF class quat)(LOC QUAT := a, b),
* = (QUAT a, REAL b)QUAT: ( mul OF class quat)(LOC QUAT := a, b), * = (REAL a, QUAT b)QUAT: (rmul OF class quat)(LOC QUAT := b, a);
OP / = (QUAT a, b)QUAT: ( div OF class quat)(LOC QUAT := a, b),
/ = (QUAT a, REAL b)QUAT: ( div OF class quat)(LOC QUAT := a, b), / = (REAL a, QUAT b)QUAT: ( div OF class quat)(LOC QUAT := b, 1/a);
PROC quat exp = (QUAT q)QUAT: (exp OF class quat)(LOC QUAT := q);
- missing: quat arc{sin, cos, tan}h, log, exp, ln etc END #
test:(
REAL r = 7; QUAT q = (1, 2, 3, 4), q1 = (2, 3, 4, 5), q2 = (3, 4, 5, 6);
printf(( $"r = " f(real fmt)l$, r, $"q = " f(quat fmt)l$, q, $"q1 = " f(quat fmt)l$, q1, $"q2 = " f(quat fmt)l$, q2, $"ABS q = " f(real fmt)", "$, ABS q, $"ABS q1 = " f(real fmt)", "$, ABS q1, $"ABS q2 = " f(real fmt)l$, ABS q2, $"-q = " f(quat fmt)l$, -q, $"CONJ q = " f(quat fmt)l$, CONJ q, $"r + q = " f(quat fmt)l$, r + q, $"q + r = " f(quat fmt)l$, q + r, $"q1 + q2 = "f(quat fmt)l$, q1 + q2, $"q2 + q1 = "f(quat fmt)l$, q2 + q1, $"q * r = " f(quat fmt)l$, q * r, $"r * q = " f(quat fmt)l$, r * q, $"q1 * q2 = "f(quat fmt)l$, q1 * q2, $"q2 * q1 = "f(quat fmt)l$, q2 * q1 ));
CO
$"ASSERT q1 * q2 != q2 * q1 = "f(quat fmt)l$, ASSERT q1 * q2 != q2 * q1, $l$);
END CO
QUAT i=(0, 1, 0, 0), j=(0, 0, 1, 0), k=(0, 0, 0, 1);
printf(( $"i*i = " f(quat fmt)l$, i*i, $"j*j = " f(quat fmt)l$, j*j, $"k*k = " f(quat fmt)l$, k*k, $"i*j*k = " f(quat fmt)l$, i*j*k, $"q1 / q2 = " f(quat fmt)l$, q1 / q2, $"q1 / q2 * q2 = "f(quat fmt)l$, q1 / q2 * q2, $"q2 * q1 / q2 = "f(quat fmt)l$, q2 * q1 / q2, $"1/q1 * q1 = " f(quat fmt)l$, 1.0/q1 * q1, $"q1 / q1 = " f(quat fmt)l$, q1 / q1, $"quat exp(pi * i) = " f(quat fmt)l$, quat exp(pi * i), $"quat exp(pi * j) = " f(quat fmt)l$, quat exp(pi * j), $"quat exp(pi * i) = " f(quat fmt)l$, quat exp(pi * k) )); print((REPR(-q1*q2), ", ", REPR(-q2*q1), new line))
)</lang> Output:
r = 7.0000 q = 1.0000+2.0000i+3.0000j+4.0000k q1 = 2.0000+3.0000i+4.0000j+5.0000k q2 = 3.0000+4.0000i+5.0000j+6.0000k ABS q = 5.4772, ABS q1 = 7.3485, ABS q2 = 9.2736 -q = -1.0000+-2.0000i+-3.0000j+-4.0000k CONJ q = 1.0000+-2.0000i+-3.0000j+-4.0000k r + q = 8.0000+2.0000i+3.0000j+4.0000k q + r = 8.0000+2.0000i+3.0000j+4.0000k q1 + q2 = 5.0000+7.0000i+9.0000j+11.0000k q2 + q1 = 5.0000+7.0000i+9.0000j+11.0000k q * r = 7.0000+14.0000i+21.0000j+28.0000k r * q = 7.0000+14.0000i+21.0000j+28.0000k q1 * q2 = -56.0000+16.0000i+24.0000j+26.0000k q2 * q1 = -56.0000+18.0000i+20.0000j+28.0000k i*i = -1.0000+.0000i+.0000j+.0000k j*j = -1.0000+.0000i+.0000j+.0000k k*k = -1.0000+.0000i+.0000j+.0000k i*j*k = -1.0000+.0000i+.0000j+.0000k q1 / q2 = .7907+.0233i+-.0000j+.0465k q1 / q2 * q2 = 2.0000+3.0000i+4.0000j+5.0000k q2 * q1 / q2 = 2.0000+3.4651i+3.9070j+4.7674k 1/q1 * q1 = -46.0000+12.0000i+16.0000j+20.0000k q1 / q1 = 1.0000+.0000i+.0000j+.0000k quat exp(pi * i) = -1.0000+.0000i+.0000j+.0000k quat exp(pi * j) = -1.0000+.0000i+.0000j+.0000k quat exp(pi * i) = -1.0000+.0000i+.0000j+.0000k +56.0000-16.0000i-24.0000j-26.0000k, +56.0000-18.0000i-20.0000j-28.0000k
Forth
<lang forth>: quaternions 4 * floats ;
- qvariable create 1 quaternions allot ;
- q! ( a b c d q -- )
dup 3 floats + f! dup 2 floats + f! dup float+ f! f! ;
- qcopy ( src dest -- ) 1 quaternions move ;
- qnorm ( q -- f )
0e 4 0 do dup f@ fdup f* f+ float+ loop drop fsqrt ;
- qf* ( q f -- )
4 0 do dup f@ fover f* dup f! float+ loop fdrop drop ;
- qnegate ( q -- ) -1e qf* ;
- qconj ( q -- )
float+ 3 0 do dup f@ fnegate dup f! float+ loop drop ;
- qf+ ( q f -- ) dup f@ f+ f! ;
- q+ ( q1 q2 -- )
4 0 do over f@ dup f@ f+ dup f! float+ swap float+ swap loop 2drop ;
\ access
- q.a f@ ;
- q.b float+ f@ ;
- q.c 2 floats + f@ ;
- q.d 3 floats + f@ ;
- q* ( dest q1 q2 -- )
over q.a dup q.d f* over q.b dup q.c f* f+ over q.c dup q.b f* f- over q.d dup q.a f* f+ over q.a dup q.c f* over q.b dup q.d f* f- over q.c dup q.a f* f+ over q.d dup q.b f* f+ over q.a dup q.b f* over q.b dup q.a f* f+ over q.c dup q.d f* f+ over q.d dup q.c f* f- over q.a dup q.a f* over q.b dup q.b f* f- over q.c dup q.c f* f- over q.d dup q.d f* f- 2drop 4 0 do dup f! float+ loop drop ;
- q= ( q1 q2 -- ? )
4 0 do over f@ dup f@ f<> if 2drop false unloop exit then float+ swap float+ loop 2drop true ;
\ testing
- q. ( q -- )
[char] ( emit space 4 0 do dup f@ f. float+ loop drop [char] ) emit space ;
qvariable q 1e 2e 3e 4e q q! qvariable q1 2e 3e 4e 5e q1 q! create q2 3e f, 4e f, 5e f, 6e f, \ by hand
qvariable tmp qvariable m1 qvariable m2
q qnorm f. \ 5.47722557505166 q tmp qcopy tmp qnegate tmp q. \ ( -1. -2. -3. -4. ) q tmp qcopy tmp qconj tmp q. \ ( 1. -2. -3. -4. )
q m1 qcopy m1 7e qf+ m1 q. \ ( 8. 2. 3. 4. ) q m2 qcopy 7e m2 qf+ m2 q. \ ( 8. 2. 3. 4. ) m1 m2 q= . \ -1 (true)
q2 tmp qcopy q1 tmp q+ tmp q. \ ( 5. 7. 9. 11. )
q m1 qcopy m1 7e qf* m1 q. \ ( 7. 14. 21. 28. ) q m2 qcopy 7e m2 qf* m2 q. \ ( 7. 14. 21. 28. ) m1 m2 q= . \ -1 (true)
m1 q1 q2 q* m1 q. \ ( -56. 16. 24. 26. ) m2 q2 q1 q* m2 q. \ ( -56. 18. 20. 28. ) m1 m2 q= . \ 0 (false)</lang>
Haskell
<lang haskell>import Control.Monad import Control.Arrow import Data.List
data Quaternion = Q Double Double Double Double
deriving (Show, Ord, Eq)
realQ :: Quaternion -> Double realQ (Q r _ _ _) = r
imagQ :: Quaternion -> [Double] imagQ (Q _ i j k) = [i, j, k]
quaternionFromScalar s = Q s 0 0 0
listFromQ (Q a b c d) = [a,b,c,d] quaternionFromList [a, b, c, d] = Q a b c d
addQ, subQ, mulQ :: Quaternion -> Quaternion -> Quaternion addQ (Q a b c d) (Q p q r s) = Q (a+p) (b+q) (c+r) (d+s)
subQ (Q a b c d) (Q p q r s) = Q (a-p) (b-q) (c-r) (d-s)
mulQ (Q a b c d) (Q p q r s) =
Q (a*p - b*q - c*r - d*s) (a*q + b*p + c*s - d*r) (a*r - b*s + c*p + d*q) (a*s + b*r - c*q + d*p)
normQ = sqrt. sum. join (zipWith (*)). listFromQ
conjQ, negQ :: Quaternion -> Quaternion conjQ (Q a b c d) = Q a (-b) (-c) (-d)
negQ (Q a b c d) = Q (-a) (-b) (-c) (-d)</lang> To use with the Examples: <lang haskell>[q,q1,q2] = map quaternionFromList [[1..4],[2..5],[3..6]] -- a*b == b*a test :: Quaternion -> Quaternion -> Bool test a b = a `mulQ` b == b `mulQ` a</lang> Examples:
*Main> mulQ (Q 0 1 0 0) $ mulQ (Q 0 0 1 0) (Q 0 0 0 1) -- i*j*k Q (-1.0) 0.0 0.0 0.0 *Main> test q1 q2 False *Main> mulQ q1 q2 Q (-56.0) 16.0 24.0 26.0 *Main> flip mulQ q1 q2 Q (-56.0) 18.0 20.0 28.0 *Main> imagQ q [2.0,3.0,4.0]
J
Derived from the j wiki:
<lang j> NB. utilities
ip=: +/ .* NB. inner product t4=. (_1^#:0 10 9 12)*0 7 16 23 A.=i.4 toQ=: 4&{."1 :[: NB. real scalars -> quaternion
NB. task norm=: %:@ip~@toQ NB. | y neg=: -&toQ NB. - y and x - y conj=: 1 _1 _1 _1 * toQ NB. + y add=: +&toQ NB. x + y mul=: (ip t4 ip ])&toQ NB. x * y</lang>
Example use:
<lang> q=: 1 2 3 4
q1=: 2 3 4 5 q2=: 3 4 5 6 r=: 7 norm q
5.47723
neg q
_1 _2 _3 _4
conj q
1 _2 _3 _4
r add q
8 2 3 4
q1 add q2
5 7 9 11
r mul q
7 14 21 28
q1 mul q2
_56 16 24 26
q2 mul q1
_56 18 20 28</lang>
PureBasic
<lang PureBasic>Structure Quaternion
a.f: b.f c.f: d.f
EndStructure
Structure Quaternion2
Qa.Quaternion: Qb.Quaternion Qc.Quaternion: Qd.Quaternion
EndStructure
Procedure.f QNorm(*Q.Quaternion)
Protected Result.f Result=Sqr(Pow(*Q\a,2)+ Pow(*Q\b,2)+ Pow(*Q\c,2)+ Pow(*Q\d,2)) ProcedureReturn Result
EndProcedure
Procedure.i QNeg(*Q.Quaternion)
Protected *B.Quaternion=AllocateMemory(SizeOf(Quaternion)) If *B With *Q *B\a=-\a: *B\b=-\b *B\c=-\c: *B\d=-\d EndWith EndIf ProcedureReturn *B
EndProcedure
Procedure.i QConj(*Q.Quaternion)
Protected *B.Quaternion=AllocateMemory(SizeOf(Quaternion)) If *B With *Q *B\a= \a: *B\b=-\b *B\c=-\c: *B\d=-\d EndWith EndIf ProcedureReturn *B
EndProcedure
Procedure.i QAddReal(R.f, *Q.Quaternion)
Protected *B.Quaternion=AllocateMemory(SizeOf(Quaternion)) If *B With *Q *B\a=R+\a: *B\b= -\b *B\c= -\c: *B\d= -\d EndWith EndIf ProcedureReturn *B
EndProcedure
Procedure.i QAddQuaternion(*Q1.Quaternion, *Q2.Quaternion)
Protected *B.Quaternion=AllocateMemory(SizeOf(Quaternion)) If *B *B\a=*Q1\a + *Q2\a: *B\b=*Q1\b + *Q2\b *B\c=*Q1\c + *Q2\c: *B\d=*Q1\d + *Q2\d EndIf ProcedureReturn *B
EndProcedure
Procedure.i QMulReal_and_Quaternion(R.f, *Q.Quaternion)
Protected *B.Quaternion=AllocateMemory(SizeOf(Quaternion)) If *B *B\a=*Q\a * R: *B\b=*Q\b * R *B\c=*Q\c * R: *B\d=*Q\d * R EndIf ProcedureReturn *B
EndProcedure
Procedure.i QMulQuaternion(*Q1.Quaternion, *Q2.Quaternion)
Protected *B.Quaternion2=AllocateMemory(SizeOf(Quaternion2)) If *B With *B \Qa\a= *Q1\a * *Q2\a: \Qa\b=-*Q1\b * *Q2\b \Qa\c=-*Q1\c * *Q2\c: \Qa\d=-*Q1\d * *Q2\d ; \Qb\a= *Q1\a * *Q2\b: \Qb\b= *Q1\b * *Q2\a \Qb\c= *Q1\c * *Q2\d: \Qb\d=-*Q1\d * *Q2\c ; \Qc\a= *Q1\a * *Q2\c: \Qc\b=-*Q1\b * *Q2\d \Qc\c= *Q1\c * *Q2\a: \Qc\d= *Q1\d * *Q2\b ; \Qd\a= *Q1\a * *Q2\d: \Qd\b= *Q1\b * *Q2\c \Qd\c=-*Q1\c * *Q2\b: \Qd\d= *Q1\d * *Q2\a EndWith EndIf ProcedureReturn *B
EndProcedure</lang> Implementation & test <lang PureBasic>Macro Show(QQ,NN=0)
StrF(QQ\a,NN)+","+StrF(QQ\b,NN)+","+StrF(QQ\c,NN)+","+StrF(QQ\d,NN)
EndMacro
Define.Quaternion A, B, C Define.f r=7 Define *X.Quaternion, *Y.Quaternion2
A\a=1: A\b=2: A\c=3: A\d=4 B\a=2: B\b=3: B\c=4: B\d=5 C\a=3: C\b=4: C\c=5: C\d=6
Debug "Q1= {"+Show(A,0)+"}" Debug "Q2= {"+Show(B,0)+"}" Debug "Q3= {"+Show(C,0)+"}"
Debug "Normal of Q1= "+StrF(QNorm(@A))
- X=QNeg(@A)
Debug "Neg(Q1) ={"+Show(*X)+"}" : FreeMemory(*X)
- X=QConj(@A)
Debug "Conj(Q1) ={"+Show(*X)+"}" : FreeMemory(*X)
- X=QAddReal(r,@A)
Debug "r+A ={"+Show(*X)+"}" : FreeMemory(*X)
- X=QAddQuaternion(@A,@B)
Debug "Q1+Q2 ={"+Show(*X)+"}" : FreeMemory(*X)
- X=QAddQuaternion(@B,@C)
Debug "Q2+Q3 ={"+Show(*X)+"}" : FreeMemory(*X)
- Y=QMulQuaternion(@A,@B)
Debug "Q1*Q2 =" Debug "{{"+Show(*Y\Qa)+"}" Debug " {"+Show(*Y\Qb)+"}" Debug " {"+Show(*Y\Qc)+"}" Debug " {"+Show(*Y\Qd)+"}}" FreeMemory(*Y)
- Y=QMulQuaternion(@B,@A)
Debug "Q2*Q1 =" Debug "{{"+Show(*Y\Qa)+"}" Debug " {"+Show(*Y\Qb)+"}" Debug " {"+Show(*Y\Qc)+"}" Debug " {"+Show(*Y\Qd)+"}}" FreeMemory(*Y)</lang> Result
Q1= {1,2,3,4} Q2= {2,3,4,5} Q3= {3,4,5,6} Normal of Q1= 5.4772257805 Neg(Q1) ={-1,-2,-3,-4} Conj(Q1) ={1,-2,-3,-4} r+A ={8,-2,-3,-4} Q1+Q2 ={3,5,7,9} Q2+Q3 ={5,7,9,11} Q1*Q2 = {{2,-6,-12,-20} {3,4,15,-16} {4,-10,6,12} {5,8,-9,8}} Q2*Q1 = {{2,-6,-12,-20} {4,3,16,-15} {6,-12,4,10} {8,9,-8,5}}
Python
This example extends Pythons namedtuples to add extra functionality. <lang python>from collections import namedtuple import math
class Q(namedtuple('Quaternion', 'real, i, j, k')):
'Quaternion type: Q(real=0.0, i=0.0, j=0.0, k=0.0)'
__slots__ = ()
def __new__(_cls, real=0.0, i=0.0, j=0.0, k=0.0): 'Defaults all parts of quaternion to zero' return super().__new__(_cls, float(real), float(i), float(j), float(k))
def conjugate(self): return Q(self.real, -self.i, -self.j, -self.k)
def _norm2(self): return sum( x*x for x in self)
def norm(self): return math.sqrt(self._norm2())
def reciprocal(self): n2 = self._norm2() return Q(*(x / n2 for x in self.conjugate()))
def __str__(self): 'Shorter form of Quaternion as string' return 'Q(%g, %g, %g, %g)' % self
def __neg__(self): return Q(-self.real, -self.i, -self.j, -self.k)
def __add__(self, other): if type(other) == Q: return Q( *(s+o for s,o in zip(self, other)) ) try: f = float(other) except: return NotImplemented return Q(self.real + f, self.i, self.j, self.k)
def __radd__(self, other): return Q.__add__(self, other)
def __mul__(self, other): if type(other) == Q: a1,b1,c1,d1 = self a2,b2,c2,d2 = other return Q( a1*a2 - b1*b2 - c1*c2 - d1*d2, a1*b2 + b1*a2 + c1*d2 - d1*c2, a1*c2 - b1*d2 + c1*a2 + d1*b2, a1*d2 + b1*c2 - c1*b2 + d1*a2 ) try: f = float(other) except: return NotImplemented return Q(self.real * f, self.i * f, self.j * f, self.k * f)
def __rmul__(self, other): return Q.__mul__(self, other)
def __truediv__(self, other): if type(other) == Q: return self.__mul__(other.reciprocal()) try: f = float(other) except: return NotImplemented return Q(self.real / f, self.i / f, self.j / f, self.k / f)
def __rtruediv__(self, other): return other * self.reciprocal()
__div__, __rdiv__ = __truediv__, __rtruediv__
Quaternion = Q
q = Q(1, 2, 3, 4) q1 = Q(2, 3, 4, 5) q2 = Q(3, 4, 5, 6) r = 7</lang>
Continued shell session Run the above with the -i flag to python on the command line, or run with idle then continue in the shell as follows: <lang python>>>> q Quaternion(real=1.0, i=2.0, j=3.0, k=4.0) >>> q1 Quaternion(real=2.0, i=3.0, j=4.0, k=5.0) >>> q2 Quaternion(real=3.0, i=4.0, j=5.0, k=6.0) >>> r 7 >>> q.norm() 5.477225575051661 >>> q1.norm() 7.3484692283495345 >>> q2.norm() 9.273618495495704 >>> -q Quaternion(real=-1.0, i=-2.0, j=-3.0, k=-4.0) >>> q.conjugate() Quaternion(real=1.0, i=-2.0, j=-3.0, k=-4.0) >>> r + q Quaternion(real=8.0, i=2.0, j=3.0, k=4.0) >>> q + r Quaternion(real=8.0, i=2.0, j=3.0, k=4.0) >>> q1 + q2 Quaternion(real=5.0, i=7.0, j=9.0, k=11.0) >>> q2 + q1 Quaternion(real=5.0, i=7.0, j=9.0, k=11.0) >>> q * r Quaternion(real=7.0, i=14.0, j=21.0, k=28.0) >>> r * q Quaternion(real=7.0, i=14.0, j=21.0, k=28.0) >>> q1 * q2 Quaternion(real=-56.0, i=16.0, j=24.0, k=26.0) >>> q2 * q1 Quaternion(real=-56.0, i=18.0, j=20.0, k=28.0) >>> assert q1 * q2 != q2 * q1 >>> >>> i, j, k = Q(0,1,0,0), Q(0,0,1,0), Q(0,0,0,1) >>> i*i Quaternion(real=-1.0, i=0.0, j=0.0, k=0.0) >>> j*j Quaternion(real=-1.0, i=0.0, j=0.0, k=0.0) >>> k*k Quaternion(real=-1.0, i=0.0, j=0.0, k=0.0) >>> i*j*k Quaternion(real=-1.0, i=0.0, j=0.0, k=0.0) >>> q1 / q2 Quaternion(real=0.7906976744186047, i=0.023255813953488358, j=-2.7755575615628914e-17, k=0.046511627906976744) >>> q1 / q2 * q2 Quaternion(real=2.0000000000000004, i=3.0000000000000004, j=4.000000000000001, k=5.000000000000001) >>> q2 * q1 / q2 Quaternion(real=2.0, i=3.465116279069768, j=3.906976744186047, k=4.767441860465116) >>> q1.reciprocal() * q1 Quaternion(real=0.9999999999999999, i=0.0, j=0.0, k=0.0) >>> q1 * q1.reciprocal() Quaternion(real=0.9999999999999999, i=0.0, j=0.0, k=0.0) >>> </lang>
Tcl
or
<lang tcl>package require TclOO
- Support class that provides C++-like RAII lifetimes
oo::class create RAII-support {
constructor {} {
upvar 1 { end } end lappend end [self] trace add variable end unset [namespace code {my destroy}]
} destructor {
catch { upvar 1 { end } end trace remove variable end unset [namespace code {my destroy}] }
} method return Template:Level 1 {
incr level upvar 1 { end } end upvar $level { end } parent trace remove variable end unset [namespace code {my destroy}] lappend parent [self] trace add variable parent unset [namespace code {my destroy}] return -level $level [self]
}
}
- Class of quaternions
oo::class create Q {
superclass RAII-support variable R I J K constructor {{real 0} {i 0} {j 0} {k 0}} {
next namespace import ::tcl::mathfunc::* ::tcl::mathop::* variable R [double $real] I [double $i] J [double $j] K [double $k]
} self method return args {
[my new {*}$args] return 2
}
method p {} {
return "Q($R,$I,$J,$K)"
} method values {} {
list $R $I $J $K
}
method Norm {} {
+ [* $R $R] [* $I $I] [* $J $J] [* $K $K]
}
method conjugate {} {
Q return $R [- $I] [- $J] [- $K]
} method norm {} {
sqrt [my Norm]
} method unit {} {
set n [my norm] Q return [/ $R $n] [/ $I $n] [/ $J $n] [/ $K $n]
} method reciprocal {} {
set n2 [my Norm] Q return [/ $R $n2] [/ $I $n2] [/ $J $n2] [/ $K $n2]
} method - Template:Q "" {
if {[llength [info level 0]] == 2} { Q return [- $R] [- $I] [- $J] [- $K] } [my + [$q -]] return
} method + q {
if {[info object isa object $q]} { lassign [$q values] real i j k Q return [+ $R $real] [+ $I $i] [+ $J $j] [+ $K $k] } Q return [+ $R [double $q]] $I $J $K
} method * q {
if {[info object isa object $q]} { lassign [my values] a1 b1 c1 d1 lassign [$q values] a2 b2 c2 d2 Q return [expr {$a1*$a2 - $b1*$b2 - $c1*$c2 - $d1*$d2}] \ [expr {$a1*$b2 + $b1*$a2 + $c1*$d2 - $d1*$c2}] \ [expr {$a1*$c2 - $b1*$d2 + $c1*$a2 + $d1*$b2}] \ [expr {$a1*$d2 + $b1*$c2 - $c1*$b2 + $d1*$a2}] } set f [double $q] Q return [* $R $f] [* $I $f] [* $J $f] [* $K $f]
} method == q {
expr { [info object isa object $q] && [info object isa typeof $q [self class]] && [my values] eq [$q values] }
}
export - + * ==
}</lang> Demonstration code: <lang tcl>set q [Q new 1 2 3 4] set q1 [Q new 2 3 4 5] set q2 [Q new 3 4 5 6] set r 7
puts "q = [$q p]" puts "q1 = [$q1 p]" puts "q2 = [$q2 p]" puts "r = $r" puts "q norm = [$q norm]" puts "q1 norm = [$q1 norm]" puts "q2 norm = [$q2 norm]" puts "-q = [[$q -] p]" puts "q conj = [[$q conjugate] p]" puts "q + r = [[$q + $r] p]"
- Real numbers are not objects, so no extending operations for them
puts "q1 + q2 = [[$q1 + $q2] p]" puts "q2 + q1 = [[$q2 + $q1] p]" puts "q * r = [[$q * $r] p]" puts "q1 * q2 = [[$q1 * $q2] p]" puts "q2 * q1 = [[$q2 * $q1] p]" puts "equal(q1*q2, q2*q1) = [[$q1 * $q2] == [$q2 * $q1]]"</lang> Output:
q = Q(1.0,2.0,3.0,4.0) q1 = Q(2.0,3.0,4.0,5.0) q2 = Q(3.0,4.0,5.0,6.0) r = 7 q norm = 5.477225575051661 q1 norm = 7.3484692283495345 q2 norm = 9.273618495495704 -q = Q(-1.0,-2.0,-3.0,-4.0) q conj = Q(1.0,-2.0,-3.0,-4.0) q + r = Q(8.0,2.0,3.0,4.0) q1 + q2 = Q(5.0,7.0,9.0,11.0) q2 + q1 = Q(5.0,7.0,9.0,11.0) q * r = Q(7.0,14.0,21.0,28.0) q1 * q2 = Q(-56.0,16.0,24.0,26.0) q2 * q1 = Q(-56.0,18.0,20.0,28.0) equal(q1*q2, q2*q1) = 0