Bilinear interpolation: Difference between revisions

m
→‎{{header|Wren}}: ImageData.loadFromFile now deprecated, changed to ImageData.load
(Using Real Math module)
m (→‎{{header|Wren}}: ImageData.loadFromFile now deprecated, changed to ImageData.load)
 
(6 intermediate revisions by 4 users not shown)
Line 7:
Open an image file, enlarge it by 60% using bilinear interpolation, then either display the result or save the result to a file.
<br><br>
 
=={{header|Action!}}==
In the following solution the input file [https://gitlab.com/amarok8bit/action-rosetta-code/-/blob/master/source/lena30g.PPM lena30g.PPM] is loaded from H6 drive. Altirra emulator automatically converts CR/LF character from ASCII into 155 character in ATASCII charset used by Atari 8-bit computer when one from H6-H10 hard drive under DOS 2.5 is used.
{{libheader|Action! Bitmap tools}}
{{libheader|Action! Tool Kit}}
{{libheader|Action! Real Math}}
<langsyntaxhighlight Actionlang="action!">INCLUDE "H6:REALMATH.ACT"
INCLUDE "H6:LOADPPM5.ACT"
 
Line 119:
DO UNTIL CH#$FF OD
CH=$FF
RETURN</langsyntaxhighlight>
{{out}}
[https://gitlab.com/amarok8bit/action-rosetta-code/-/raw/master/images/Bilinear_interpolation.png Screenshot from Atari 8-bit computer]
 
=={{header|C}}==
<langsyntaxhighlight lang="c">#include <stdint.h>
typedef struct {
uint32_t *pixels;
Line 171 ⟶ 170:
putpixel(dst,x, y, result);
}
}</langsyntaxhighlight>
 
=={{header|C sharp|C#}}==
{{trans|Java}}
Seems to have some artifacting in the output, but the image is at least recognizable.
<langsyntaxhighlight lang="csharp">using System;
using System.Drawing;
 
Line 226 ⟶ 224:
}
}
}</langsyntaxhighlight>
 
=={{header|D}}==
This uses the module from the Grayscale Image task.
{{trans|C}}
<langsyntaxhighlight lang="d">import grayscale_image;
 
/// Currently this accepts only a Grayscale image, for simplicity.
Line 279 ⟶ 276:
im.rescaleGray(0.3, 0.1).savePGM("lena_smaller.pgm");
im.rescaleGray(1.3, 1.8).savePGM("lena_larger.pgm");
}</langsyntaxhighlight>
=={{header|F#|F sharp|F#}}==
 
=={{header|F#|F sharp}}==
{{trans|C#}}
<langsyntaxhighlight lang="fsharp">open System
open System.Drawing
 
Line 329 ⟶ 325:
result.Save("Lenna100_larger.jpg")
 
0 // return an integer exit code</langsyntaxhighlight>
 
=={{header|Go}}==
{{trans|C}}
Line 336 ⟶ 331:
<code>[https://godoc.org/golang.org/x/image/draw#BiLinear draw.BiLinear]</code>
from the <code>golang.org/x/image/draw</code> pacakge).
<langsyntaxhighlight Golang="go">package main
 
import (
Line 428 ⟶ 423:
}
return err
}</langsyntaxhighlight>
 
=={{header|J}}==
<syntaxhighlight lang="j">
<lang J>
Note 'FEA'
Here we develop a general method to generate isoparametric interpolants.
Line 493 ⟶ 487:
shape_functions =: COEFFICIENTS mp~ shape_function
interpolate =: mp shape_functions
</syntaxhighlight>
</lang>
<pre>
Note 'demonstrate the interpolant with a saddle'
Line 512 ⟶ 506:
 
Let n mean shape function, C mean constants, i mean interpolant, and the three digits meaning dimensionality, number of corners, and (in base 36) the number of nodes we construct various linear and quadratic interpolants in 1, 2, and 3 dimensions as
<syntaxhighlight lang="j">
<lang J>
Note 'Some elemental information'
 
Line 608 ⟶ 602:
i38q =: mp (C38r mp~ n38r)
i38r =: mp (C38r mp~ n38r)
</syntaxhighlight>
</lang>
 
=={{header|Java}}==
{{trans|Kotlin}}
<langsyntaxhighlight Javalang="java">import javax.imageio.ImageIO;
import java.awt.image.BufferedImage;
import java.io.File;
Line 667 ⟶ 660:
ImageIO.write(image2, "jpg", lenna2);
}
}</langsyntaxhighlight>
 
=={{header|Julia}}==
<langsyntaxhighlight lang="julia">using Images, FileIO, Interpolations
function enlarge(A::Matrix, factor::AbstractFloat)
Line 683 ⟶ 675:
Alarge = enlarge(A, 1.6);
save("data/lennaenlarged.jpg", Alarge)
</syntaxhighlight>
</lang>
 
=={{header|Kotlin}}==
{{trans|C}}
<langsyntaxhighlight lang="scala">// version 1.2.21
 
import java.io.File
Line 736 ⟶ 727:
val lenna2 = File("Lenna100_larger.jpg")
ImageIO.write(image2, "jpg", lenna2)
}</langsyntaxhighlight>
 
=={{header|Mathematica}}/{{header|Wolfram Language}}==
<langsyntaxhighlight Mathematicalang="mathematica">ImageResize[Import["http://www.rosettacode.org/mw/title.png"], Scaled[1.6], Resampling -> "Linear"]</langsyntaxhighlight>
{{out}}
Shows a downloaded image that is 60% enlarged.
 
=={{header|Nim}}==
{{trans|F#}}
{{libheader|imageman}}
<langsyntaxhighlight Nimlang="nim">import imageman
 
func lerp(s, e, t: float): float =
Line 779 ⟶ 768:
let image = loadImage[ColorRGBU]("Lenna100.jpg")
let newImage = image.scale(1.6, 1.6)
newImage.saveJPEG("Lenna100_bilinear.jpg")</langsyntaxhighlight>
 
=={{header|Perl}}==
<langsyntaxhighlight lang="perl">use strict;
use warnings;
 
Line 792 ⟶ 780:
my $image2 = $image->copyScaleInterpolated( 1.6*$width, 1.6*$height );
 
$image2->_file('color_wheel_interpolated.png');</langsyntaxhighlight>
Compare offsite images: [https://github.com/SqrtNegInf/Rosettacode-Perl5-Smoke/blob/master/ref/color_wheel.png color_wheel.png] vs.
[https://github.com/SqrtNegInf/Rosettacode-Perl5-Smoke/blob/master/ref/color_wheel_interpolated.png color_wheel_interpolated.png]
 
=={{header|Phix}}==
{{libheader|Phix/pGUI}}
Gui app with slider for between 2 and 200% scaling. Various bits of this code scavenged from C#/Go/Kotlin/Wikipedia.
<langsyntaxhighlight Phixlang="phix">-- demo\rosetta\Bilinear_interpolation.exw
include pGUI.e
 
Line 922 ⟶ 909:
 
IupMainLoop()
IupClose()</langsyntaxhighlight>
 
=={{header|Python}}==
 
Of course, it is much faster to use PIL, Pillow or SciPy to resize an image than to rely on this code.
 
<langsyntaxhighlight lang="python">#!/bin/python
import numpy as np
from scipy.misc import imread, imshow
Line 974 ⟶ 960:
 
imshow(enlargedImg)
</syntaxhighlight>
</lang>
 
=={{header|Racket}}==
This mimics the Wikipedia example.
<langsyntaxhighlight lang="racket">#lang racket
(require images/flomap)
 
Line 999 ⟶ 984:
(λ (k x y)
(flomap-bilinear-ref
fm k (+ 1/2 (/ x 250)) (+ 1/2 (/ y 250))))))</langsyntaxhighlight>
 
=={{header|Raku}}==
(formerly Perl 6)
<syntaxhighlight lang="raku" perl6line>#!/usr/bin/env perl6
 
use v6;
Line 1,033 ⟶ 1,017:
fclose($fh1);
fclose($fh2);
</syntaxhighlight>
</lang>
 
{{out}}
Line 1,039 ⟶ 1,023:
Lenna100.jpg: JPEG image data, JFIF standard 1.01, resolution (DPI), density 72x72, segment length 16, baseline, precision 8, 512x512, frames 3
Lenna100-larger.jpg: JPEG image data, JFIF standard 1.01, resolution (DPI), density 96x96, segment length 16, comment: "CREATOR: gd-jpeg v1.0 (using IJG JPEG v80), default quality", baseline, precision 8, 820x820, frames 3</pre>
 
=={{header|Scala}}==
===Imperative solution===
<langsyntaxhighlight Scalalang="scala">import java.awt.image.BufferedImage
import java.io.{File, IOException}
 
Line 1,100 ⟶ 1,083:
 
private def lerp(s: Float, e: Float, t: Float) = s + (e - s) * t
}</langsyntaxhighlight>
 
=={{header|Sidef}}==
{{trans|C}}
<langsyntaxhighlight lang="ruby">require('Imager')
 
func scale(img, scaleX, scaleY) {
Line 1,144 ⟶ 1,126:
var img = %O<Imager>.new(file => "input.png")
var out = scale(img, 1.6, 1.6)
out.write(file => "output.png")</langsyntaxhighlight>
 
=={{header|Tcl}}==
 
Line 1,152 ⟶ 1,133:
The script below will show the computed image in a GUI frame, and present a button to save it.
 
<syntaxhighlight lang="tcl">
<lang Tcl>
package require Tk
 
Line 1,197 ⟶ 1,178:
pack [button .b -text "save" -command [list save $im]]
 
</syntaxhighlight>
</lang>
 
=={{header|Visual Basic .NET}}==
{{trans|C#}}
<langsyntaxhighlight lang="vbnet">Imports System.Drawing
 
Module Module1
Line 1,252 ⟶ 1,232:
End Sub
 
End Module</langsyntaxhighlight>
 
=={{header|Wren}}==
{{trans|Kotlin}}
{{libheader|DOME}}
Note that currently DOME's ImageData class can only save files to disk in .png format.
<langsyntaxhighlight ecmascriptlang="wren">import "dome" for Window
import "graphics" for Canvas, Color, ImageData
import "math" for Math
Line 1,274 ⟶ 1,253:
construct new(filename, filename2, scaleX, scaleY) {
Window.title = "Bilinear interpolation"
_img = ImageData.loadFromFileload(filename)
var newWidth = (_img.width * scaleX).floor
var newHeight = (_img.height * scaleY).floor
Line 1,323 ⟶ 1,302:
}
 
var Game = BilinearInterpolation.new("Lenna100.jpg", "Lenna100_larger.png", 1.6, 1.6)</langsyntaxhighlight>
 
=={{header|Yabasic}}==
{{trans|Nim}}
<syntaxhighlight lang="yabasic">// Rosetta Code problem: http://rosettacode.org/wiki/Bilinear_interpolation
// Adapted from Nim to Yabasic by Galileo, 01/2022
 
import ReadFromPPM2
 
sub lerp(s, e, t)
return s + (e - s) * t
end sub
sub blerp(c00, c10, c01, c11, tx, ty)
return lerp(lerp(c00, c10, tx), lerp(c01, c11, tx), ty)
end sub
sub scale(scaleX, scaleY)
local width, height, x, y, gx, gy, gxi, gyi, gxf, gyf, c00$, c10$, c01$, c11$
width = peek("winwidth")
height = peek("winheight")
let newWidth = int(width * scaleX)
let newHeight = int(height * scaleY)
dim result(newWidth, newHeight, 3)
for x = 1 to newWidth
for y = 1 to newHeight:
let gx = x * (width - 1) / newWidth
let gy = y * (height - 1) / newHeight
let gxi = int(gx)
let gyi = int(gy)
let gxf = gx - gxi
let gyf = gy - gyi
let c00$ = right$(getbit$(gxi, gyi, gxi, gyi), 6)
let c10$ = right$(getbit$(gxi + 1, gyi, gxi + 1, gyi), 6)
let c01$ = right$(getbit$(gxi, gyi + 1, gxi, gyi + 1), 6)
let c11$ = right$(getbit$(gxi + 1, gyi + 1, gxi + 1, gyi + 1), 6)
result(x, y, 1) = int(blerp(dec(left$(c00$, 2)), dec(left$(c10$, 2)), dec(left$(c01$, 2)), dec(left$(c11$, 2)), gxf, gyf))
result(x, y, 2) = int(blerp(dec(mid$(c00$, 3, 2)), dec(mid$(c10$, 3, 2)), dec(mid$(c01$, 3, 2)), dec(mid$(c11$, 3, 2)), gxf, gyf))
result(x, y, 3) = int(blerp(dec(right$(c00$, 2)), dec(right$(c10$, 2)), dec(right$(c01$, 2)), dec(right$(c11$, 2)), gxf, gyf))
next
next
end sub
readPPM("lena.ppm")
print "Be patient, please ..."
scale(1.6, 1.6)
close window
open window newWidth, newHeight
for x = 1 to newWidth
for y = 1 to newHeight
color result(x, y, 1), result(x, y, 2), result(x, y, 3)
dot x, y
next
next</syntaxhighlight>
=={{header|zkl}}==
{{trans|C}}
Line 1,330 ⟶ 1,363:
 
Not fast enough to be called slow.
<langsyntaxhighlight lang="zkl">fcn lerp(s,e,t){ s + (e-s)*t; }
fcn blerp(c00,c10,c01,c11, tx,ty){ lerp(lerp(c00,c10,tx), lerp(c01,c11,tx),ty) }
fcn scale(src, scaleX,scaleY){
Line 1,350 ⟶ 1,383:
}
dst
}</langsyntaxhighlight>
<langsyntaxhighlight lang="zkl">img:=PPM.readPPMFile("lena.ppm");
img2:=scale(img,1.5,1.5);
img2.write(File("lena1.5.ppm","wb"));
scale(img,0.5,0.5).write(File("lena.5.ppm","wb"));</langsyntaxhighlight>
{{out}}
http://www.zenkinetic.com/Images/RosettaCode/3Lenas.jpg
9,476

edits