Bilinear interpolation: Difference between revisions

m
→‎{{header|Wren}}: ImageData.loadFromFile now deprecated, changed to ImageData.load
m (→‎{{header|Phix}}: IupDestroy is now a function)
m (→‎{{header|Wren}}: ImageData.loadFromFile now deprecated, changed to ImageData.load)
 
(14 intermediate revisions by 9 users not shown)
Line 3:
[[wp:Bilinear interpolation|Bilinear interpolation]] is linear interpolation in 2 dimensions, and is typically used for image scaling and for 2D finite element analysis.
 
;Task:
 
;Task:
Open an image file, enlarge it by 60% using bilinear interpolation, then either display the result or save the result to a file.
<br><br>
=={{header|Action!}}==
In the following solution the input file [https://gitlab.com/amarok8bit/action-rosetta-code/-/blob/master/source/lena30g.PPM lena30g.PPM] is loaded from H6 drive. Altirra emulator automatically converts CR/LF character from ASCII into 155 character in ATASCII charset used by Atari 8-bit computer when one from H6-H10 hard drive under DOS 2.5 is used.
{{libheader|Action! Bitmap tools}}
{{libheader|Action! Tool Kit}}
{{libheader|Action! Real Math}}
<syntaxhighlight lang="action!">INCLUDE "H6:REALMATH.ACT"
INCLUDE "H6:LOADPPM5.ACT"
 
PROC PutBigPixel(INT x,y BYTE col)
IF x>=0 AND x<=79 AND y>=0 AND y<=47 THEN
y==LSH 2
col==RSH 4
IF col<0 THEN col=0
ELSEIF col>15 THEN col=15 FI
Color=col
Plot(x,y)
DrawTo(x,y+3)
FI
RETURN
 
PROC DrawImage(GrayImage POINTER image INT x,y)
INT i,j
BYTE c
 
FOR j=0 TO image.gh-1
DO
FOR i=0 TO image.gw-1
DO
c=GetGrayPixel(image,i,j)
PutBigPixel(x+i,y+j,c)
OD
OD
RETURN
 
PROC Lerp(REAL POINTER s,e,t,res)
REAL tmp1,tmp2
 
RealSub(e,s,tmp1) ;tmp1=e-s
RealMult(tmp1,t,tmp2) ;tmp2=(e-s)*t
RealAdd(s,tmp2,res) ;res=s+(e-s)*t
RETURN
 
PROC BilinearInterpolation(GrayImage POINTER src,dst)
INT i,j,x,y,c
REAL mx,my,rx,ry,fx,fy,tmp1,tmp2,tmp3,r00,r01,r10,r11
BYTE c00,c01,c10,c11
 
IntToReal(src.gw-1,tmp1) ;tmp1=src.width-1
IntToReal(dst.gw,tmp2) ;tmp2=dst.width
RealDiv(tmp1,tmp2,mx) ;mx=(src.width-1)/dst.width
IntToReal(src.gh-1,tmp1) ;tmp1=src.height-1
IntToReal(dst.gh,tmp2) ;tmp2=dst.height
RealDiv(tmp1,tmp2,my) ;my=(src.height-1)/dst.height
FOR j=0 TO dst.gh-1
DO
IntToReal(j,tmp1) ;tmp=j
RealMult(tmp1,my,ry) ;ry=j*my
y=Floor(ry)
IntToReal(y,tmp1) ;tmp1=floor(ry)
RealSub(ry,tmp1,fy) ;fy=frac(ry)
FOR i=0 TO dst.gw-1
DO
IntToReal(i,tmp1) ;tmp=i
RealMult(tmp1,mx,rx) ;rx=i*mx
x=Floor(rx)
IntToReal(x,tmp1) ;tmp1=floor(rx)
RealSub(rx,tmp1,fx) ;fx=frac(rx)
 
c00=GetGrayPixel(src,x,y)
c01=GetGrayPixel(src,x,y+1)
c10=GetGrayPixel(src,x+1,y)
c11=GetGrayPixel(src,x+1,y+1)
 
IntToReal(c00,r00)
IntToReal(c01,r01)
IntToReal(c10,r10)
IntToReal(c11,r11)
 
Lerp(r00,r10,fx,tmp1)
Lerp(r01,r11,fx,tmp2)
Lerp(tmp1,tmp2,fy,tmp3)
c=RealToInt(tmp3)
IF c<0 THEN
c=0
ELSEIF c>255 THEN
c=255
FI
SetGrayPixel(dst,i,j,c)
OD
OD
RETURN
 
PROC Main()
BYTE CH=$02FC ;Internal hardware value for last key pressed
BYTE ARRAY data30x30(900),data48x48(2304)
GrayImage im30x30,im48x48
 
Put(125) PutE() ;clear the screen
MathInit()
InitGrayImage(im30x30,30,30,data30x30)
InitGrayImage(im48x48,48,48,data48x48)
PrintE("Loading source image...")
LoadPPM5(im30x30,"H6:LENA30G.PPM")
PrintE("Bilinear interpolation...")
BilinearInterpolation(im30x30,im48x48)
 
Graphics(9)
DrawImage(im30x30,0,0)
DrawImage(im48x48,32,0)
 
DO UNTIL CH#$FF OD
CH=$FF
RETURN</syntaxhighlight>
{{out}}
[https://gitlab.com/amarok8bit/action-rosetta-code/-/raw/master/images/Bilinear_interpolation.png Screenshot from Atari 8-bit computer]
=={{header|C}}==
<langsyntaxhighlight lang="c">#include <stdint.h>
typedef struct {
uint32_t *pixels;
Line 19 ⟶ 134:
return image->pixels[(y*image->w)+x];
}
 
float max(float a, float b) { return (a < b) ? a : b; };
float lerp(float s, float e, float t){return s+(e-s)*t;}
float blerp(float c00, float c10, float c01, float c11, float tx, float ty){
Line 34 ⟶ 151:
x = 0; y++;
}
//float gx = x / (float)(newWidth) * (src->w - 1);
//float gy = y / (float)(newHeight) * (src->h - 1);
// Image should be clamped at the edges and not scaled.
float gx = max(x / (float)(newWidth) * (src->w) - 0.5f, src->w - 1);
float gy = max(y / (float)(newHeight) * (src->h) - 0.5, src->h - 1);
int gxi = (int)gx;
int gyi = (int)gy;
Line 50 ⟶ 170:
putpixel(dst,x, y, result);
}
}</langsyntaxhighlight>
 
=={{header|C sharp|C#}}==
{{trans|Java}}
Seems to have some artifacting in the output, but the image is at least recognizable.
<langsyntaxhighlight lang="csharp">using System;
using System.Drawing;
 
Line 105 ⟶ 224:
}
}
}</langsyntaxhighlight>
 
=={{header|D}}==
This uses the module from the Grayscale Image task.
{{trans|C}}
<langsyntaxhighlight lang="d">import grayscale_image;
 
/// Currently this accepts only a Grayscale image, for simplicity.
Line 158 ⟶ 276:
im.rescaleGray(0.3, 0.1).savePGM("lena_smaller.pgm");
im.rescaleGray(1.3, 1.8).savePGM("lena_larger.pgm");
}</langsyntaxhighlight>
=={{header|F sharp|F#}}==
 
=={{header|F#|F sharp}}==
{{trans|C#}}
<langsyntaxhighlight lang="fsharp">open System
open System.Drawing
 
Line 208 ⟶ 325:
result.Save("Lenna100_larger.jpg")
 
0 // return an integer exit code</langsyntaxhighlight>
 
=={{header|Go}}==
{{trans|C}}
Line 215 ⟶ 331:
<code>[https://godoc.org/golang.org/x/image/draw#BiLinear draw.BiLinear]</code>
from the <code>golang.org/x/image/draw</code> pacakge).
<langsyntaxhighlight Golang="go">package main
 
import (
Line 307 ⟶ 423:
}
return err
}</langsyntaxhighlight>
 
=={{header|J}}==
<syntaxhighlight lang="j">
<lang J>
Note 'FEA'
Here we develop a general method to generate isoparametric interpolants.
Line 372 ⟶ 487:
shape_functions =: COEFFICIENTS mp~ shape_function
interpolate =: mp shape_functions
</syntaxhighlight>
</lang>
<pre>
Note 'demonstrate the interpolant with a saddle'
Line 391 ⟶ 506:
 
Let n mean shape function, C mean constants, i mean interpolant, and the three digits meaning dimensionality, number of corners, and (in base 36) the number of nodes we construct various linear and quadratic interpolants in 1, 2, and 3 dimensions as
<syntaxhighlight lang="j">
<lang J>
Note 'Some elemental information'
 
Line 487 ⟶ 602:
i38q =: mp (C38r mp~ n38r)
i38r =: mp (C38r mp~ n38r)
</syntaxhighlight>
</lang>
 
=={{header|Java}}==
{{trans|Kotlin}}
<langsyntaxhighlight Javalang="java">import javax.imageio.ImageIO;
import java.awt.image.BufferedImage;
import java.io.File;
Line 546 ⟶ 660:
ImageIO.write(image2, "jpg", lenna2);
}
}</langsyntaxhighlight>
 
=={{header|Julia}}==
<langsyntaxhighlight lang="julia">using Images, FileIO, Interpolations
function enlarge(A::Matrix, factor::AbstractFloat)
Line 562 ⟶ 675:
Alarge = enlarge(A, 1.6);
save("data/lennaenlarged.jpg", Alarge)
</syntaxhighlight>
</lang>
 
=={{header|Kotlin}}==
{{trans|C}}
<langsyntaxhighlight lang="scala">// version 1.2.21
 
import java.io.File
Line 615 ⟶ 727:
val lenna2 = File("Lenna100_larger.jpg")
ImageIO.write(image2, "jpg", lenna2)
}</langsyntaxhighlight>
=={{header|Mathematica}}/{{header|Wolfram Language}}==
<syntaxhighlight lang="mathematica">ImageResize[Import["http://www.rosettacode.org/mw/title.png"], Scaled[1.6], Resampling -> "Linear"]</syntaxhighlight>
{{out}}
Shows a downloaded image that is 60% enlarged.
=={{header|Nim}}==
{{trans|F#}}
{{libheader|imageman}}
<syntaxhighlight lang="nim">import imageman
 
func lerp(s, e, t: float): float =
s + (e - s) * t
 
func blerp(c00, c10, c01, c11, tx, ty: float): float =
lerp(lerp(c00, c10, tx), lerp(c01, c11, tx), ty)
 
func scale(img: Image; scaleX, scaleY: float): Image =
let newWidth = (img.width.toFloat * scaleX).toInt
let newHeight = (img.height.toFloat * scaleY).toInt
result = initImage[ColorRGBU](newWidth, newHeight)
for x in 0..<newWidth:
for y in 0..<newHeight:
let gx = x * (img.width - 1) / newWidth
let gy = y * (img.height - 1) / newHeight
let gxi = gx.int
let gyi = gy.int
let gxf = gx - float(gxi)
let gyf = gy - float(gyi)
let c00 = img[gxi, gyi]
let c10 = img[gxi + 1, gyi]
let c01 = img[gxi, gyi + 1]
let c11 = img[gxi + 1, gyi + 1]
let red = blerp(float(c00[0]), float(c10[0]), float(c01[0]), float(c11[0]), gxf, gyf).toInt
let green = blerp(float(c00[1]), float(c10[1]), float(c01[1]), float(c11[1]), gxf, gyf).toInt
let blue = blerp(float(c00[2]), float(c10[2]), float(c01[2]), float(c11[2]), gxf, gyf).toInt
result[x, y] = ColorRGBU([byte(red), byte(green), byte(blue)])
 
when isMainModule:
 
let image = loadImage[ColorRGBU]("Lenna100.jpg")
let newImage = image.scale(1.6, 1.6)
newImage.saveJPEG("Lenna100_bilinear.jpg")</syntaxhighlight>
=={{header|Perl}}==
<langsyntaxhighlight lang="perl">use strict;
use warnings;
 
Line 628 ⟶ 780:
my $image2 = $image->copyScaleInterpolated( 1.6*$width, 1.6*$height );
 
$image2->_file('color_wheel_interpolated.png');</langsyntaxhighlight>
Compare offsite images: [https://github.com/SqrtNegInf/Rosettacode-Perl5-Smoke/blob/master/ref/color_wheel.png color_wheel.png] vs.
[https://github.com/SqrtNegInf/Rosettacode-Perl5-Smoke/blob/master/ref/color_wheel_interpolated.png color_wheel_interpolated.png]
 
=={{header|Phix}}==
{{libheader|Phix/pGUI}}
Gui app with slider for between 2 and 200% scaling. Various bits of this code scavenged from C#/Go/Kotlin/Wikipedia.
<langsyntaxhighlight Phixlang="phix">-- demo\rosetta\Bilinear_interpolation.exw
include pGUI.e
 
Line 755 ⟶ 906:
IupHbox({label1, label2})}))
IupSetAttribute(dlg, "TITLE", "Bilinear interpolation")
IupCloseOnEscape(dlg)
IupShow(dlg)
 
IupMainLoop()
IupClose()</langsyntaxhighlight>
 
=={{header|Python}}==
 
Of course, it is much faster to use PIL, Pillow or SciPy to resize an image than to rely on this code.
 
<langsyntaxhighlight lang="python">#!/bin/python
import numpy as np
from scipy.misc import imread, imshow
Line 811 ⟶ 960:
 
imshow(enlargedImg)
</syntaxhighlight>
</lang>
 
=={{header|Racket}}==
This mimics the Wikipedia example.
<langsyntaxhighlight lang="racket">#lang racket
(require images/flomap)
 
Line 836 ⟶ 984:
(λ (k x y)
(flomap-bilinear-ref
fm k (+ 1/2 (/ x 250)) (+ 1/2 (/ y 250))))))</langsyntaxhighlight>
 
=={{header|Raku}}==
(formerly Perl 6)
<syntaxhighlight lang="raku" perl6line>#!/usr/bin/env perl6
 
use v6;
Line 870 ⟶ 1,017:
fclose($fh1);
fclose($fh2);
</syntaxhighlight>
</lang>
 
{{out}}
Line 876 ⟶ 1,023:
Lenna100.jpg: JPEG image data, JFIF standard 1.01, resolution (DPI), density 72x72, segment length 16, baseline, precision 8, 512x512, frames 3
Lenna100-larger.jpg: JPEG image data, JFIF standard 1.01, resolution (DPI), density 96x96, segment length 16, comment: "CREATOR: gd-jpeg v1.0 (using IJG JPEG v80), default quality", baseline, precision 8, 820x820, frames 3</pre>
 
=={{header|Scala}}==
===Imperative solution===
<langsyntaxhighlight Scalalang="scala">import java.awt.image.BufferedImage
import java.io.{File, IOException}
 
Line 937 ⟶ 1,083:
 
private def lerp(s: Float, e: Float, t: Float) = s + (e - s) * t
}</langsyntaxhighlight>
 
=={{header|Sidef}}==
{{trans|C}}
<langsyntaxhighlight lang="ruby">require('Imager')
 
func scale(img, scaleX, scaleY) {
Line 981 ⟶ 1,126:
var img = %O<Imager>.new(file => "input.png")
var out = scale(img, 1.6, 1.6)
out.write(file => "output.png")</langsyntaxhighlight>
 
=={{header|Tcl}}==
 
Line 989 ⟶ 1,133:
The script below will show the computed image in a GUI frame, and present a button to save it.
 
<syntaxhighlight lang="tcl">
<lang Tcl>
package require Tk
 
Line 1,034 ⟶ 1,178:
pack [button .b -text "save" -command [list save $im]]
 
</syntaxhighlight>
</lang>
 
=={{header|Visual Basic .NET}}==
{{trans|C#}}
<langsyntaxhighlight lang="vbnet">Imports System.Drawing
 
Module Module1
Line 1,089 ⟶ 1,232:
End Sub
 
End Module</langsyntaxhighlight>
=={{header|Wren}}==
{{trans|Kotlin}}
{{libheader|DOME}}
Note that currently DOME's ImageData class can only save files to disk in .png format.
<syntaxhighlight lang="wren">import "dome" for Window
import "graphics" for Canvas, Color, ImageData
import "math" for Math
 
/* gets the 'n'th byte of a 4-byte integer */
var GetByte = Fn.new { |i, n| (i >> (n * 8)) & 0xff }
 
var Blerp = Fn.new { |c00, c10, c01, c11, tx, ty|
return Math.lerp(Math.lerp(c00, tx, c10), ty, Math.lerp(c01, tx, c11))
}
 
var ColorToInt = Fn.new { |c| (c.r) + (c.g << 8) + (c.b << 16) + (c.a << 24) }
 
class BilinearInterpolation {
construct new(filename, filename2, scaleX, scaleY) {
Window.title = "Bilinear interpolation"
_img = ImageData.load(filename)
var newWidth = (_img.width * scaleX).floor
var newHeight = (_img.height * scaleY).floor
Window.resize(newWidth, newHeight)
Canvas.resize(newWidth, newHeight)
_img2 = ImageData.create(filename2, newWidth, newHeight)
_filename2 = filename2
}
 
init() {
scaleImage()
}
 
scaleImage() {
for (x in 0..._img2.width) {
for (y in 0..._img2.height) {
var gx = x / _img2.width * (_img.width - 1)
var gy = y / _img2.height * (_img.height - 1)
var gxi = gx.floor
var gyi = gy.floor
var rgb = 0
var c00 = _img.pget(gxi, gyi)
var c10 = _img.pget(gxi+1, gyi)
var c01 = _img.pget(gxi, gyi+1)
var c11 = _img.pget(gxi+1, gyi+1)
for (i in 0..3) {
var b00 = GetByte.call(ColorToInt.call(c00), i)
var b10 = GetByte.call(ColorToInt.call(c10), i)
var b01 = GetByte.call(ColorToInt.call(c01), i)
var b11 = GetByte.call(ColorToInt.call(c11), i)
var ble = Blerp.call(b00, b10, b01, b11, gx-gxi, gy-gyi).floor << (8 * i)
rgb = rgb | ble
}
var r = GetByte.call(rgb, 0)
var g = GetByte.call(rgb, 1)
var b = GetByte.call(rgb, 2)
var a = GetByte.call(rgb, 3)
_img2.pset(x, y, Color.rgb(r, g, b, a))
}
}
_img2.draw(0, 0)
_img2.saveToFile(_filename2)
}
 
update() {}
 
draw(alpha) {}
}
 
var Game = BilinearInterpolation.new("Lenna100.jpg", "Lenna100_larger.png", 1.6, 1.6)</syntaxhighlight>
 
=={{header|Yabasic}}==
{{trans|Nim}}
<syntaxhighlight lang="yabasic">// Rosetta Code problem: http://rosettacode.org/wiki/Bilinear_interpolation
// Adapted from Nim to Yabasic by Galileo, 01/2022
 
import ReadFromPPM2
 
sub lerp(s, e, t)
return s + (e - s) * t
end sub
sub blerp(c00, c10, c01, c11, tx, ty)
return lerp(lerp(c00, c10, tx), lerp(c01, c11, tx), ty)
end sub
sub scale(scaleX, scaleY)
local width, height, x, y, gx, gy, gxi, gyi, gxf, gyf, c00$, c10$, c01$, c11$
width = peek("winwidth")
height = peek("winheight")
let newWidth = int(width * scaleX)
let newHeight = int(height * scaleY)
dim result(newWidth, newHeight, 3)
for x = 1 to newWidth
for y = 1 to newHeight:
let gx = x * (width - 1) / newWidth
let gy = y * (height - 1) / newHeight
let gxi = int(gx)
let gyi = int(gy)
let gxf = gx - gxi
let gyf = gy - gyi
let c00$ = right$(getbit$(gxi, gyi, gxi, gyi), 6)
let c10$ = right$(getbit$(gxi + 1, gyi, gxi + 1, gyi), 6)
let c01$ = right$(getbit$(gxi, gyi + 1, gxi, gyi + 1), 6)
let c11$ = right$(getbit$(gxi + 1, gyi + 1, gxi + 1, gyi + 1), 6)
result(x, y, 1) = int(blerp(dec(left$(c00$, 2)), dec(left$(c10$, 2)), dec(left$(c01$, 2)), dec(left$(c11$, 2)), gxf, gyf))
result(x, y, 2) = int(blerp(dec(mid$(c00$, 3, 2)), dec(mid$(c10$, 3, 2)), dec(mid$(c01$, 3, 2)), dec(mid$(c11$, 3, 2)), gxf, gyf))
result(x, y, 3) = int(blerp(dec(right$(c00$, 2)), dec(right$(c10$, 2)), dec(right$(c01$, 2)), dec(right$(c11$, 2)), gxf, gyf))
next
next
end sub
readPPM("lena.ppm")
print "Be patient, please ..."
scale(1.6, 1.6)
close window
open window newWidth, newHeight
for x = 1 to newWidth
for y = 1 to newHeight
color result(x, y, 1), result(x, y, 2), result(x, y, 3)
dot x, y
next
next</syntaxhighlight>
=={{header|zkl}}==
{{trans|C}}
Line 1,096 ⟶ 1,363:
 
Not fast enough to be called slow.
<langsyntaxhighlight lang="zkl">fcn lerp(s,e,t){ s + (e-s)*t; }
fcn blerp(c00,c10,c01,c11, tx,ty){ lerp(lerp(c00,c10,tx), lerp(c01,c11,tx),ty) }
fcn scale(src, scaleX,scaleY){
Line 1,116 ⟶ 1,383:
}
dst
}</langsyntaxhighlight>
<langsyntaxhighlight lang="zkl">img:=PPM.readPPMFile("lena.ppm");
img2:=scale(img,1.5,1.5);
img2.write(File("lena1.5.ppm","wb"));
scale(img,0.5,0.5).write(File("lena.5.ppm","wb"));</langsyntaxhighlight>
{{out}}
http://www.zenkinetic.com/Images/RosettaCode/3Lenas.jpg
9,476

edits