Averages/Arithmetic mean: Difference between revisions

Content added Content deleted
m (→‎{{header|Common Lisp}}: Corrected indentation)
m (syntax highlighting fixup automation)
Line 14: Line 14:


=={{header|0815}}==
=={{header|0815}}==
<lang 0815>
<syntaxhighlight lang=0815>
{x{+=<:2:x/%<:d:~$<:01:~><:02:~><:03:~><:04:~><:05:~><:06:~><:07:~><:08:
{x{+=<:2:x/%<:d:~$<:01:~><:02:~><:03:~><:04:~><:05:~><:06:~><:07:~><:08:
~><:09:~><:0a:~><:0b:~><:0c:~><:0d:~><:0e:~><:0f:~><:10:~><:11:~><:12:~>
~><:09:~><:0a:~><:0b:~><:0c:~><:0d:~><:0e:~><:0f:~><:10:~><:11:~><:12:~>
<:13:~><:14:~><:15:~><:16:~><:17:~><:18:~><:19:~><:ffffffffffffffff:~>{x
<:13:~><:14:~><:15:~><:16:~><:17:~><:18:~><:19:~><:ffffffffffffffff:~>{x
{+>}:8f:{&={+>{~>&=x<:ffffffffffffffff:/#:8f:{{=<:19:x/%
{+>}:8f:{&={+>{~>&=x<:ffffffffffffffff:/#:8f:{{=<:19:x/%
</syntaxhighlight>
</lang>
{{out}}
{{out}}
<pre>
<pre>
Line 28: Line 28:
=={{header|11l}}==
=={{header|11l}}==
{{trans|Python}}
{{trans|Python}}
<lang 11l>F average(x)
<syntaxhighlight lang=11l>F average(x)
R sum(x) / Float(x.len)
R sum(x) / Float(x.len)


print(average([0, 0, 3, 1, 4, 1, 5, 9, 0, 0]))</lang>
print(average([0, 0, 3, 1, 4, 1, 5, 9, 0, 0]))</syntaxhighlight>
{{out}}
{{out}}
<pre>
<pre>
Line 39: Line 39:
=={{header|360 Assembly}}==
=={{header|360 Assembly}}==
Compact and functional.
Compact and functional.
<lang 360asm>AVGP CSECT
<syntaxhighlight lang=360asm>AVGP CSECT
USING AVGP,12
USING AVGP,12
LR 12,15
LR 12,15
Line 65: Line 65:
Z DC CL80' '
Z DC CL80' '
U DS CL2
U DS CL2
END AVGP</lang>
END AVGP</syntaxhighlight>
{{out}}
{{out}}
<pre> 5.50</pre>
<pre> 5.50</pre>
Line 72: Line 72:
Called as a subroutine (i.e., JSR ArithmeticMean), this calculates the integer average of up to 255 8-bit unsigned integers. The address of the beginning of the list of integers is in the memory location ArrayPtr and the number of integers is in the memory location NumberInts. The arithmetic mean is returned in the memory location ArithMean.
Called as a subroutine (i.e., JSR ArithmeticMean), this calculates the integer average of up to 255 8-bit unsigned integers. The address of the beginning of the list of integers is in the memory location ArrayPtr and the number of integers is in the memory location NumberInts. The arithmetic mean is returned in the memory location ArithMean.


<lang 6502asm>ArithmeticMean: PHA
<syntaxhighlight lang=6502asm>ArithmeticMean: PHA
TYA
TYA
PHA ;push accumulator and Y register onto stack
PHA ;push accumulator and Y register onto stack
Line 111: Line 111:
TAY
TAY
PLA
PLA
RTS ;return from routine</lang>
RTS ;return from routine</syntaxhighlight>


=={{header|8th}}==
=={{header|8th}}==
<lang forth>
<syntaxhighlight lang=forth>
: avg \ a -- avg(a)
: avg \ a -- avg(a)
dup ' n:+ 0 a:reduce
dup ' n:+ 0 a:reduce
Line 124: Line 124:
[ 10 ] avg . cr
[ 10 ] avg . cr
bye
bye
</syntaxhighlight>
</lang>
Output is:<br>
Output is:<br>
2.54395<br>
2.54395<br>
Line 131: Line 131:


=={{header|ACL2}}==
=={{header|ACL2}}==
<lang Lisp>(defun mean-r (xs)
<syntaxhighlight lang=Lisp>(defun mean-r (xs)
(if (endp xs)
(if (endp xs)
(mv 0 0)
(mv 0 0)
Line 143: Line 143:
(mv-let (n d)
(mv-let (n d)
(mean-r xs)
(mean-r xs)
(/ n d))))</lang>
(/ n d))))</syntaxhighlight>


=={{header|Action!}}==
=={{header|Action!}}==
{{libheader|Action! Tool Kit}}
{{libheader|Action! Tool Kit}}
<lang Action!>INCLUDE "D2:REAL.ACT" ;from the Action! Tool Kit
<syntaxhighlight lang=Action!>INCLUDE "D2:REAL.ACT" ;from the Action! Tool Kit


PROC Mean(INT ARRAY a INT count REAL POINTER result)
PROC Mean(INT ARRAY a INT count REAL POINTER result)
Line 191: Line 191:
Test(a3,1)
Test(a3,1)
Test(a3,0)
Test(a3,0)
RETURN</lang>
RETURN</syntaxhighlight>
{{out}}
{{out}}
[https://gitlab.com/amarok8bit/action-rosetta-code/-/raw/master/images/Arithmetic_mean.png Screenshot from Atari 8-bit computer]
[https://gitlab.com/amarok8bit/action-rosetta-code/-/raw/master/images/Arithmetic_mean.png Screenshot from Atari 8-bit computer]
Line 202: Line 202:


=={{header|ActionScript}}==
=={{header|ActionScript}}==
<lang ActionScript>function mean(vector:Vector.<Number>):Number
<syntaxhighlight lang=ActionScript>function mean(vector:Vector.<Number>):Number
{
{
var sum:Number = 0;
var sum:Number = 0;
Line 208: Line 208:
sum += vector[i];
sum += vector[i];
return vector.length == 0 ? 0 : sum / vector.length;
return vector.length == 0 ? 0 : sum / vector.length;
}</lang>
}</syntaxhighlight>


=={{header|Ada}}==
=={{header|Ada}}==
This example shows how to pass a zero length vector as well as a larger vector. With Ada 2012 it is possible to check that pre conditions are satisfied (otherwise an exception is thrown). So we check that the length is not zero.
This example shows how to pass a zero length vector as well as a larger vector. With Ada 2012 it is possible to check that pre conditions are satisfied (otherwise an exception is thrown). So we check that the length is not zero.
<lang ada>with Ada.Float_Text_Io; use Ada.Float_Text_Io;
<syntaxhighlight lang=ada>with Ada.Float_Text_Io; use Ada.Float_Text_Io;
with Ada.Text_IO; use Ada.Text_IO;
with Ada.Text_IO; use Ada.Text_IO;


Line 233: Line 233:
Put(Item => Mean(A (1..0)), Fore => 1, Exp => 0);
Put(Item => Mean(A (1..0)), Fore => 1, Exp => 0);
New_Line;
New_Line;
end Mean_Main;</lang>
end Mean_Main;</syntaxhighlight>
Output:
Output:
3.83333
3.83333
Line 240: Line 240:


=={{header|Aime}}==
=={{header|Aime}}==
<lang aime>real
<syntaxhighlight lang=aime>real
mean(list l)
mean(list l)
{
{
Line 259: Line 259:


0;
0;
}</lang>
}</syntaxhighlight>


=={{header|ALGOL 68}}==
=={{header|ALGOL 68}}==
Line 267: Line 267:
{{works with|ALGOL 68G|Any - tested with release mk15-0.8b.fc9.i386}}
{{works with|ALGOL 68G|Any - tested with release mk15-0.8b.fc9.i386}}
{{works with|ELLA ALGOL 68|Any (with appropriate job cards) - tested with release 1.8.8d.fc9.i386 - note that some necessary LONG REAL operators are missing from ELLA's library.}}
{{works with|ELLA ALGOL 68|Any (with appropriate job cards) - tested with release 1.8.8d.fc9.i386 - note that some necessary LONG REAL operators are missing from ELLA's library.}}
<lang algol68>PROC mean = (REF[]REAL p)REAL:
<syntaxhighlight lang=algol68>PROC mean = (REF[]REAL p)REAL:
# Calculates the mean of qty REALs beginning at p. #
# Calculates the mean of qty REALs beginning at p. #
IF LWB p > UPB p THEN 0.0
IF LWB p > UPB p THEN 0.0
Line 279: Line 279:
[6]REAL test := (1.0, 2.0, 5.0, -5.0, 9.5, 3.14159);
[6]REAL test := (1.0, 2.0, 5.0, -5.0, 9.5, 3.14159);
print((mean(test),new line))
print((mean(test),new line))
)</lang>
)</syntaxhighlight>


=={{header|ALGOL W}}==
=={{header|ALGOL W}}==
<lang algolw>begin
<syntaxhighlight lang=algolw>begin
% procedure to find the mean of the elements of a vector. %
% procedure to find the mean of the elements of a vector. %
% As the procedure can't find the bounds of the array for itself, %
% As the procedure can't find the bounds of the array for itself, %
Line 303: Line 303:
r_format := "A"; r_w := 10; r_d := 2; % set fixed point output %
r_format := "A"; r_w := 10; r_d := 2; % set fixed point output %
write( mean( numbers, 1, 5 ) );
write( mean( numbers, 1, 5 ) );
end.</lang>
end.</syntaxhighlight>


=={{header|AmigaE}}==
=={{header|AmigaE}}==
Because of the way Amiga E handles floating point numbers, the passed list/vector must contain
Because of the way Amiga E handles floating point numbers, the passed list/vector must contain
all explicitly floating point values (e.g., you need to write "1.0", not "1")
all explicitly floating point values (e.g., you need to write "1.0", not "1")
<lang amigae>PROC mean(l:PTR TO LONG)
<syntaxhighlight lang=amigae>PROC mean(l:PTR TO LONG)
DEF m, i, ll
DEF m, i, ll
ll := ListLen(l)
ll := ListLen(l)
Line 321: Line 321:
WriteF('mean \s\n',
WriteF('mean \s\n',
RealF(s,mean([1.0, 2.0, 3.0, 4.0, 5.0]), 2))
RealF(s,mean([1.0, 2.0, 3.0, 4.0, 5.0]), 2))
ENDPROC</lang>
ENDPROC</syntaxhighlight>


=={{header|AntLang}}==
=={{header|AntLang}}==
AntLang has a built-in avg function.
AntLang has a built-in avg function.
<lang AntLang>avg[list]</lang>
<syntaxhighlight lang=AntLang>avg[list]</syntaxhighlight>


=={{header|APL}}==
=={{header|APL}}==
{{works with|APL2}}
{{works with|APL2}}
<lang apl> X←3 1 4 1 5 9
<syntaxhighlight lang=apl> X←3 1 4 1 5 9
(+/X)÷⍴X
(+/X)÷⍴X
3.833333333</lang>
3.833333333</syntaxhighlight>


=={{header|AppleScript}}==
=={{header|AppleScript}}==
Line 338: Line 338:
With vanilla AppleScript, the process is the literal one of adding the numbers and dividing by the list length. It naturally returns results of class real, but it would be simple to return integer-representable results as integers if required.
With vanilla AppleScript, the process is the literal one of adding the numbers and dividing by the list length. It naturally returns results of class real, but it would be simple to return integer-representable results as integers if required.


<lang applescript>on average(listOfNumbers)
<syntaxhighlight lang=applescript>on average(listOfNumbers)
set len to (count listOfNumbers)
set len to (count listOfNumbers)
if (len is 0) then return missing value
if (len is 0) then return missing value
Line 350: Line 350:
end average
end average


average({2500, 2700, 2400, 2300, 2550, 2650, 2750, 2450, 2600, 2400})</lang>
average({2500, 2700, 2400, 2300, 2550, 2650, 2750, 2450, 2600, 2400})</syntaxhighlight>


{{output}}
{{output}}
Line 359: Line 359:
The vanilla method above is the more efficient with lists of up to around 100 numbers. But for longer lists, using Foundation methods with AppleScriptObjectC can be useful
The vanilla method above is the more efficient with lists of up to around 100 numbers. But for longer lists, using Foundation methods with AppleScriptObjectC can be useful


<lang applescript>use AppleScript version "2.4" -- OS X 10.10 (Yosemite) or later
<syntaxhighlight lang=applescript>use AppleScript version "2.4" -- OS X 10.10 (Yosemite) or later
use framework "Foundation"
use framework "Foundation"


Line 369: Line 369:
end average
end average


average({2500, 2700, 2400, 2300, 2550, 2650, 2750, 2450, 2600, 2400})</lang>
average({2500, 2700, 2400, 2300, 2550, 2650, 2750, 2450, 2600, 2400})</syntaxhighlight>


{{output}}
{{output}}
Line 375: Line 375:


=={{header|Applesoft BASIC}}==
=={{header|Applesoft BASIC}}==
<lang ApplesoftBasic>REM COLLECTION IN DATA STATEMENTS, EMPTY DATA IS THE END OF THE COLLECTION
<syntaxhighlight lang=ApplesoftBasic>REM COLLECTION IN DATA STATEMENTS, EMPTY DATA IS THE END OF THE COLLECTION
0 READ V$
0 READ V$
1 IF LEN(V$) = 0 THEN END
1 IF LEN(V$) = 0 THEN END
Line 392: Line 392:
A(0) = 5 : A(1) = 1 : A(2) = 2 : A(3) = 2.718 : A(4) = 3 : A(5) = 3.142
A(0) = 5 : A(1) = 1 : A(2) = 2 : A(3) = 2.718 : A(4) = 3 : A(5) = 3.142
N = A(0) : IF N THEN S = 0 : FOR I = 1 TO N : S = S + A(I) : NEXT : ? S / N
N = A(0) : IF N THEN S = 0 : FOR I = 1 TO N : S = S + A(I) : NEXT : ? S / N
</syntaxhighlight>
</lang>


=={{header|Arturo}}==
=={{header|Arturo}}==


<lang rebol>arr: [1 2 3 4 5 6 7]
<syntaxhighlight lang=rebol>arr: [1 2 3 4 5 6 7]
print average arr</lang>
print average arr</syntaxhighlight>


{{out}}
{{out}}
Line 405: Line 405:


=={{header|Astro}}==
=={{header|Astro}}==
<lang astro>mean([1, 2, 3])
<syntaxhighlight lang=astro>mean([1, 2, 3])
mean(1..10)
mean(1..10)
mean([])
mean([])
</syntaxhighlight>
</lang>


=={{header|AutoHotkey}}==
=={{header|AutoHotkey}}==
<lang autohotkey>i = 10
<syntaxhighlight lang=autohotkey>i = 10
Loop, % i {
Loop, % i {
Random, v, -3.141592, 3.141592
Random, v, -3.141592, 3.141592
Line 417: Line 417:
sum += v
sum += v
}
}
MsgBox, % i ? list "`nmean: " sum/i:0</lang>
MsgBox, % i ? list "`nmean: " sum/i:0</syntaxhighlight>


=={{header|AWK}}==
=={{header|AWK}}==
<lang awk>cat mean.awk
<syntaxhighlight lang=awk>cat mean.awk
#!/usr/local/bin/gawk -f
#!/usr/local/bin/gawk -f


Line 444: Line 444:
print mean(nothing)
print mean(nothing)
}
}
</syntaxhighlight>
</lang>


{{out}}
{{out}}
Line 455: Line 455:
=={{header|Babel}}==
=={{header|Babel}}==


<lang babel>(3 24 18 427 483 49 14 4294 2 41) dup len <- sum ! -> / itod <<</lang>
<syntaxhighlight lang=babel>(3 24 18 427 483 49 14 4294 2 41) dup len <- sum ! -> / itod <<</syntaxhighlight>


{{Out}}
{{Out}}
Line 464: Line 464:


Assume the numbers are in an array named "nums".
Assume the numbers are in an array named "nums".
<lang qbasic>mean = 0
<syntaxhighlight lang=qbasic>mean = 0
sum = 0;
sum = 0;
FOR i = LBOUND(nums) TO UBOUND(nums)
FOR i = LBOUND(nums) TO UBOUND(nums)
Line 475: Line 475:
ELSE
ELSE
PRINT 0
PRINT 0
END IF</lang>
END IF</syntaxhighlight>


==={{header|BBC BASIC}}===
==={{header|BBC BASIC}}===
Line 481: Line 481:


To calculate the mean of an array:
To calculate the mean of an array:
<lang BBC BASIC>
<syntaxhighlight lang=BBC BASIC>
REM specific functions for the array/vector types
REM specific functions for the array/vector types
Line 510: Line 510:
DEF FN_Mean_Arithmetic#(n#())
DEF FN_Mean_Arithmetic#(n#())
= SUM(n#()) / (DIM(n#(),1)+1)
= SUM(n#()) / (DIM(n#(),1)+1)
</syntaxhighlight>
</lang>
[[User:MichaelHutton|Michael Hutton]] 14:02, 29 May 2011 (UTC)
[[User:MichaelHutton|Michael Hutton]] 14:02, 29 May 2011 (UTC)


==={{header|IS-BASIC}}===
==={{header|IS-BASIC}}===
<lang IS-BASIC>100 NUMERIC ARR(3 TO 8)
<syntaxhighlight lang=IS-BASIC>100 NUMERIC ARR(3 TO 8)
110 LET ARR(3)=3:LET ARR(4)=1:LET ARR(5)=4:LET ARR(6)=1:LET ARR(7)=5:LET ARR(8)=9
110 LET ARR(3)=3:LET ARR(4)=1:LET ARR(5)=4:LET ARR(6)=1:LET ARR(7)=5:LET ARR(8)=9
120 PRINT AM(ARR)
120 PRINT AM(ARR)
Line 523: Line 523:
170 NEXT
170 NEXT
180 LET AM=T/SIZE(A)
180 LET AM=T/SIZE(A)
190 END DEF</lang>
190 END DEF</syntaxhighlight>


=={{header|bc}}==
=={{header|bc}}==
Uses the current scale for calculating the mean.
Uses the current scale for calculating the mean.
<lang bc>define m(a[], n) {
<syntaxhighlight lang=bc>define m(a[], n) {
auto i, s
auto i, s


Line 534: Line 534:
}
}
return(s / n)
return(s / n)
}</lang>
}</syntaxhighlight>


=={{header|Befunge}}==
=={{header|Befunge}}==
The first input is the length of the vector. If a length of 0 is entered, the result is equal to <code>0/0</code>.
The first input is the length of the vector. If a length of 0 is entered, the result is equal to <code>0/0</code>.
<lang befunge>&:0\:!v!:-1<
<syntaxhighlight lang=befunge>&:0\:!v!:-1<
@./\$_\&+\^</lang>
@./\$_\&+\^</syntaxhighlight>


=={{header|blz}}==
=={{header|blz}}==
<lang blz>
<syntaxhighlight lang=blz>
:mean(vec)
:mean(vec)
vec.fold_left(0, (x, y -> x + y)) / vec.length()
vec.fold_left(0, (x, y -> x + y)) / vec.length()
end</lang>
end</syntaxhighlight>


=={{header|Bracmat}}==
=={{header|Bracmat}}==
Here are two solutions. The first uses a while loop, the second scans the input by backtracking.
Here are two solutions. The first uses a while loop, the second scans the input by backtracking.
<lang bracmat>
<syntaxhighlight lang=bracmat>
(mean1=
(mean1=
sum length n
sum length n
Line 574: Line 574:
| !sum*!length^-1
| !sum*!length^-1
);
);
</syntaxhighlight>
</lang>
To test with a list of all numbers 1 .. 999999:
To test with a list of all numbers 1 .. 999999:
<lang bracmat>
<syntaxhighlight lang=bracmat>
( :?test
( :?test
& 1000000:?Length
& 1000000:?Length
Line 582: Line 582:
& out$mean1$!test
& out$mean1$!test
& out$mean2$!test
& out$mean2$!test
)</lang>
)</syntaxhighlight>


=={{header|Brat}}==
=={{header|Brat}}==
<lang brat>mean = { list |
<syntaxhighlight lang=brat>mean = { list |
true? list.empty?, 0, { list.reduce(0, :+) / list.length }
true? list.empty?, 0, { list.reduce(0, :+) / list.length }
}
}


p mean 1.to 10 #Prints 5.5</lang>
p mean 1.to 10 #Prints 5.5</syntaxhighlight>


=={{header|Burlesque}}==
=={{header|Burlesque}}==


<lang burlesque>
<syntaxhighlight lang=burlesque>
blsq ) {1 2 2.718 3 3.142}av
blsq ) {1 2 2.718 3 3.142}av
2.372
2.372
blsq ) {}av
blsq ) {}av
NaN
NaN
</syntaxhighlight>
</lang>


=={{header|BQN}}==
=={{header|BQN}}==
Defines a tacit Avg function which works on any simple numeric list.
Defines a tacit Avg function which works on any simple numeric list.


<lang bqn>Avg ← +´÷≠
<syntaxhighlight lang=bqn>Avg ← +´÷≠


Avg 1‿2‿3‿4</lang>
Avg 1‿2‿3‿4</syntaxhighlight>
<lang>2.5</lang>
<lang>2.5</syntaxhighlight>


[https://mlochbaum.github.io/BQN/try.html#code=QXZnIOKGkCArwrTDt+KJoAoKQXZnIDHigL8y4oC/M+KAvzQ= Try It!]
[https://mlochbaum.github.io/BQN/try.html#code=QXZnIOKGkCArwrTDt+KJoAoKQXZnIDHigL8y4oC/M+KAvzQ= Try It!]
Line 613: Line 613:
Compute mean of a <code>double</code> array of given length. If length is zero, does whatever <code>0.0/0</code> does (usually means returning <code>NaN</code>).
Compute mean of a <code>double</code> array of given length. If length is zero, does whatever <code>0.0/0</code> does (usually means returning <code>NaN</code>).


<lang c>#include <stdio.h>
<syntaxhighlight lang=c>#include <stdio.h>


double mean(double *v, int len)
double mean(double *v, int len)
Line 636: Line 636:


return 0;
return 0;
}</lang>{{out}}<pre>
}</syntaxhighlight>{{out}}<pre>
mean[1, 2, 2.718, 3, 3.142] = 2.372
mean[1, 2, 2.718, 3, 3.142] = 2.372
mean[1, 2, 2.718, 3] = 2.1795
mean[1, 2, 2.718, 3] = 2.1795
Line 646: Line 646:


=={{header|C sharp|C#}}==
=={{header|C sharp|C#}}==
<lang csharp>using System;
<syntaxhighlight lang=csharp>using System;
using System.Linq;
using System.Linq;


Line 655: Line 655:
Console.WriteLine(new[] { 1, 2, 3 }.Average());
Console.WriteLine(new[] { 1, 2, 3 }.Average());
}
}
}</lang>
}</syntaxhighlight>


Alternative version (not using the built-in function):
Alternative version (not using the built-in function):
<lang csharp>using System;
<syntaxhighlight lang=csharp>using System;


class Program
class Program
Line 686: Line 686:
return d / nums.Length;
return d / nums.Length;
}
}
}</lang>
}</syntaxhighlight>


=={{header|C++}}==
=={{header|C++}}==
{{libheader|STL}}
{{libheader|STL}}
<lang cpp>#include <vector>
<syntaxhighlight lang=cpp>#include <vector>


double mean(const std::vector<double>& numbers)
double mean(const std::vector<double>& numbers)
Line 701: Line 701:
sum += *i;
sum += *i;
return sum / numbers.size();
return sum / numbers.size();
}</lang>
}</syntaxhighlight>


Shorter (and more idiomatic) version:
Shorter (and more idiomatic) version:


<lang cpp>#include <vector>
<syntaxhighlight lang=cpp>#include <vector>
#include <algorithm>
#include <algorithm>


Line 713: Line 713:
return 0;
return 0;
return std::accumulate(numbers.begin(), numbers.end(), 0.0) / numbers.size();
return std::accumulate(numbers.begin(), numbers.end(), 0.0) / numbers.size();
}</lang>
}</syntaxhighlight>


Idiomatic version templated on any kind of iterator:
Idiomatic version templated on any kind of iterator:


<lang cpp>#include <iterator>
<syntaxhighlight lang=cpp>#include <iterator>
#include <algorithm>
#include <algorithm>


Line 726: Line 726:
return 0;
return 0;
return std::accumulate(begin, end, 0.0) / std::distance(begin, end);
return std::accumulate(begin, end, 0.0) / std::distance(begin, end);
}</lang>
}</syntaxhighlight>


=={{header|Chef}}==
=={{header|Chef}}==


<lang Chef>Mean.
<syntaxhighlight lang=Chef>Mean.


Chef has no way to detect EOF, so rather than interpreting
Chef has no way to detect EOF, so rather than interpreting
Line 760: Line 760:
Pour contents of mixing bowl into baking dish.
Pour contents of mixing bowl into baking dish.


Serves 1.</lang>
Serves 1.</syntaxhighlight>


=={{header|Clojure}}==
=={{header|Clojure}}==


Returns a [http://clojure.org/data_structures ratio]:
Returns a [http://clojure.org/data_structures ratio]:
<lang lisp>(defn mean [sq]
<syntaxhighlight lang=lisp>(defn mean [sq]
(if (empty? sq)
(if (empty? sq)
0
0
(/ (reduce + sq) (count sq))))</lang>
(/ (reduce + sq) (count sq))))</syntaxhighlight>


Returns a float:
Returns a float:
<lang lisp>(defn mean [sq]
<syntaxhighlight lang=lisp>(defn mean [sq]
(if (empty? sq)
(if (empty? sq)
0
0
(float (/ (reduce + sq) (count sq)))))</lang>
(float (/ (reduce + sq) (count sq)))))</syntaxhighlight>


=={{header|COBOL}}==
=={{header|COBOL}}==
Intrinsic function:
Intrinsic function:
<lang cobol>FUNCTION MEAN(some-table (ALL))</lang>
<syntaxhighlight lang=cobol>FUNCTION MEAN(some-table (ALL))</syntaxhighlight>


Sample implementation:
Sample implementation:
<lang cobol> IDENTIFICATION DIVISION.
<syntaxhighlight lang=cobol> IDENTIFICATION DIVISION.
PROGRAM-ID. find-mean.
PROGRAM-ID. find-mean.


Line 808: Line 808:


GOBACK
GOBACK
.</lang>
.</syntaxhighlight>


=={{header|Cobra}}==
=={{header|Cobra}}==


<lang cobra>
<syntaxhighlight lang=cobra>
class Rosetta
class Rosetta
def mean(ns as List<of number>) as number
def mean(ns as List<of number>) as number
Line 826: Line 826:
print "mean of [[]] is [.mean(List<of number>())]"
print "mean of [[]] is [.mean(List<of number>())]"
print "mean of [[1,2,3,4]] is [.mean([1.0,2.0,3.0,4.0])]"
print "mean of [[1,2,3,4]] is [.mean([1.0,2.0,3.0,4.0])]"
</syntaxhighlight>
</lang>


Output:
Output:
Line 835: Line 835:


=={{header|CoffeeScript}}==
=={{header|CoffeeScript}}==
<lang coffeescript>
<syntaxhighlight lang=coffeescript>
mean = (array) ->
mean = (array) ->
return 0 if array.length is 0
return 0 if array.length is 0
Line 843: Line 843:
alert mean [1]
alert mean [1]
</syntaxhighlight>
</lang>


=={{header|Common Lisp}}==
=={{header|Common Lisp}}==
'''With Reduce'''
'''With Reduce'''


<lang lisp>(defun mean (&rest sequence)
<syntaxhighlight lang=lisp>(defun mean (&rest sequence)
(when sequence
(when sequence
(/ (reduce #'+ sequence) (length sequence))))</lang>
(/ (reduce #'+ sequence) (length sequence))))</syntaxhighlight>


'''With Loop'''
'''With Loop'''
<lang lisp>(defun mean (list)
<syntaxhighlight lang=lisp>(defun mean (list)
(when list
(when list
(/ (loop for i in list sum i)
(/ (loop for i in list sum i)
(length list))))</lang>
(length list))))</syntaxhighlight>


=={{header|Crystal}}==
=={{header|Crystal}}==
<lang ruby># Crystal will return NaN if an empty array is passed
<syntaxhighlight lang=ruby># Crystal will return NaN if an empty array is passed
def mean(arr) : Float64
def mean(arr) : Float64
arr.sum / arr.size.to_f
arr.sum / arr.size.to_f
end</lang>
end</syntaxhighlight>


=={{header|D}}==
=={{header|D}}==
===Imperative Version===
===Imperative Version===
<lang d>real mean(Range)(Range r) pure nothrow @nogc {
<syntaxhighlight lang=d>real mean(Range)(Range r) pure nothrow @nogc {
real sum = 0.0;
real sum = 0.0;
int count;
int count;
Line 888: Line 888:
data = [3, 1, 4, 1, 5, 9];
data = [3, 1, 4, 1, 5, 9];
writeln("Mean: ", data.mean);
writeln("Mean: ", data.mean);
}</lang>
}</syntaxhighlight>
{{out}}
{{out}}
<pre>mean: 0
<pre>mean: 0
mean: 3.83333</pre>
mean: 3.83333</pre>
===More Functional Version===
===More Functional Version===
<lang d>import std.stdio, std.algorithm, std.range;
<syntaxhighlight lang=d>import std.stdio, std.algorithm, std.range;


real mean(Range)(Range r) pure nothrow @nogc {
real mean(Range)(Range r) pure nothrow @nogc {
Line 902: Line 902:
writeln("Mean: ", (int[]).init.mean);
writeln("Mean: ", (int[]).init.mean);
writeln("Mean: ", [3, 1, 4, 1, 5, 9].mean);
writeln("Mean: ", [3, 1, 4, 1, 5, 9].mean);
}</lang>
}</syntaxhighlight>
{{out}}
{{out}}
<pre>Mean: 0
<pre>Mean: 0
Line 909: Line 909:
===More Precise Version===
===More Precise Version===
A (naive?) version that tries to minimize precision loss (but already the sum algorithm applied to a random access range of floating point values uses a more precise summing strategy):
A (naive?) version that tries to minimize precision loss (but already the sum algorithm applied to a random access range of floating point values uses a more precise summing strategy):
<lang d>import std.stdio, std.conv, std.algorithm, std.math, std.traits;
<syntaxhighlight lang=d>import std.stdio, std.conv, std.algorithm, std.math, std.traits;


CommonType!(T, real) mean(T)(T[] n ...) if (isNumeric!T) {
CommonType!(T, real) mean(T)(T[] n ...) if (isNumeric!T) {
Line 922: Line 922:
writefln("%8.5f", mean( 0, 3, 1, 4, 1, 5, 9, 0));
writefln("%8.5f", mean( 0, 3, 1, 4, 1, 5, 9, 0));
writefln("%8.5f", mean([-1e20, 3, 1, 4, 1, 5, 9, 1e20]));
writefln("%8.5f", mean([-1e20, 3, 1, 4, 1, 5, 9, 1e20]));
}</lang>
}</syntaxhighlight>
{{out}}
{{out}}
<pre> 0.00000
<pre> 0.00000
Line 929: Line 929:


=={{header|Dart}}==
=={{header|Dart}}==
<lang d>num mean(List<num> l) => l.reduce((num p, num n) => p + n) / l.length;
<syntaxhighlight lang=d>num mean(List<num> l) => l.reduce((num p, num n) => p + n) / l.length;


void main(){
void main(){
print(mean([1,2,3,4,5,6,7]));
print(mean([1,2,3,4,5,6,7]));
}</lang>
}</syntaxhighlight>
{{out}}
{{out}}
<pre>4.0</pre>
<pre>4.0</pre>
Line 940: Line 940:
This is not a translation of the bc solution. Array handling would add some complexity. This one-liner is similar to the K solution.
This is not a translation of the bc solution. Array handling would add some complexity. This one-liner is similar to the K solution.


<lang dc>1 2 3 5 7 zsn1k[+z1<+]ds+xln/p
<syntaxhighlight lang=dc>1 2 3 5 7 zsn1k[+z1<+]ds+xln/p
3.6</lang>
3.6</syntaxhighlight>


An expanded example, identifying an empty sample set, could be created as a file, e.g., amean.cd:
An expanded example, identifying an empty sample set, could be created as a file, e.g., amean.cd:


<lang dc>[[Nada Mean: ]Ppq]sq
<syntaxhighlight lang=dc>[[Nada Mean: ]Ppq]sq
zd0=qsn [stack length = n]sz
zd0=qsn [stack length = n]sz
1k [precision can be altered]sz
1k [precision can be altered]sz
[+z1<+]ds+x[Sum: ]Pp
[+z1<+]ds+x[Sum: ]Pp
ln/[Mean: ]Pp
ln/[Mean: ]Pp
[Sample size: ]Plnp</lang>
[Sample size: ]Plnp</syntaxhighlight>


By saving the sample set "1 2 3 5 7" in a file (sample.dc), the routine, listing summary information, could be called in a command line:
By saving the sample set "1 2 3 5 7" in a file (sample.dc), the routine, listing summary information, could be called in a command line:


<lang dc>$ dc sample.dc amean.cd
<syntaxhighlight lang=dc>$ dc sample.dc amean.cd
Sum: 18
Sum: 18
Mean: 3.6
Mean: 3.6
Sample size: 5
Sample size: 5
$</lang>
$</syntaxhighlight>


=={{header|Delphi}}==
=={{header|Delphi}}==
<lang Delphi>program AveragesArithmeticMean;
<syntaxhighlight lang=Delphi>program AveragesArithmeticMean;


{$APPTYPE CONSOLE}
{$APPTYPE CONSOLE}
Line 982: Line 982:
Writeln(Mean(TDoubleDynArray.Create()));
Writeln(Mean(TDoubleDynArray.Create()));
Writeln(Mean(TDoubleDynArray.Create(1,2,3,4,5)));
Writeln(Mean(TDoubleDynArray.Create(1,2,3,4,5)));
end.</lang>
end.</syntaxhighlight>


=={{header|Dyalect}}==
=={{header|Dyalect}}==


<lang dyalect>func avg(args...) {
<syntaxhighlight lang=dyalect>func avg(args...) {
var acc = .0
var acc = .0
var len = 0
var len = 0
Line 996: Line 996:
}
}


avg(1, 2, 3, 4, 5, 6)</lang>
avg(1, 2, 3, 4, 5, 6)</syntaxhighlight>


=={{header|E}}==
=={{header|E}}==
Line 1,002: Line 1,002:
Slightly generalized to support any object that allows iteration.
Slightly generalized to support any object that allows iteration.


<lang e>def meanOrZero(numbers) {
<syntaxhighlight lang=e>def meanOrZero(numbers) {
var count := 0
var count := 0
var sum := 0
var sum := 0
Line 1,010: Line 1,010:
}
}
return sum / 1.max(count)
return sum / 1.max(count)
}</lang>
}</syntaxhighlight>


=={{header|EasyLang}}==
=={{header|EasyLang}}==
Line 1,021: Line 1,021:
f[] = [ 1 2 3 4 5 6 7 8 ]
f[] = [ 1 2 3 4 5 6 7 8 ]
call mean f[] r
call mean f[] r
print r</lang>
print r</syntaxhighlight>


=={{header|EchoLisp}}==
=={{header|EchoLisp}}==
'''(mean values)''' is included in math.lib. values may be a list, vector, sequence, or any kind of procrastinator.
'''(mean values)''' is included in math.lib. values may be a list, vector, sequence, or any kind of procrastinator.
<lang scheme>
<syntaxhighlight lang=scheme>
(lib 'math)
(lib 'math)
(mean '(1 2 3 4)) ;; mean of a list
(mean '(1 2 3 4)) ;; mean of a list
Line 1,047: Line 1,047:
😁 warning: mean : zero-divide : empty-sequence
😁 warning: mean : zero-divide : empty-sequence
→ 0
→ 0
</syntaxhighlight>
</lang>


=={{header|ECL}}==
=={{header|ECL}}==
<lang ecl>
<syntaxhighlight lang=ecl>
AveVal(SET OF INTEGER s) := AVE(s);
AveVal(SET OF INTEGER s) := AVE(s);
Line 1,057: Line 1,057:
SetVals := [14,9,16,20,91];
SetVals := [14,9,16,20,91];
AveVal(SetVals) //returns 30.0 ;
AveVal(SetVals) //returns 30.0 ;
</syntaxhighlight>
</lang>


=={{header|Elena}}==
=={{header|Elena}}==
ELENA 5.0:
ELENA 5.0:
<lang elena>import extensions;
<syntaxhighlight lang=elena>import extensions;


extension op
extension op
Line 1,088: Line 1,088:
"Arithmetic mean of {",array.asEnumerable(),"} is ",
"Arithmetic mean of {",array.asEnumerable(),"} is ",
array.average()).readChar()
array.average()).readChar()
}</lang>
}</syntaxhighlight>
{{out}}
{{out}}
<pre>
<pre>
Line 1,095: Line 1,095:


=={{header|Elixir}}==
=={{header|Elixir}}==
<lang elixir>defmodule Average do
<syntaxhighlight lang=elixir>defmodule Average do
def mean(list), do: Enum.sum(list) / length(list)
def mean(list), do: Enum.sum(list) / length(list)
end</lang>
end</syntaxhighlight>


=={{header|Emacs Lisp}}==
=={{header|Emacs Lisp}}==
<lang lisp>(defun mean (lst)
<syntaxhighlight lang=lisp>(defun mean (lst)
(/ (float (apply '+ lst)) (length lst)))
(/ (float (apply '+ lst)) (length lst)))
(mean '(1 2 3 4))</lang>
(mean '(1 2 3 4))</syntaxhighlight>


{{libheader|Calc}}
{{libheader|Calc}}


<lang lisp>(let ((x '(1 2 3 4)))
<syntaxhighlight lang=lisp>(let ((x '(1 2 3 4)))
(calc-eval "vmean($1)" nil (append '(vec) x)))</lang>
(calc-eval "vmean($1)" nil (append '(vec) x)))</syntaxhighlight>


=={{header|Erlang}}==
=={{header|Erlang}}==
<lang erlang>mean([]) -> 0;
<syntaxhighlight lang=erlang>mean([]) -> 0;
mean(L) -> lists:sum(L)/erlang:length(L).</lang>
mean(L) -> lists:sum(L)/erlang:length(L).</syntaxhighlight>


=={{header|Euphoria}}==
=={{header|Euphoria}}==
<lang Euphoria>function mean(sequence s)
<syntaxhighlight lang=Euphoria>function mean(sequence s)
atom sum
atom sum
if length(s) = 0 then
if length(s) = 0 then
Line 1,129: Line 1,129:
sequence test
sequence test
test = {1.0, 2.0, 5.0, -5.0, 9.5, 3.14159}
test = {1.0, 2.0, 5.0, -5.0, 9.5, 3.14159}
? mean(test)</lang>
? mean(test)</syntaxhighlight>


=={{header|Excel}}==
=={{header|Excel}}==
Assuming the values are entered in the A column, type into any cell which will not be part of the list:
Assuming the values are entered in the A column, type into any cell which will not be part of the list:


<lang excel>=AVERAGE(A1:A10)</lang>
<syntaxhighlight lang=excel>=AVERAGE(A1:A10)</syntaxhighlight>


Assuming 10 values will be entered, alternatively, you can just type:
Assuming 10 values will be entered, alternatively, you can just type:


<lang excel>=AVERAGE(</lang>
<syntaxhighlight lang=excel>=AVERAGE(</syntaxhighlight>


and then select the start and end cells, not necessarily in the same row or column.
and then select the start and end cells, not necessarily in the same row or column.
Line 1,159: Line 1,159:
=={{header|F_Sharp|F#}}==
=={{header|F_Sharp|F#}}==
The following computes the running mean using a tail-recursive approach. If we just sum all the values then divide by the number of values then we will suffer from overflow problems for large lists. See [[wp:Moving_average|wikipedia]] about the moving average computation.
The following computes the running mean using a tail-recursive approach. If we just sum all the values then divide by the number of values then we will suffer from overflow problems for large lists. See [[wp:Moving_average|wikipedia]] about the moving average computation.
<lang fsharp>let avg (a:float) (v:float) n =
<syntaxhighlight lang=fsharp>let avg (a:float) (v:float) n =
a + (1. / ((float n) + 1.)) * (v - a)
a + (1. / ((float n) + 1.)) * (v - a)


let mean_series list =
let mean_series list =
let a, _ = List.fold_left (fun (a, n) h -> avg a (float h) n, n + 1) (0., 0) list in
let a, _ = List.fold_left (fun (a, n) h -> avg a (float h) n, n + 1) (0., 0) list in
a</lang>
a</syntaxhighlight>


Checking this:
Checking this:
<lang fsharp> > mean_series [1; 8; 2; 8; 1; 7; 1; 8; 2; 7; 3; 6; 1; 8; 100] ;;
<syntaxhighlight lang=fsharp> > mean_series [1; 8; 2; 8; 1; 7; 1; 8; 2; 7; 3; 6; 1; 8; 100] ;;
val it : float = 10.86666667
val it : float = 10.86666667
> mean_series [] ;;
> mean_series [] ;;
val it : float = 0.0</lang>
val it : float = 0.0</syntaxhighlight>


We can also make do with the built-in ''List.average'' function:
We can also make do with the built-in ''List.average'' function:
<lang fsharp>List.average [4;1;7;5;8;4;5;2;1;5;2;5]</lang>
<syntaxhighlight lang=fsharp>List.average [4;1;7;5;8;4;5;2;1;5;2;5]</syntaxhighlight>


=={{header|Factor}}==
=={{header|Factor}}==
<lang factor>USING: math math.statistics ;
<syntaxhighlight lang=factor>USING: math math.statistics ;


: arithmetic-mean ( seq -- n )
: arithmetic-mean ( seq -- n )
[ 0 ] [ mean ] if-empty ;</lang>
[ 0 ] [ mean ] if-empty ;</syntaxhighlight>


Tests:
Tests:


<lang factor>( scratchpad ) { 2 3 5 } arithmetic-mean >float
<syntaxhighlight lang=factor>( scratchpad ) { 2 3 5 } arithmetic-mean >float
3.333333333333333</lang>
3.333333333333333</syntaxhighlight>


=={{header|Fantom}}==
=={{header|Fantom}}==


<lang fantom>
<syntaxhighlight lang=fantom>
class Main
class Main
{
{
Line 1,207: Line 1,207:
}
}
}
}
</syntaxhighlight>
</lang>


=={{header|Fish}}==
=={{header|Fish}}==
<lang Fish>!vl0=?vl1=?vl&!
<syntaxhighlight lang=Fish>!vl0=?vl1=?vl&!
v< +<>0n; >n;
v< +<>0n; >n;
>l1)?^&,n;</lang>
>l1)?^&,n;</syntaxhighlight>
Must be called with the values pre-populated on the stack, which can be done in the <tt>fish.py</tt> interpreter with the <tt>-v</tt> switch:
Must be called with the values pre-populated on the stack, which can be done in the <tt>fish.py</tt> interpreter with the <tt>-v</tt> switch:
<pre>fish.py mean.fish -v 10 100 47 207.4</pre>
<pre>fish.py mean.fish -v 10 100 47 207.4</pre>
Line 1,219: Line 1,219:


=={{header|Forth}}==
=={{header|Forth}}==
<lang forth>: fmean ( addr n -- f )
<syntaxhighlight lang=forth>: fmean ( addr n -- f )
0e
0e
dup 0= if 2drop exit then
dup 0= if 2drop exit then
Line 1,228: Line 1,228:


create test 3e f, 1e f, 4e f, 1e f, 5e f, 9e f,
create test 3e f, 1e f, 4e f, 1e f, 5e f, 9e f,
test 6 fmean f. \ 3.83333333333333</lang>
test 6 fmean f. \ 3.83333333333333</syntaxhighlight>


=={{header|Fortran}}==
=={{header|Fortran}}==
In ISO Fortran 90 or later, use the SUM intrinsic, the SIZE intrinsic and the MAX intrinsic (to avoid divide by zero):
In ISO Fortran 90 or later, use the SUM intrinsic, the SIZE intrinsic and the MAX intrinsic (to avoid divide by zero):
<lang fortran>real, target, dimension(100) :: a = (/ (i, i=1, 100) /)
<syntaxhighlight lang=fortran>real, target, dimension(100) :: a = (/ (i, i=1, 100) /)
real, dimension(5,20) :: b = reshape( a, (/ 5,20 /) )
real, dimension(5,20) :: b = reshape( a, (/ 5,20 /) )
real, pointer, dimension(:) :: p => a(2:1) ! pointer to zero-length array
real, pointer, dimension(:) :: p => a(2:1) ! pointer to zero-length array
Line 1,251: Line 1,251:
! dividing by the length of the row, which is the number of columns (SIZE of dimension 2)
! dividing by the length of the row, which is the number of columns (SIZE of dimension 2)
colmeans = sum(b,2)/max(size(b,1),1) ! SUM elements in each column (dimension 2)
colmeans = sum(b,2)/max(size(b,1),1) ! SUM elements in each column (dimension 2)
! dividing by the length of the column, which is the number of rows (SIZE of dimension 1)</lang>
! dividing by the length of the column, which is the number of rows (SIZE of dimension 1)</syntaxhighlight>


=={{header|FreeBASIC}}==
=={{header|FreeBASIC}}==
<lang freebasic>
<syntaxhighlight lang=freebasic>
' FB 1.05.0 Win64
' FB 1.05.0 Win64


Line 1,297: Line 1,297:
Print "Press any key to quit the program"
Print "Press any key to quit the program"
Sleep
Sleep
</syntaxhighlight>
</lang>


{{out}}
{{out}}
Line 1,319: Line 1,319:
=={{header|Frink}}==
=={{header|Frink}}==
The following works on arrays or sets. If the collection is empty, this returns the special value <CODE>undef</CODE>.
The following works on arrays or sets. If the collection is empty, this returns the special value <CODE>undef</CODE>.
<lang frink>
<syntaxhighlight lang=frink>
mean[x] := length[x] > 0 ? sum[x] / length[x] : undef
mean[x] := length[x] > 0 ? sum[x] / length[x] : undef
</syntaxhighlight>
</lang>


=={{header|GAP}}==
=={{header|GAP}}==
<lang gap>Mean := function(v)
<syntaxhighlight lang=gap>Mean := function(v)
local n;
local n;
n := Length(v);
n := Length(v);
Line 1,335: Line 1,335:


Mean([3, 1, 4, 1, 5, 9]);
Mean([3, 1, 4, 1, 5, 9]);
# 23/6</lang>
# 23/6</syntaxhighlight>


=={{header|GEORGE}}==
=={{header|GEORGE}}==
<lang GEORGE>R (n) P ;
<syntaxhighlight lang=GEORGE>R (n) P ;
0
0
1, n rep (i)
1, n rep (i)
Line 1,344: Line 1,344:
]
]
n div
n div
P</lang>
P</syntaxhighlight>
Output:
Output:
<pre>
<pre>
Line 1,388: Line 1,388:
RETURN sum/size%
RETURN sum/size%
ENDFUNC
ENDFUNC
</syntaxhighlight>
</lang>


=={{header|Go}}==
=={{header|Go}}==
A little more elaborate that the task requires. The function "mean" fulfills the task of "a program to find the mean." As a Go idiom, it returns an ok value of true if result m is valid. An ok value of false means the input "vector" (a Go slice) was empty. The fancy accuracy preserving algorithm is a little more than was called more. The program main is a test program demonstrating the ok idiom and several data cases.
A little more elaborate that the task requires. The function "mean" fulfills the task of "a program to find the mean." As a Go idiom, it returns an ok value of true if result m is valid. An ok value of false means the input "vector" (a Go slice) was empty. The fancy accuracy preserving algorithm is a little more than was called more. The program main is a test program demonstrating the ok idiom and several data cases.


<lang go>package main
<syntaxhighlight lang=go>package main


import (
import (
Line 1,457: Line 1,457:
}
}
}
}
}</lang>
}</syntaxhighlight>
{{out}}
{{out}}
<pre>
<pre>
Line 1,483: Line 1,483:


=={{header|Groovy}}==
=={{header|Groovy}}==
<lang groovy>def avg = { list -> list == [] ? 0 : list.sum() / list.size() }</lang>
<syntaxhighlight lang=groovy>def avg = { list -> list == [] ? 0 : list.sum() / list.size() }</syntaxhighlight>


Test Program:
Test Program:
<lang groovy>println avg(0..9)
<syntaxhighlight lang=groovy>println avg(0..9)
println avg([2,2,2,4,2])
println avg([2,2,2,4,2])
println avg ([])</lang>
println avg ([])</syntaxhighlight>


Output:
Output:
Line 1,497: Line 1,497:
=={{header|Haskell}}==
=={{header|Haskell}}==
This function works if the element type is an instance of Fractional:
This function works if the element type is an instance of Fractional:
<lang haskell>mean :: (Fractional a) => [a] -> a
<syntaxhighlight lang=haskell>mean :: (Fractional a) => [a] -> a
mean [] = 0
mean [] = 0
mean xs = sum xs / Data.List.genericLength xs</lang>
mean xs = sum xs / Data.List.genericLength xs</syntaxhighlight>


But some types, e.g. integers, are not Fractional; the following function works for all Real types:
But some types, e.g. integers, are not Fractional; the following function works for all Real types:
<lang haskell>meanReals :: (Real a, Fractional b) => [a] -> b
<syntaxhighlight lang=haskell>meanReals :: (Real a, Fractional b) => [a] -> b
meanReals = mean . map realToFrac</lang>
meanReals = mean . map realToFrac</syntaxhighlight>


If you want to avoid keeping the list in memory and traversing it twice:
If you want to avoid keeping the list in memory and traversing it twice:


<lang haskell>{-# LANGUAGE BangPatterns #-}
<syntaxhighlight lang=haskell>{-# LANGUAGE BangPatterns #-}


import Data.List (foldl') --'
import Data.List (foldl') --'
Line 1,525: Line 1,525:


main :: IO ()
main :: IO ()
main = print $ mean [1 .. 100]</lang>
main = print $ mean [1 .. 100]</syntaxhighlight>


=={{header|HicEst}}==
=={{header|HicEst}}==
<lang hicest>REAL :: vec(100) ! no zero-length arrays in HicEst
<syntaxhighlight lang=hicest>REAL :: vec(100) ! no zero-length arrays in HicEst


vec = $ - 1/2 ! 0.5 ... 99.5
vec = $ - 1/2 ! 0.5 ... 99.5
mean = SUM(vec) / LEN(vec) ! 50
mean = SUM(vec) / LEN(vec) ! 50
END </lang>
END </syntaxhighlight>


=={{header|Hy}}==
=={{header|Hy}}==
Returns <tt>None</tt> if the input is of length zero.
Returns <tt>None</tt> if the input is of length zero.
<lang clojure>(defn arithmetic-mean [xs]
<syntaxhighlight lang=clojure>(defn arithmetic-mean [xs]
(if xs
(if xs
(/ (sum xs) (len xs))))</lang>
(/ (sum xs) (len xs))))</syntaxhighlight>


=={{header|Icon}} and {{header|Unicon}}==
=={{header|Icon}} and {{header|Unicon}}==
<lang icon>procedure main(args)
<syntaxhighlight lang=icon>procedure main(args)
every (s := 0) +:= !args
every (s := 0) +:= !args
write((real(s)/(0 ~= *args)) | 0)
write((real(s)/(0 ~= *args)) | 0)
end</lang>
end</syntaxhighlight>


Sample outputs:
Sample outputs:
Line 1,557: Line 1,557:
If truly only the mean is wanted, one could use
If truly only the mean is wanted, one could use


<lang idl>x = [3,1,4,1,5,9]
<syntaxhighlight lang=idl>x = [3,1,4,1,5,9]
print,mean(x)</lang>
print,mean(x)</syntaxhighlight>


But <tt>mean()</tt> is just a thin wrapper returning the zeroth element of <tt>moment()</tt> :
But <tt>mean()</tt> is just a thin wrapper returning the zeroth element of <tt>moment()</tt> :


<lang idl>print,moment(x)
<syntaxhighlight lang=idl>print,moment(x)
; ==>
; ==>
3.83333 8.96667 0.580037 -1.25081</lang>
3.83333 8.96667 0.580037 -1.25081</syntaxhighlight>


which are mean, variance, skewness and kurtosis.
which are mean, variance, skewness and kurtosis.
Line 1,572: Line 1,572:
=={{header|J}}==
=={{header|J}}==


<lang j>mean=: +/ % #</lang>
<syntaxhighlight lang=j>mean=: +/ % #</syntaxhighlight>


That is, sum divided by the number of items. The verb also works on higher-ranked arrays. For example:
That is, sum divided by the number of items. The verb also works on higher-ranked arrays. For example:


<lang j> mean 3 1 4 1 5 9
<syntaxhighlight lang=j> mean 3 1 4 1 5 9
3.83333
3.83333
mean $0 NB. $0 is a zero-length vector
mean $0 NB. $0 is a zero-length vector
Line 1,582: Line 1,582:
x=: 20 4 ?@$ 0 NB. a 20-by-4 table of random (0,1) numbers
x=: 20 4 ?@$ 0 NB. a 20-by-4 table of random (0,1) numbers
mean x
mean x
0.58243 0.402948 0.477066 0.511155</lang>
0.58243 0.402948 0.477066 0.511155</syntaxhighlight>


The computation can also be written as a loop. It is shown here for comparison only and is highly non-preferred compared to the version above.
The computation can also be written as a loop. It is shown here for comparison only and is highly non-preferred compared to the version above.


<lang j>mean1=: 3 : 0
<syntaxhighlight lang=j>mean1=: 3 : 0
z=. 0
z=. 0
for_i. i.#y do. z=. z+i{y end.
for_i. i.#y do. z=. z+i{y end.
Line 1,596: Line 1,596:
0
0
mean1 x
mean1 x
0.58243 0.402948 0.477066 0.511155</lang>
0.58243 0.402948 0.477066 0.511155</syntaxhighlight>


=={{header|Java}}==
=={{header|Java}}==
{{works with|Java|1.5+}}
{{works with|Java|1.5+}}


<lang java5>public static double avg(double... arr) {
<syntaxhighlight lang=java5>public static double avg(double... arr) {
double sum = 0.0;
double sum = 0.0;
for (double x : arr) {
for (double x : arr) {
Line 1,607: Line 1,607:
}
}
return sum / arr.length;
return sum / arr.length;
}</lang>
}</syntaxhighlight>


=={{header|JavaScript}}==
=={{header|JavaScript}}==
Line 1,613: Line 1,613:
===ES5===
===ES5===


<lang javascript>function mean(array)
<syntaxhighlight lang=javascript>function mean(array)
{
{
var sum = 0, i;
var sum = 0, i;
Line 1,624: Line 1,624:


alert( mean( [1,2,3,4,5] ) ); // 3
alert( mean( [1,2,3,4,5] ) ); // 3
alert( mean( [] ) ); // 0</lang>
alert( mean( [] ) ); // 0</syntaxhighlight>


Using the native function `.forEach()`:
Using the native function `.forEach()`:
<lang javascript>function mean(array) {
<syntaxhighlight lang=javascript>function mean(array) {
var sum = 0;
var sum = 0;
array.forEach(function(value){
array.forEach(function(value){
Line 1,635: Line 1,635:
}
}


alert( mean( [1,2,3,4,5] ) ); // 3</lang>
alert( mean( [1,2,3,4,5] ) ); // 3</syntaxhighlight>


Using the native function `.reduce()`:
Using the native function `.reduce()`:
<lang javascript>function mean(array) {
<syntaxhighlight lang=javascript>function mean(array) {
return !array.length ? 0
return !array.length ? 0
: array.reduce(function(pre, cur, i) {
: array.reduce(function(pre, cur, i) {
Line 1,647: Line 1,647:
alert( mean( [1,2,3,4,5] ) ); // 3
alert( mean( [1,2,3,4,5] ) ); // 3
alert( mean( [] ) ); // 0
alert( mean( [] ) ); // 0
</syntaxhighlight>
</lang>


Extending the `Array` prototype:
Extending the `Array` prototype:
<lang javascript>Array.prototype.mean = function() {
<syntaxhighlight lang=javascript>Array.prototype.mean = function() {
return !this.length ? 0
return !this.length ? 0
: this.reduce(function(pre, cur, i) {
: this.reduce(function(pre, cur, i) {
Line 1,659: Line 1,659:
alert( [1,2,3,4,5].mean() ); // 3
alert( [1,2,3,4,5].mean() ); // 3
alert( [].mean() ); // 0
alert( [].mean() ); // 0
</syntaxhighlight>
</lang>




{{libheader|Functional}}
{{libheader|Functional}}
<lang javascript>function mean(a)
<syntaxhighlight lang=javascript>function mean(a)
{
{
return a.length ? Functional.reduce('+', 0, a) / a.length : 0;
return a.length ? Functional.reduce('+', 0, a) / a.length : 0;
}</lang>
}</syntaxhighlight>




===ES6===
===ES6===


<lang JavaScript>(sample => {
<syntaxhighlight lang=JavaScript>(sample => {


// mean :: [Num] => (Num | NaN)
// mean :: [Num] => (Num | NaN)
Line 1,684: Line 1,684:
return mean(sample);
return mean(sample);


})([1, 2, 3, 4, 5, 6, 7, 8, 9]);</lang>
})([1, 2, 3, 4, 5, 6, 7, 8, 9]);</syntaxhighlight>


{{Out}}
{{Out}}
<lang JavaScript>5</lang>
<syntaxhighlight lang=JavaScript>5</syntaxhighlight>


=={{header|jq}}==
=={{header|jq}}==
The mean of an array of numbers can be computed by simply writing
The mean of an array of numbers can be computed by simply writing
<lang jq>add/length</lang>
<syntaxhighlight lang=jq>add/length</syntaxhighlight>


This definition raises an error condition if the array is empty, so it may make sense to define '''mean''' as follows, '''null''' being jq's null value:
This definition raises an error condition if the array is empty, so it may make sense to define '''mean''' as follows, '''null''' being jq's null value:
<lang jq>def mean: if length == 0 then null
<syntaxhighlight lang=jq>def mean: if length == 0 then null
else add/length
else add/length
end;</lang>
end;</syntaxhighlight>


=={{header|Julia}}==
=={{header|Julia}}==
Julia's built-in mean function accepts AbstractArrays (vector, matrix, etc.)
Julia's built-in mean function accepts AbstractArrays (vector, matrix, etc.)
<lang julia>julia> using Statistics; mean([1,2,3])
<syntaxhighlight lang=julia>julia> using Statistics; mean([1,2,3])
2.0
2.0
julia> mean(1:10)
julia> mean(1:10)
5.5
5.5
julia> mean([])
julia> mean([])
ERROR: mean of empty collection undefined: []</lang>
ERROR: mean of empty collection undefined: []</syntaxhighlight>


=={{header|K}}==
=={{header|K}}==
<lang k> mean: {(+/x)%#x}
<syntaxhighlight lang=k> mean: {(+/x)%#x}
mean 1 2 3 5 7
mean 1 2 3 5 7
3.6
3.6
mean@!0 / empty array
mean@!0 / empty array
0.0</lang>
0.0</syntaxhighlight>


=={{header|Kotlin}}==
=={{header|Kotlin}}==
Kotlin has builtin functions for some collection types.
Kotlin has builtin functions for some collection types.
Example:
Example:
<lang scala>fun main(args: Array<String>) {
<syntaxhighlight lang=scala>fun main(args: Array<String>) {
val nums = doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0)
val nums = doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0)
println("average = %f".format(nums.average()))
println("average = %f".format(nums.average()))
}</lang>
}</syntaxhighlight>


=={{header|KQL}}==
=={{header|KQL}}==
<lang kql>
<syntaxhighlight lang=kql>
let dataset = datatable(values:real)[
let dataset = datatable(values:real)[
1, 1.5, 3, 5, 6.5];
1, 1.5, 3, 5, 6.5];


dataset|summarize avg(values)
dataset|summarize avg(values)
</syntaxhighlight>
</lang>


Output:
Output:
Line 1,741: Line 1,741:


=={{header|Lambdatalk}}==
=={{header|Lambdatalk}}==
<lang scheme>
<syntaxhighlight lang=scheme>
{def mean
{def mean
{lambda {:s}
{lambda {:s}
Line 1,750: Line 1,750:
{mean {S.serie 0 1000}}
{mean {S.serie 0 1000}}
-> 500
-> 500
</syntaxhighlight>
</lang>


=={{header|langur}}==
=={{header|langur}}==
Line 1,758: Line 1,758:


{{works with|langur|0.6.6}}
{{works with|langur|0.6.6}}
<lang langur>val .mean = f(.x) fold(f{+}, .x) / len(.x)
<syntaxhighlight lang=langur>val .mean = f(.x) fold(f{+}, .x) / len(.x)


writeln " custom: ", .mean([7, 3, 12])
writeln " custom: ", .mean([7, 3, 12])
writeln "built-in: ", mean([7, 3, 12])</lang>
writeln "built-in: ", mean([7, 3, 12])</syntaxhighlight>


{{out}}
{{out}}
Line 1,768: Line 1,768:


=={{header|Lasso}}==
=={{header|Lasso}}==
<lang Lasso>define average(a::array) => {
<syntaxhighlight lang=Lasso>define average(a::array) => {
not #a->size ? return 0
not #a->size ? return 0
local(x = 0.0)
local(x = 0.0)
Line 1,775: Line 1,775:
}
}


average(array(1,2,5,17,7.4)) //6.48</lang>
average(array(1,2,5,17,7.4)) //6.48</syntaxhighlight>


=={{header|LFE}}==
=={{header|LFE}}==
Line 1,781: Line 1,781:
=== 1-Arity ===
=== 1-Arity ===


<lang lisp>
<syntaxhighlight lang=lisp>
(defun mean (data)
(defun mean (data)
(/ (lists:sum data)
(/ (lists:sum data)
(length data)))
(length data)))
</syntaxhighlight>
</lang>


Usage:
Usage:
<lang lisp>> (mean '(1 1))
<syntaxhighlight lang=lisp>> (mean '(1 1))
1.0
1.0
> (mean '(1 2))
> (mean '(1 2))
Line 1,795: Line 1,795:
6.0
6.0
> (mean '(6 12 18 24 30 36 42 48 54 60 66 72 78))
> (mean '(6 12 18 24 30 36 42 48 54 60 66 72 78))
42.0</lang>
42.0</syntaxhighlight>


=== n-Arity ===
=== n-Arity ===
Line 1,801: Line 1,801:
Functions in LFE (and Erlang) have set arity, but macros can be used to provide the same use as n-arity functions:
Functions in LFE (and Erlang) have set arity, but macros can be used to provide the same use as n-arity functions:


<lang lisp>(defmacro mean args
<syntaxhighlight lang=lisp>(defmacro mean args
`(/ (lists:sum ,args)
`(/ (lists:sum ,args)
,(length args)))</lang>
,(length args)))</syntaxhighlight>


Usage:
Usage:


<lang lisp>> (mean 42)
<syntaxhighlight lang=lisp>> (mean 42)
42.0
42.0
> (mean 18 66)
> (mean 18 66)
42.0
42.0
> (mean 6 12 18 24 30 36 42 48 54 60 66 72 78)
> (mean 6 12 18 24 30 36 42 48 54 60 66 72 78)
42.0</lang>
42.0</syntaxhighlight>


=={{header|Liberty BASIC}}==
=={{header|Liberty BASIC}}==
<lang lb>total=17
<syntaxhighlight lang=lb>total=17
dim nums(total)
dim nums(total)
for i = 1 to total
for i = 1 to total
Line 1,826: Line 1,826:
if total=0 then mean=0 else mean=sum/total
if total=0 then mean=0 else mean=sum/total
print "Arithmetic mean: ";mean
print "Arithmetic mean: ";mean
</lang>
</syntaxhighlight>


=={{header|Limbo}}==
=={{header|Limbo}}==
<lang Limbo>implement Command;
<syntaxhighlight lang=Limbo>implement Command;


include "sys.m";
include "sys.m";
Line 1,852: Line 1,852:
n += a[i];
n += a[i];
return n / (real len a);
return n / (real len a);
}</lang>
}</syntaxhighlight>


=={{header|Lingo}}==
=={{header|Lingo}}==
<lang Lingo>-- v can be (2D) point, (3D) vector or list of integers/floats
<syntaxhighlight lang=Lingo>-- v can be (2D) point, (3D) vector or list of integers/floats
on mean (v)
on mean (v)
case ilk(v) of
case ilk(v) of
Line 1,868: Line 1,868:
end repeat
end repeat
return float(sum)/cnt
return float(sum)/cnt
end</lang>
end</syntaxhighlight>


<lang Lingo>put mean(point(1, 2.5))
<syntaxhighlight lang=Lingo>put mean(point(1, 2.5))
-- 1.7500
-- 1.7500
put mean(vector(1.2, 4.7, 5.6))
put mean(vector(1.2, 4.7, 5.6))
-- 3.8333
-- 3.8333
put mean([6,12,18,24,30,36,42,48,54,60,66,72,78])
put mean([6,12,18,24,30,36,42,48,54,60,66,72,78])
-- 42.0000</lang>
-- 42.0000</syntaxhighlight>


=={{header|LiveCode}}==
=={{header|LiveCode}}==
Livecode provides arithmeticMean (avg, average) built-in.
Livecode provides arithmeticMean (avg, average) built-in.
<lang LiveCode>average(1,2,3,4,5) -- 3
<syntaxhighlight lang=LiveCode>average(1,2,3,4,5) -- 3
average(empty) -- 0</lang>
average(empty) -- 0</syntaxhighlight>


=={{header|Logo}}==
=={{header|Logo}}==
<lang logo>to average :l
<syntaxhighlight lang=logo>to average :l
if empty? :l [output 0]
if empty? :l [output 0]
output quotient apply "sum :l count :l
output quotient apply "sum :l count :l
end
end
print average [1 2 3 4] ; 2.5</lang>
print average [1 2 3 4] ; 2.5</syntaxhighlight>


=={{header|Logtalk}}==
=={{header|Logtalk}}==
Logtalk's standard library provides an arithmetic average predicate but we ignore it here. Representing a vector using a list:
Logtalk's standard library provides an arithmetic average predicate but we ignore it here. Representing a vector using a list:
<lang logtalk>
<syntaxhighlight lang=logtalk>
:- object(averages).
:- object(averages).


Line 1,909: Line 1,909:


:- end_object.
:- end_object.
</syntaxhighlight>
</lang>
Sample output:
Sample output:
<lang text>
<syntaxhighlight lang=text>
| ?- averages::arithmetic([1,2,3,4,5,6,7,8,9,10], Mean).
| ?- averages::arithmetic([1,2,3,4,5,6,7,8,9,10], Mean).
Mean = 5.5
Mean = 5.5
yes
yes
</syntaxhighlight>
</lang>


=={{header|LSL}}==
=={{header|LSL}}==
<lang LSL>integer MAX_ELEMENTS = 10;
<syntaxhighlight lang=LSL>integer MAX_ELEMENTS = 10;
integer MAX_VALUE = 100;
integer MAX_VALUE = 100;
default {
default {
Line 1,939: Line 1,939:
llOwnerSay(" Sum Squares: "+(string)llListStatistics(LIST_STAT_SUM_SQUARES, lst));
llOwnerSay(" Sum Squares: "+(string)llListStatistics(LIST_STAT_SUM_SQUARES, lst));
}
}
}</lang>
}</syntaxhighlight>
Output:
Output:
<pre>
<pre>
Line 1,956: Line 1,956:


=={{header|Lua}}==
=={{header|Lua}}==
<lang lua>function mean (numlist)
<syntaxhighlight lang=lua>function mean (numlist)
if type(numlist) ~= 'table' then return numlist end
if type(numlist) ~= 'table' then return numlist end
num = 0
num = 0
Line 1,963: Line 1,963:
end
end


print (mean({3,1,4,1,5,9}))</lang>
print (mean({3,1,4,1,5,9}))</syntaxhighlight>


=={{header|Lucid}}==
=={{header|Lucid}}==


<lang lucid>avg(x)
<syntaxhighlight lang=lucid>avg(x)
where
where
sum = first(x) fby sum + next(x);
sum = first(x) fby sum + next(x);
n = 1 fby n + 1;
n = 1 fby n + 1;
avg = sum / n;
avg = sum / n;
end</lang>
end</syntaxhighlight>


=={{header|M4}}==
=={{header|M4}}==
Line 1,980: Line 1,980:
directly, but it is a little bit clearer to keep them separated.
directly, but it is a little bit clearer to keep them separated.


<lang m4>define(`extractdec', `ifelse(eval(`$1%100 < 10'),1,`0',`')eval($1%100)')dnl
<syntaxhighlight lang=m4>define(`extractdec', `ifelse(eval(`$1%100 < 10'),1,`0',`')eval($1%100)')dnl
define(`fmean', `eval(`($2/$1)/100').extractdec(eval(`$2/$1'))')dnl
define(`fmean', `eval(`($2/$1)/100').extractdec(eval(`$2/$1'))')dnl
define(`mean', `rmean(`$#', $@)')dnl
define(`mean', `rmean(`$#', $@)')dnl
define(`rmean', `ifelse(`$3', `', `fmean($1,$2)',dnl
define(`rmean', `ifelse(`$3', `', `fmean($1,$2)',dnl
`rmean($1, eval($2+$3), shift(shift(shift($@))))')')dnl</lang>
`rmean($1, eval($2+$3), shift(shift(shift($@))))')')dnl</syntaxhighlight>
<lang m4>mean(0,100,200,300,400,500,600,700,800,900,1000)</lang>
<syntaxhighlight lang=m4>mean(0,100,200,300,400,500,600,700,800,900,1000)</syntaxhighlight>


=={{header|Maple}}==
=={{header|Maple}}==
This version accepts any indexable structure, including numeric arrays. We use a call to the "environment variable" (dynamically scoped global) "Normalizer" to provide normalization of symbolic expressions. This can be set by the caller to adjust the strength of normalization desired.
This version accepts any indexable structure, including numeric arrays. We use a call to the "environment variable" (dynamically scoped global) "Normalizer" to provide normalization of symbolic expressions. This can be set by the caller to adjust the strength of normalization desired.
<lang Maple>
<syntaxhighlight lang=Maple>
mean := proc( a :: indexable )
mean := proc( a :: indexable )
local i;
local i;
Normalizer( add( i, i in a ) / numelems( a ) )
Normalizer( add( i, i in a ) / numelems( a ) )
end proc:
end proc:
</syntaxhighlight>
</lang>
For example:
For example:
<lang Maple>
<syntaxhighlight lang=Maple>
> mean( { 1/2, 2/3, 3/4, 4/5, 5/6 } ); # set
> mean( { 1/2, 2/3, 3/4, 4/5, 5/6 } ); # set
71
71
Line 2,018: Line 2,018:
> mean([]); # empty argument causes an exception to be raised.
> mean([]); # empty argument causes an exception to be raised.
Error, (in mean) numeric exception: division by zero
Error, (in mean) numeric exception: division by zero
</syntaxhighlight>
</lang>
A slightly different design computes the mean of all its arguments, instead of requiring a single container argument. This seems a little more Maple-like for a general purpose utility.
A slightly different design computes the mean of all its arguments, instead of requiring a single container argument. This seems a little more Maple-like for a general purpose utility.
<lang Maple>mean := () -> Normalizer( `+`( args ) / nargs ):</lang>
<syntaxhighlight lang=Maple>mean := () -> Normalizer( `+`( args ) / nargs ):</syntaxhighlight>
This can be called as in the following examples.
This can be called as in the following examples.
<lang Maple>
<syntaxhighlight lang=Maple>
> mean( 1, 2, 3, 4, 5 );
> mean( 1, 2, 3, 4, 5 );
3
3
Line 2,033: Line 2,033:
> mean(); # again, an exception is raised
> mean(); # again, an exception is raised
Error, (in mean) numeric exception: division by zero
Error, (in mean) numeric exception: division by zero
</syntaxhighlight>
</lang>
If desired, we can add argument type-checking as follows.
If desired, we can add argument type-checking as follows.
<lang Maple>mean := ( s :: seq(algebraic) ) -> Normalizer( `+`( args ) / nargs ):</lang>
<syntaxhighlight lang=Maple>mean := ( s :: seq(algebraic) ) -> Normalizer( `+`( args ) / nargs ):</syntaxhighlight>


=={{header|Mathematica}} / {{header|Wolfram Language}}==
=={{header|Mathematica}} / {{header|Wolfram Language}}==
Modify the built-in Mean function to give 0 for empty vectors (lists in Mathematica):
Modify the built-in Mean function to give 0 for empty vectors (lists in Mathematica):
<lang mathematica>Unprotect[Mean];
<syntaxhighlight lang=mathematica>Unprotect[Mean];
Mean[{}] := 0</lang>
Mean[{}] := 0</syntaxhighlight>
Examples:
Examples:
<lang mathematica>Mean[{3,4,5}]
<syntaxhighlight lang=mathematica>Mean[{3,4,5}]
Mean[{3.2,4.5,5.9}]
Mean[{3.2,4.5,5.9}]
Mean[{-4, 1.233}]
Mean[{-4, 1.233}]
Mean[{}]
Mean[{}]
Mean[{1/2,1/3,1/4,1/5}]
Mean[{1/2,1/3,1/4,1/5}]
Mean[{a,c,Pi,-3,a}]</lang>
Mean[{a,c,Pi,-3,a}]</syntaxhighlight>
gives (a set of integers gives back an integer or a rational, a set of floats gives back a float, a set of rationals gives a rational back, a list of symbols and numbers keeps the symbols exact and a mix of exact and approximate numbers gives back an approximate number):
gives (a set of integers gives back an integer or a rational, a set of floats gives back a float, a set of rationals gives a rational back, a list of symbols and numbers keeps the symbols exact and a mix of exact and approximate numbers gives back an approximate number):
<lang mathematica>4
<syntaxhighlight lang=mathematica>4
4.53333
4.53333
-1.3835
-1.3835
0
0
77/240
77/240
1/5 (-3+2 a+c+Pi)</lang>
1/5 (-3+2 a+c+Pi)</syntaxhighlight>


=={{header|Mathprog}}==
=={{header|Mathprog}}==
Line 2,091: Line 2,091:


end;
end;
</syntaxhighlight>
</lang>


When run this produces:
When run this produces:
Line 2,118: Line 2,118:
The arithmetic mean of the integers from 1 to 1048575 is 524288.000000
The arithmetic mean of the integers from 1 to 1048575 is 524288.000000
Model has been successfully processed
Model has been successfully processed
</syntaxhighlight>
</lang>


=={{header|MATLAB}}==
=={{header|MATLAB}}==
<lang Matlab>function meanValue = findmean(setOfValues)
<syntaxhighlight lang=Matlab>function meanValue = findmean(setOfValues)
meanValue = mean(setOfValues);
meanValue = mean(setOfValues);
end</lang>
end</syntaxhighlight>


=={{header|Maxima}}==
=={{header|Maxima}}==
<lang maxima>load("descriptive");
<syntaxhighlight lang=maxima>load("descriptive");
mean([2, 7, 11, 17]);</lang>
mean([2, 7, 11, 17]);</syntaxhighlight>


=={{header|MAXScript}}==
=={{header|MAXScript}}==
<lang maxscript>fn mean data =
<syntaxhighlight lang=maxscript>fn mean data =
(
(
total = 0
total = 0
Line 2,140: Line 2,140:
)
)


print (mean #(3, 1, 4, 1, 5, 9))</lang>
print (mean #(3, 1, 4, 1, 5, 9))</syntaxhighlight>


=={{header|Mercury}}==
=={{header|Mercury}}==
<lang mercury>:- module arithmetic_mean.
<syntaxhighlight lang=mercury>:- module arithmetic_mean.
:- interface.
:- interface.


Line 2,162: Line 2,162:
mean(Ns @ [_ | _]) = foldl((+), Ns, 0.0) / float(length(Ns)).
mean(Ns @ [_ | _]) = foldl((+), Ns, 0.0) / float(length(Ns)).


:- end_module arithmetic_mean.</lang>
:- end_module arithmetic_mean.</syntaxhighlight>


Alternatively, we could use inst subtyping to ensure we get a compilation error if the
Alternatively, we could use inst subtyping to ensure we get a compilation error if the
mean function is called with an empty list.
mean function is called with an empty list.


<lang mercury>:- func mean(list(float)::in(non_empty_list)) = (float::out).
<syntaxhighlight lang=mercury>:- func mean(list(float)::in(non_empty_list)) = (float::out).


mean(Ns) = foldl((+), Ns, 0.0) / float(length(Ns)).</lang>
mean(Ns) = foldl((+), Ns, 0.0) / float(length(Ns)).</syntaxhighlight>


=={{header|min}}==
=={{header|min}}==
Returns <code>nan</code> for an empty quotation.
Returns <code>nan</code> for an empty quotation.
{{works with|min|0.19.3}}
{{works with|min|0.19.3}}
<lang min>(((0 (+) reduce) (size /)) cleave) :mean
<syntaxhighlight lang=min>(((0 (+) reduce) (size /)) cleave) :mean
(2 3 5) mean print</lang>
(2 3 5) mean print</syntaxhighlight>
{{out}}
{{out}}
<pre>
<pre>
Line 2,183: Line 2,183:
=={{header|MiniScript}}==
=={{header|MiniScript}}==


<lang MiniScript>arr = [ 1, 3, 7, 8, 9, 1 ]
<syntaxhighlight lang=MiniScript>arr = [ 1, 3, 7, 8, 9, 1 ]


avg = function(arr)
avg = function(arr)
Line 2,193: Line 2,193:
end function
end function


print avg(arr)</lang>
print avg(arr)</syntaxhighlight>


=={{header|МК-61/52}}==
=={{header|МК-61/52}}==
<lang>0 П0 П1 С/П ИП0 ИП1 * + ИП1 1
<lang>0 П0 П1 С/П ИП0 ИП1 * + ИП1 1
+ П1 / П0 БП 03</lang>
+ П1 / П0 БП 03</syntaxhighlight>


''Instruction:'' В/О С/П Number С/П Number ...
''Instruction:'' В/О С/П Number С/П Number ...
Line 2,204: Line 2,204:


=={{header|Modula-2}}==
=={{header|Modula-2}}==
<lang modula2>PROCEDURE Avg;
<syntaxhighlight lang=modula2>PROCEDURE Avg;


VAR avg : REAL;
VAR avg : REAL;
Line 2,213: Line 2,213:
InOut.WriteReal (avg, 8, 2);
InOut.WriteReal (avg, 8, 2);
InOut.WriteLn
InOut.WriteLn
END Avg;</lang>
END Avg;</syntaxhighlight>
OR
OR
<lang modula2>PROCEDURE Average (Data : ARRAY OF REAL; Samples : CARDINAL) : REAL;
<syntaxhighlight lang=modula2>PROCEDURE Average (Data : ARRAY OF REAL; Samples : CARDINAL) : REAL;


(* Calculate the average over 'Samples' values, stored in array 'Data'. *)
(* Calculate the average over 'Samples' values, stored in array 'Data'. *)
Line 2,228: Line 2,228:
END;
END;
RETURN sum / FLOAT(Samples)
RETURN sum / FLOAT(Samples)
END Average;</lang>
END Average;</syntaxhighlight>


=={{header|MUMPS}}==
=={{header|MUMPS}}==
<lang MUMPS>MEAN(X)
<syntaxhighlight lang=MUMPS>MEAN(X)
;X is assumed to be a list of numbers separated by "^"
;X is assumed to be a list of numbers separated by "^"
QUIT:'$DATA(X) "No data"
QUIT:'$DATA(X) "No data"
Line 2,238: Line 2,238:
SET S=0,I=1
SET S=0,I=1
FOR QUIT:I>$L(X,"^") SET S=S+$P(X,"^",I),I=I+1
FOR QUIT:I>$L(X,"^") SET S=S+$P(X,"^",I),I=I+1
QUIT (S/$L(X,"^"))</lang>
QUIT (S/$L(X,"^"))</syntaxhighlight>
<pre>USER>W $$MEAN^ROSETTA
<pre>USER>W $$MEAN^ROSETTA
No data
No data
Line 2,250: Line 2,250:


=={{header|Nanoquery}}==
=={{header|Nanoquery}}==
<lang Nanoquery>def sum(lst)
<syntaxhighlight lang=Nanoquery>def sum(lst)
sum = 0
sum = 0
for n in lst
for n in lst
Line 2,260: Line 2,260:
def average(x)
def average(x)
return sum(x) / len(x)
return sum(x) / len(x)
end</lang>
end</syntaxhighlight>


=={{header|Nemerle}}==
=={{header|Nemerle}}==
<lang Nemerle>using System;
<syntaxhighlight lang=Nemerle>using System;
using System.Console;
using System.Console;
using Nemerle.Collections;
using Nemerle.Collections;
Line 2,279: Line 2,279:
WriteLine("Mean of [1 .. 10]: {0}", ArithmeticMean($[1 .. 10]));
WriteLine("Mean of [1 .. 10]: {0}", ArithmeticMean($[1 .. 10]));
}
}
}</lang>
}</syntaxhighlight>


=={{header|NetRexx}}==
=={{header|NetRexx}}==
<lang NetRexx>/* NetRexx */
<syntaxhighlight lang=NetRexx>/* NetRexx */
options replace format comments java crossref symbols nobinary
options replace format comments java crossref symbols nobinary


Line 2,333: Line 2,333:
]
]
return vectors
return vectors
</syntaxhighlight>
</lang>
'''Output:'''
'''Output:'''
<pre>
<pre>
Line 2,357: Line 2,357:


=={{header|NewLISP}}==
=={{header|NewLISP}}==
<lang NewLISP>(define (Mean Lst)
<syntaxhighlight lang=NewLISP>(define (Mean Lst)
(if (empty? Lst)
(if (empty? Lst)
0
0
Line 2,363: Line 2,363:
(Mean (sequence 1 1000))-> 500
(Mean (sequence 1 1000))-> 500
(Mean '()) -> 0</lang>
(Mean '()) -> 0</syntaxhighlight>


=={{header|Nial}}==
=={{header|Nial}}==
in the standard way, mean is
in the standard way, mean is
<lang nial>mean is / [sum, tally]
<syntaxhighlight lang=nial>mean is / [sum, tally]


mean 6 2 4
mean 6 2 4
= 4</lang>
= 4</syntaxhighlight>
but it fails with 0 length vectors. so using a tally with a minimum value 1
but it fails with 0 length vectors. so using a tally with a minimum value 1


<lang nial>dtally is recur [ empty rest, 1 first, 1 first, plus, rest ]
<syntaxhighlight lang=nial>dtally is recur [ empty rest, 1 first, 1 first, plus, rest ]
mean is / [sum, dtally]
mean is / [sum, dtally]


mean []
mean []
=0</lang>
=0</syntaxhighlight>


=={{header|Nim}}==
=={{header|Nim}}==
{{trans|C}}
{{trans|C}}
<lang nim>import strutils
<syntaxhighlight lang=nim>import strutils


proc mean(xs: openArray[float]): float =
proc mean(xs: openArray[float]): float =
Line 2,391: Line 2,391:
for i in 0..5:
for i in 0..5:
echo "mean of first ", v.len, " = ", formatFloat(mean(v), precision = 0)
echo "mean of first ", v.len, " = ", formatFloat(mean(v), precision = 0)
if v.len > 0: v.setLen(v.high)</lang>
if v.len > 0: v.setLen(v.high)</syntaxhighlight>
Output:
Output:
<pre>mean of first 5 = 2.372
<pre>mean of first 5 = 2.372
Line 2,401: Line 2,401:


=={{header|Niue}}==
=={{header|Niue}}==
<lang Niue>
<syntaxhighlight lang=Niue>
[ [ , len 1 - at ! ] len 3 - times swap , ] 'map ; ( a Lisp like map, to sum the stack )
[ [ , len 1 - at ! ] len 3 - times swap , ] 'map ; ( a Lisp like map, to sum the stack )
[ len 'n ; [ + ] 0 n swap-at map n / ] 'avg ;
[ len 'n ; [ + ] 0 n swap-at map n / ] 'avg ;
Line 2,409: Line 2,409:
3.4 2.3 .01 2.0 2.1 avg .
3.4 2.3 .01 2.0 2.1 avg .
=> 1.9619999999999997
=> 1.9619999999999997
</syntaxhighlight>
</lang>


=={{header|Oberon-2}}==
=={{header|Oberon-2}}==
Oxford Oberon-2
Oxford Oberon-2
<lang oberon2>
<syntaxhighlight lang=oberon2>
MODULE AvgMean;
MODULE AvgMean;
IMPORT Out;
IMPORT Out;
Line 2,443: Line 2,443:
Out.Fixed(Avg(ary),4,2);Out.Ln
Out.Fixed(Avg(ary),4,2);Out.Ln
END AvgMean.
END AvgMean.
</syntaxhighlight>
</lang>
Output:
Output:
<pre>
<pre>
Line 2,450: Line 2,450:


=={{header|Objeck}}==
=={{header|Objeck}}==
<lang objeck>
<syntaxhighlight lang=objeck>
function : native : PrintAverage(values : FloatVector) ~ Nil {
function : native : PrintAverage(values : FloatVector) ~ Nil {
values->Average()->PrintLine();
values->Average()->PrintLine();
}
}
</syntaxhighlight>
</lang>


=={{header|OCaml}}==
=={{header|OCaml}}==
These functions return a float:
These functions return a float:


<lang ocaml>let mean_floats = function
<syntaxhighlight lang=ocaml>let mean_floats = function
| [] -> 0.
| [] -> 0.
| xs -> List.fold_left (+.) 0. xs /. float_of_int (List.length xs)
| xs -> List.fold_left (+.) 0. xs /. float_of_int (List.length xs)


let mean_ints xs = mean_floats (List.map float_of_int xs)</lang>
let mean_ints xs = mean_floats (List.map float_of_int xs)</syntaxhighlight>


the previous code is easier to read and understand, though if you wish
the previous code is easier to read and understand, though if you wish
Line 2,475: Line 2,475:
would rather be handled by an exception.
would rather be handled by an exception.


<lang ocaml>let mean_floats xs =
<syntaxhighlight lang=ocaml>let mean_floats xs =
if xs = [] then
if xs = [] then
invalid_arg "empty list"
invalid_arg "empty list"
Line 2,498: Line 2,498:
in
in
(float total /. length)
(float total /. length)
;;</lang>
;;</syntaxhighlight>


=={{header|Octave}}==
=={{header|Octave}}==
Line 2,504: Line 2,504:
GNU Octave has a <tt>mean</tt> function (from statistics package), but it does not handle an empty vector; an implementation that allows that is:
GNU Octave has a <tt>mean</tt> function (from statistics package), but it does not handle an empty vector; an implementation that allows that is:


<lang octave>function m = omean(l)
<syntaxhighlight lang=octave>function m = omean(l)
if ( numel(l) == 0 )
if ( numel(l) == 0 )
m = 0;
m = 0;
Line 2,513: Line 2,513:


disp(omean([]));
disp(omean([]));
disp(omean([1,2,3]));</lang>
disp(omean([1,2,3]));</syntaxhighlight>


If the data contains missing value, encoded as non-a-number:
If the data contains missing value, encoded as non-a-number:


<lang octave>function m = omean(l)
<syntaxhighlight lang=octave>function m = omean(l)
n = sum(~isnan(l));
n = sum(~isnan(l));
l(isnan(l))=0;
l(isnan(l))=0;
s = sum(l);
s = sum(l);
m = s./n;
m = s./n;
end;</lang>
end;</syntaxhighlight>


=={{header|Oforth}}==
=={{header|Oforth}}==


<lang Oforth>: avg ( x -- avg )
<syntaxhighlight lang=Oforth>: avg ( x -- avg )
x sum
x sum
x size dup ifZero: [ 2drop null ] else: [ >float / ]
x size dup ifZero: [ 2drop null ] else: [ >float / ]
;</lang>
;</syntaxhighlight>


{{out}}
{{out}}
Line 2,540: Line 2,540:


=={{header|ooRexx}}==
=={{header|ooRexx}}==
<lang ooRexx>
<syntaxhighlight lang=ooRexx>
call testAverage .array~of(10, 9, 8, 7, 6, 5, 4, 3, 2, 1)
call testAverage .array~of(10, 9, 8, 7, 6, 5, 4, 3, 2, 1)
call testAverage .array~of(10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 0, 0, 0, .11)
call testAverage .array~of(10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 0, 0, 0, .11)
Line 2,562: Line 2,562:
end
end
return sum/numbers~items
return sum/numbers~items
</syntaxhighlight>
</lang>
Output:
Output:
<pre>
<pre>
Line 2,580: Line 2,580:
=={{header|Oz}}==
=={{header|Oz}}==
A version working on floats:
A version working on floats:
<lang oz>declare
<syntaxhighlight lang=oz>declare
fun {Mean Xs}
fun {Mean Xs}
{FoldL Xs Number.'+' 0.0} / {Int.toFloat {Length Xs}}
{FoldL Xs Number.'+' 0.0} / {Int.toFloat {Length Xs}}
end
end
in
in
{Show {Mean [3. 1. 4. 1. 5. 9.]}}</lang>
{Show {Mean [3. 1. 4. 1. 5. 9.]}}</syntaxhighlight>


=={{header|PARI/GP}}==
=={{header|PARI/GP}}==
<lang parigp>avg(v)={
<syntaxhighlight lang=parigp>avg(v)={
if(#v,vecsum(v)/#v)
if(#v,vecsum(v)/#v)
};</lang>
};</syntaxhighlight>


=={{header|Pascal}}==
=={{header|Pascal}}==
<lang pascal>Program Mean;
<syntaxhighlight lang=pascal>Program Mean;


function DoMean(vector: array of double): double;
function DoMean(vector: array of double): double;
Line 2,622: Line 2,622:
writeln (']');
writeln (']');
writeln('Mean: ', DoMean(vector):10:8);
writeln('Mean: ', DoMean(vector):10:8);
end.</lang>
end.</syntaxhighlight>


Output:
Output:
Line 2,633: Line 2,633:
Alternative version using the Math unit:
Alternative version using the Math unit:


<lang pascal>Program DoMean;
<syntaxhighlight lang=pascal>Program DoMean;
uses math;
uses math;
const
const
Line 2,650: Line 2,650:
mean := sum(vector)/length(vector);
mean := sum(vector)/length(vector);
writeln('Mean: ', mean:10:8);
writeln('Mean: ', mean:10:8);
end.</lang>
end.</syntaxhighlight>


=={{header|Perl}}==
=={{header|Perl}}==
<lang perl>sub avg {
<syntaxhighlight lang=perl>sub avg {
@_ or return 0;
@_ or return 0;
my $sum = 0;
my $sum = 0;
Line 2,660: Line 2,660:
}
}
print avg(qw(3 1 4 1 5 9)), "\n";</lang>
print avg(qw(3 1 4 1 5 9)), "\n";</syntaxhighlight>


=={{header|Phix}}==
=={{header|Phix}}==
<!--<lang Phix>(phixonline)-->
<!--<syntaxhighlight lang=Phix>(phixonline)-->
<span style="color: #008080;">with</span> <span style="color: #008080;">javascript_semantics</span>
<span style="color: #008080;">with</span> <span style="color: #008080;">javascript_semantics</span>
<span style="color: #008080;">function</span> <span style="color: #000000;">mean</span><span style="color: #0000FF;">(</span><span style="color: #004080;">sequence</span> <span style="color: #000000;">s</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">function</span> <span style="color: #000000;">mean</span><span style="color: #0000FF;">(</span><span style="color: #004080;">sequence</span> <span style="color: #000000;">s</span><span style="color: #0000FF;">)</span>
Line 2,671: Line 2,671:
<span style="color: #0000FF;">?</span> <span style="color: #000000;">mean</span><span style="color: #0000FF;">({</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">2</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">5</span><span style="color: #0000FF;">,</span> <span style="color: #0000FF;">-</span><span style="color: #000000;">5</span><span style="color: #0000FF;">,</span> <span style="color: #0000FF;">-</span><span style="color: #000000;">9.5</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">3.14159</span><span style="color: #0000FF;">})</span>
<span style="color: #0000FF;">?</span> <span style="color: #000000;">mean</span><span style="color: #0000FF;">({</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">2</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">5</span><span style="color: #0000FF;">,</span> <span style="color: #0000FF;">-</span><span style="color: #000000;">5</span><span style="color: #0000FF;">,</span> <span style="color: #0000FF;">-</span><span style="color: #000000;">9.5</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">3.14159</span><span style="color: #0000FF;">})</span>
<!--</lang>-->
<!--</syntaxhighlight>-->


=={{header|Phixmonti}}==
=={{header|Phixmonti}}==
<lang Phixmonti>1 2 5 -5 -9.5 3.14159 stklen tolist
<syntaxhighlight lang=Phixmonti>1 2 5 -5 -9.5 3.14159 stklen tolist
len swap sum swap / print</lang>
len swap sum swap / print</syntaxhighlight>


=={{header|PHP}}==
=={{header|PHP}}==
<lang php>$nums = array(3, 1, 4, 1, 5, 9);
<syntaxhighlight lang=php>$nums = array(3, 1, 4, 1, 5, 9);
if ($nums)
if ($nums)
echo array_sum($nums) / count($nums), "\n";
echo array_sum($nums) / count($nums), "\n";
else
else
echo "0\n";</lang>
echo "0\n";</syntaxhighlight>


=={{header|PicoLisp}}==
=={{header|PicoLisp}}==
<lang PicoLisp>(de mean (Lst)
<syntaxhighlight lang=PicoLisp>(de mean (Lst)
(if (atom Lst)
(if (atom Lst)
0
0
(/ (apply + Lst) (length Lst)) ) )</lang>
(/ (apply + Lst) (length Lst)) ) )</syntaxhighlight>
Output:
Output:
<pre>: (mean (range 1 1000))
<pre>: (mean (range 1 1000))
Line 2,694: Line 2,694:


=={{header|PL/I}}==
=={{header|PL/I}}==
<lang pli>arithmetic_mean = sum(A)/dimension(A,1);</lang>
<syntaxhighlight lang=pli>arithmetic_mean = sum(A)/dimension(A,1);</syntaxhighlight>


=={{header|Plain English}}==
=={{header|Plain English}}==
<lang plainenglish>To run:
<syntaxhighlight lang=plainenglish>To run:
Start up.
Start up.
Demonstrate finding the arithmetic mean.
Demonstrate finding the arithmetic mean.
Line 2,746: Line 2,746:
If the entry's next is not nil, append ", " to the string.
If the entry's next is not nil, append ", " to the string.
Put the entry's next into the entry.
Put the entry's next into the entry.
Repeat.</lang>
Repeat.</syntaxhighlight>
{{out}}
{{out}}
<pre>
<pre>
Line 2,755: Line 2,755:
=={{header|Pop11}}==
=={{header|Pop11}}==


<lang pop11>define mean(v);
<syntaxhighlight lang=pop11>define mean(v);
lvars n = length(v), i, s = 0;
lvars n = length(v), i, s = 0;
if n = 0 then
if n = 0 then
Line 2,765: Line 2,765:
endif;
endif;
return(s/n);
return(s/n);
enddefine;</lang>
enddefine;</syntaxhighlight>


=={{header|PostScript}}==
=={{header|PostScript}}==
Line 2,784: Line 2,784:
sum ==
sum ==
}def
}def
</syntaxhighlight>
</lang>


{{libheader|initlib}}
{{libheader|initlib}}
{{works with|Ghostscript}}
{{works with|Ghostscript}}
<lang postscript>
<syntaxhighlight lang=postscript>
/avg {
/avg {
dup length
dup length
Line 2,797: Line 2,797:
} ifte
} ifte
}.
}.
</syntaxhighlight>
</lang>


=={{header|PowerShell}}==
=={{header|PowerShell}}==
The hard way by calculating a sum and dividing:
The hard way by calculating a sum and dividing:
<lang powershell>function mean ($x) {
<syntaxhighlight lang=powershell>function mean ($x) {
if ($x.Count -eq 0) {
if ($x.Count -eq 0) {
return 0
return 0
Line 2,811: Line 2,811:
return $sum / $x.Count
return $sum / $x.Count
}
}
}</lang>
}</syntaxhighlight>
or, shorter, by using the <code>Measure-Object</code> cmdlet which already knows how to compute an average:
or, shorter, by using the <code>Measure-Object</code> cmdlet which already knows how to compute an average:
<lang powershell>function mean ($x) {
<syntaxhighlight lang=powershell>function mean ($x) {
if ($x.Count -eq 0) {
if ($x.Count -eq 0) {
return 0
return 0
Line 2,819: Line 2,819:
return ($x | Measure-Object -Average).Average
return ($x | Measure-Object -Average).Average
}
}
}</lang>
}</syntaxhighlight>


=={{header|Processing}}==
=={{header|Processing}}==
<lang processing>float mean(float[] arr) {
<syntaxhighlight lang=processing>float mean(float[] arr) {
float out = 0;
float out = 0;
for (float n : arr) {
for (float n : arr) {
Line 2,828: Line 2,828:
}
}
return out / arr.length;
return out / arr.length;
}</lang>
}</syntaxhighlight>


=={{header|Prolog}}==
=={{header|Prolog}}==
Line 2,834: Line 2,834:
{{works with|SWI-Prolog|6.6}}
{{works with|SWI-Prolog|6.6}}


<lang prolog>
<syntaxhighlight lang=prolog>
mean(List, Mean) :-
mean(List, Mean) :-
length(List, Length),
length(List, Length),
sumlist(List, Sum),
sumlist(List, Sum),
Mean is Sum / Length.
Mean is Sum / Length.
</syntaxhighlight>
</lang>


=={{header|PureBasic}}==
=={{header|PureBasic}}==
<lang PureBasic>Procedure.d mean(List number())
<syntaxhighlight lang=PureBasic>Procedure.d mean(List number())
Protected sum=0
Protected sum=0


Line 2,850: Line 2,850:
ProcedureReturn sum / ListSize(number())
ProcedureReturn sum / ListSize(number())
; Depends on programm if zero check needed, returns nan on division by zero
; Depends on programm if zero check needed, returns nan on division by zero
EndProcedure</lang>
EndProcedure</syntaxhighlight>


=={{header|Python}}==
=={{header|Python}}==
{{works with|Python|3.0}}.<br>{{works with|Python|2.6}}<br>
{{works with|Python|3.0}}.<br>{{works with|Python|2.6}}<br>
Uses [http://docs.python.org/3.3/library/math.html?highlight=fsum#math.fsum fsum] which tracks multiple partial sums to avoid losing precision
Uses [http://docs.python.org/3.3/library/math.html?highlight=fsum#math.fsum fsum] which tracks multiple partial sums to avoid losing precision
<lang python>from math import fsum
<syntaxhighlight lang=python>from math import fsum
def average(x):
def average(x):
return fsum(x)/float(len(x)) if x else 0
return fsum(x)/float(len(x)) if x else 0
print (average([0,0,3,1,4,1,5,9,0,0]))
print (average([0,0,3,1,4,1,5,9,0,0]))
print (average([1e20,-1e-20,3,1,4,1,5,9,-1e20,1e-20]))</lang>
print (average([1e20,-1e-20,3,1,4,1,5,9,-1e20,1e-20]))</syntaxhighlight>


{{out}}
{{out}}
<lang python>2.3
<syntaxhighlight lang=python>2.3
2.3</lang>
2.3</syntaxhighlight>




{{works with|Python|2.5}}
{{works with|Python|2.5}}
<lang python>def average(x):
<syntaxhighlight lang=python>def average(x):
return sum(x)/float(len(x)) if x else 0
return sum(x)/float(len(x)) if x else 0
print (average([0,0,3,1,4,1,5,9,0,0]))
print (average([0,0,3,1,4,1,5,9,0,0]))
print (average([1e20,-1e-20,3,1,4,1,5,9,-1e20,1e-20]))</lang>
print (average([1e20,-1e-20,3,1,4,1,5,9,-1e20,1e-20]))</syntaxhighlight>


{{out}}
{{out}}
(Notice how the second call gave the wrong result)
(Notice how the second call gave the wrong result)
<lang python>2.3
<syntaxhighlight lang=python>2.3
1e-21</lang>
1e-21</syntaxhighlight>




{{works with|Python|2.4}}
{{works with|Python|2.4}}
<lang python>def avg(data):
<syntaxhighlight lang=python>def avg(data):
if len(data)==0:
if len(data)==0:
return 0
return 0
else:
else:
return sum(data)/float(len(data))
return sum(data)/float(len(data))
print avg([0,0,3,1,4,1,5,9,0,0])</lang>
print avg([0,0,3,1,4,1,5,9,0,0])</syntaxhighlight>


{{out}}
{{out}}
<lang python>2.3</lang>
<syntaxhighlight lang=python>2.3</syntaxhighlight>


{{works with|Python|3.4}}
{{works with|Python|3.4}}
Since 3.4, Python has a [[http://docs.python.org/3/library/statistics.html statistics] library in the stdlib, which takes care of these precision overflow issues in a way that works for all standard types, not just float, even with values way too big or small to fit in a float. (For Python 2.6-2.7, there's a backport available on PyPI.)
Since 3.4, Python has a [[http://docs.python.org/3/library/statistics.html statistics] library in the stdlib, which takes care of these precision overflow issues in a way that works for all standard types, not just float, even with values way too big or small to fit in a float. (For Python 2.6-2.7, there's a backport available on PyPI.)
<lang python>>>> from statistics import mean
<syntaxhighlight lang=python>>>> from statistics import mean
>>> mean([1e20,-1e-20,3,1,4,1,5,9,-1e20,1e-20])
>>> mean([1e20,-1e-20,3,1,4,1,5,9,-1e20,1e-20])
2.3
2.3
Line 2,900: Line 2,900:
>>> big = 10**10000
>>> big = 10**10000
>>> mean([Decimal(big), Decimal(-big), 3, 1, 4, 1, 5, 9, 1/Decimal(big), -1/Decimal(big)])
>>> mean([Decimal(big), Decimal(-big), 3, 1, 4, 1, 5, 9, 1/Decimal(big), -1/Decimal(big)])
Decimal('2.3')</lang>
Decimal('2.3')</syntaxhighlight>


=={{header|Q}}==
=={{header|Q}}==
A built-in solution is <tt>avg</tt>. An implementation of it could be:
A built-in solution is <tt>avg</tt>. An implementation of it could be:
<lang q>mean:{(sum x)%count x}</lang>
<syntaxhighlight lang=q>mean:{(sum x)%count x}</syntaxhighlight>


=={{header|Quackery}}==
=={{header|Quackery}}==
Line 2,910: Line 2,910:
Using the Quackery big number rational arithmetic library <code>bigrat.qky</code>.
Using the Quackery big number rational arithmetic library <code>bigrat.qky</code>.


<lang Quackery> [ $ 'bigrat.qky' loadfile ] now!
<syntaxhighlight lang=Quackery> [ $ 'bigrat.qky' loadfile ] now!
[ [] swap times
[ [] swap times
Line 2,961: Line 2,961:
proper$ echo$
proper$ echo$
say ", "
say ", "
vulgar$ echo$ cr ] is demonstrate ( --> )</lang>
vulgar$ echo$ cr ] is demonstrate ( --> )</syntaxhighlight>


{{out}}
{{out}}
Line 2,990: Line 2,990:
R has its <tt>mean</tt> function but it does not allow for NULL (void vectors or whatever) as argument: in this case it raises a warning and the result is NA. An implementation that does not suppress the warning could be:
R has its <tt>mean</tt> function but it does not allow for NULL (void vectors or whatever) as argument: in this case it raises a warning and the result is NA. An implementation that does not suppress the warning could be:


<lang rsplus>omean <- function(v) {
<syntaxhighlight lang=rsplus>omean <- function(v) {
m <- mean(v)
m <- mean(v)
ifelse(is.na(m), 0, m)
ifelse(is.na(m), 0, m)
}</lang>
}</syntaxhighlight>


=={{header|Racket}}==
=={{header|Racket}}==
Line 2,999: Line 2,999:
Racket's math library (available in v5.3.2 and newer) comes with a <tt>mean</tt> function that works on arbitrary sequences.
Racket's math library (available in v5.3.2 and newer) comes with a <tt>mean</tt> function that works on arbitrary sequences.


<lang racket>
<syntaxhighlight lang=racket>
#lang racket
#lang racket
(require math)
(require math)
Line 3,006: Line 3,006:
(mean '(2 2 4 4)) ; -> 3
(mean '(2 2 4 4)) ; -> 3
(mean #(3 4 5 8)) ; -> 5
(mean #(3 4 5 8)) ; -> 5
</syntaxhighlight>
</lang>


=={{header|Raku}}==
=={{header|Raku}}==
Line 3,012: Line 3,012:
{{works with|Rakudo|2015.10-11}}
{{works with|Rakudo|2015.10-11}}


<lang perl6>multi mean([]){ Failure.new('mean on empty list is not defined') }; # Failure-objects are lazy exceptions
<syntaxhighlight lang=perl6>multi mean([]){ Failure.new('mean on empty list is not defined') }; # Failure-objects are lazy exceptions
multi mean (@a) { ([+] @a) / @a }</lang>
multi mean (@a) { ([+] @a) / @a }</syntaxhighlight>


=={{header|Rapira}}==
=={{header|Rapira}}==
<lang Rapira>fun mean(arr)
<syntaxhighlight lang=Rapira>fun mean(arr)
sum := 0
sum := 0
for N from 1 to #arr do
for N from 1 to #arr do
Line 3,022: Line 3,022:
od
od
return (sum / #arr)
return (sum / #arr)
end</lang>
end</syntaxhighlight>


=={{header|REBOL}}==
=={{header|REBOL}}==
<lang REBOL>rebol [
<syntaxhighlight lang=REBOL>rebol [
Title: "Arithmetic Mean (Average)"
Title: "Arithmetic Mean (Average)"
URL: http://rosettacode.org/wiki/Average/Arithmetic_mean
URL: http://rosettacode.org/wiki/Average/Arithmetic_mean
Line 3,043: Line 3,043:
print [mold x: [3 1 4 1 5 9] "->" average x]
print [mold x: [3 1 4 1 5 9] "->" average x]
print [mold x: [1000 3 1 4 1 5 9 -1000] "->" average x]
print [mold x: [1000 3 1 4 1 5 9 -1000] "->" average x]
print [mold x: [1e20 3 1 4 1 5 9 -1e20] "->" average x]</lang>
print [mold x: [1e20 3 1 4 1 5 9 -1e20] "->" average x]</syntaxhighlight>


Output:
Output:
Line 3,054: Line 3,054:
=={{header|Red}}==
=={{header|Red}}==
Red comes with the <code>average</code> function.
Red comes with the <code>average</code> function.
<lang red>Red ["Arithmetic mean"]
<syntaxhighlight lang=red>Red ["Arithmetic mean"]


print average []
print average []
print average [2 3 5]</lang>
print average [2 3 5]</syntaxhighlight>
{{out}}
{{out}}
<pre>
<pre>
Line 3,065: Line 3,065:


The source code for <code>average</code>:
The source code for <code>average</code>:
<lang red>average: func [
<syntaxhighlight lang=red>average: func [
"Returns the average of all values in a block"
"Returns the average of all values in a block"
block [block! vector! paren! hash!]
block [block! vector! paren! hash!]
Line 3,071: Line 3,071:
if empty? block [return none]
if empty? block [return none]
divide sum block to float! length? block
divide sum block to float! length? block
]</lang>
]</syntaxhighlight>


=={{header|ReScript}}==
=={{header|ReScript}}==


<lang ReScript>let arr = [3, 8, 4, 1, 5, 12]
<syntaxhighlight lang=ReScript>let arr = [3, 8, 4, 1, 5, 12]


let num = Js.Array.length(arr)
let num = Js.Array.length(arr)
Line 3,081: Line 3,081:
let mean = float_of_int(tot) /. float_of_int(num)
let mean = float_of_int(tot) /. float_of_int(num)


Js.log(Js.Float.toString(mean))</lang>
Js.log(Js.Float.toString(mean))</syntaxhighlight>
{{out}}
{{out}}
<pre>
<pre>
Line 3,093: Line 3,093:


A check is made to validate if the numbers in the list are all numeric.
A check is made to validate if the numbers in the list are all numeric.
<lang rexx>/*REXX program finds the averages/arithmetic mean of several lists (vectors) or CL input*/
<syntaxhighlight lang=rexx>/*REXX program finds the averages/arithmetic mean of several lists (vectors) or CL input*/
parse arg @.1; if @.1='' then do; #=6 /*vector from the C.L.?*/
parse arg @.1; if @.1='' then do; #=6 /*vector from the C.L.?*/
@.1 = 10 9 8 7 6 5 4 3 2 1
@.1 = 10 9 8 7 6 5 4 3 2 1
Line 3,119: Line 3,119:


if #==0 then return 'N/A: ───[no numeric values.]' /*No nums? Return N/A*/
if #==0 then return 'N/A: ───[no numeric values.]' /*No nums? Return N/A*/
return $ / # /*return the average. */</lang>
return $ / # /*return the average. */</syntaxhighlight>
'''output''' &nbsp; when using the (internal) lists:
'''output''' &nbsp; when using the (internal) lists:
<pre>
<pre>
Line 3,154: Line 3,154:


=={{header|Ring}}==
=={{header|Ring}}==
<lang ring>
<syntaxhighlight lang=ring>
nums = [1,2,3,4,5,6,7,8,9,10]
nums = [1,2,3,4,5,6,7,8,9,10]
sum = 0
sum = 0
Line 3,164: Line 3,164:
next
next
return sum/len(numbers)
return sum/len(numbers)
</syntaxhighlight>
</lang>


=={{header|RPL/2}}==
=={{header|RPL/2}}==
Line 3,170: Line 3,170:
This is a simple rewrite of the dc version above. This works on an HP 48. "->" is a single right arrow character on the 48. Feel free to alter this code as necessary to work on RPL/2.
This is a simple rewrite of the dc version above. This works on an HP 48. "->" is a single right arrow character on the 48. Feel free to alter this code as necessary to work on RPL/2.


<lang rpl/2>1 2 3 5 7
<syntaxhighlight lang=rpl/2>1 2 3 5 7
AMEAN
AMEAN
<< DEPTH DUP 'N' STO ->LIST ΣLIST N / >>
<< DEPTH DUP 'N' STO ->LIST ΣLIST N / >>
3.6</lang>
3.6</syntaxhighlight>


=={{header|Ruby}}==
=={{header|Ruby}}==
<lang ruby>def mean(nums)
<syntaxhighlight lang=ruby>def mean(nums)
nums.sum(0.0) / nums.size
nums.sum(0.0) / nums.size
end
end
Line 3,184: Line 3,184:
ary = nums[0,i]
ary = nums[0,i]
puts "array size #{ary.size} : #{mean(ary)}"
puts "array size #{ary.size} : #{mean(ary)}"
end</lang>
end</syntaxhighlight>
{{out}}
{{out}}
<pre>
<pre>
Line 3,197: Line 3,197:


=={{header|Run BASIC}}==
=={{header|Run BASIC}}==
<lang runbasic>print "Gimme the number in the array:";input numArray
<syntaxhighlight lang=runbasic>print "Gimme the number in the array:";input numArray
dim value(numArray)
dim value(numArray)
for i = 1 to numArray
for i = 1 to numArray
Line 3,207: Line 3,207:
next
next
if totValue <> 0 then mean = totValue/numArray
if totValue <> 0 then mean = totValue/numArray
print "The mean is: ";mean</lang>
print "The mean is: ";mean</syntaxhighlight>


=={{header|Rust}}==
=={{header|Rust}}==
<lang rust>fn sum(arr: &[f64]) -> f64 {
<syntaxhighlight lang=rust>fn sum(arr: &[f64]) -> f64 {
arr.iter().fold(0.0, |p,&q| p + q)
arr.iter().fold(0.0, |p,&q| p + q)
}
}
Line 3,224: Line 3,224:
let w = &[];
let w = &[];
println!("mean of {:?}: {:?}", w, mean(w));
println!("mean of {:?}: {:?}", w, mean(w));
}</lang>
}</syntaxhighlight>
Output:
Output:
<pre>mean of [2, 3, 5, 7, 13, 21, 33, 54]: 17.25
<pre>mean of [2, 3, 5, 7, 13, 21, 33, 54]: 17.25
Line 3,231: Line 3,231:
=={{header|Sather}}==
=={{header|Sather}}==
Built to work with VEC, ("geometric" vectors), whose elements must be floats. A 0-dimension vector yields "nan".
Built to work with VEC, ("geometric" vectors), whose elements must be floats. A 0-dimension vector yields "nan".
<lang sather>class VECOPS is
<syntaxhighlight lang=sather>class VECOPS is
mean(v:VEC):FLT is
mean(v:VEC):FLT is
m ::= 0.0;
m ::= 0.0;
Line 3,244: Line 3,244:
#OUT + VECOPS::mean(v) + "\n";
#OUT + VECOPS::mean(v) + "\n";
end;
end;
end;</lang>
end;</syntaxhighlight>


=={{header|Scala}}==
=={{header|Scala}}==
Using Scala 2.7, this has to be defined for each numeric type:
Using Scala 2.7, this has to be defined for each numeric type:


<lang scala>def mean(s: Seq[Int]) = s.foldLeft(0)(_+_) / s.size</lang>
<syntaxhighlight lang=scala>def mean(s: Seq[Int]) = s.foldLeft(0)(_+_) / s.size</syntaxhighlight>


However, Scala 2.8 gives much more flexibility, but you still have to opt
However, Scala 2.8 gives much more flexibility, but you still have to opt
between integral types and fractional types. For example:
between integral types and fractional types. For example:


<lang scala>def mean[T](s: Seq[T])(implicit n: Integral[T]) = {
<syntaxhighlight lang=scala>def mean[T](s: Seq[T])(implicit n: Integral[T]) = {
import n._
import n._
s.foldLeft(zero)(_+_) / fromInt(s.size)
s.foldLeft(zero)(_+_) / fromInt(s.size)
}</lang>
}</syntaxhighlight>


This can be used with any subclass of <tt>Sequence</tt> on integral types, up
This can be used with any subclass of <tt>Sequence</tt> on integral types, up
Line 3,267: Line 3,267:
Alas, Scala 2.8 also simplifies the task in another way:
Alas, Scala 2.8 also simplifies the task in another way:


<lang scala>def mean[T](s: Seq[T])(implicit n: Fractional[T]) = n.div(s.sum, n.fromInt(s.size))</lang>
<syntaxhighlight lang=scala>def mean[T](s: Seq[T])(implicit n: Fractional[T]) = n.div(s.sum, n.fromInt(s.size))</syntaxhighlight>


Here we show a function that supports fractional types. Instead of importing the definitions
Here we show a function that supports fractional types. Instead of importing the definitions
Line 3,275: Line 3,275:


=={{header|Scheme}}==
=={{header|Scheme}}==
<lang scheme>(define (mean l)
<syntaxhighlight lang=scheme>(define (mean l)
(if (null? l)
(if (null? l)
0
0
(/ (apply + l) (length l))))</lang>
(/ (apply + l) (length l))))</syntaxhighlight>


> (mean (list 3 1 4 1 5 9))
> (mean (list 3 1 4 1 5 9))
Line 3,284: Line 3,284:


=={{header|Seed7}}==
=={{header|Seed7}}==
<lang seed7>$ include "seed7_05.s7i";
<syntaxhighlight lang=seed7>$ include "seed7_05.s7i";
include "float.s7i";
include "float.s7i";


Line 3,307: Line 3,307:
begin
begin
writeln(mean(numVector));
writeln(mean(numVector));
end func;</lang>
end func;</syntaxhighlight>


=={{header|SenseTalk}}==
=={{header|SenseTalk}}==
SenseTalk has a built-in average function.
SenseTalk has a built-in average function.
<lang sensetalk>put the average of [12,92,-17,66,128]
<syntaxhighlight lang=sensetalk>put the average of [12,92,-17,66,128]


put average(empty)
put average(empty)
</syntaxhighlight>
</lang>
{{out}}
{{out}}
<pre>
<pre>
Line 3,322: Line 3,322:


=={{header|Sidef}}==
=={{header|Sidef}}==
<lang ruby>func avg(Array list) {
<syntaxhighlight lang=ruby>func avg(Array list) {
list.len > 0 || return 0;
list.len > 0 || return 0;
list.sum / list.len;
list.sum / list.len;
Line 3,331: Line 3,331:
say avg([1e+20, 3, 1, 4, 1, 5, 9, -1e+20]);
say avg([1e+20, 3, 1, 4, 1, 5, 9, -1e+20]);
say avg([10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 0, 0, 0, 0.11]);
say avg([10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 0, 0, 0, 0.11]);
say avg([10, 20, 30, 40, 50, -100, 4.7, -1100]);</lang>
say avg([10, 20, 30, 40, 50, -100, 4.7, -1100]);</syntaxhighlight>
{{out}}
{{out}}
<pre>inf
<pre>inf
Line 3,341: Line 3,341:
=={{header|Slate}}==
=={{header|Slate}}==
<lang slate>[|:list| (list reduce: #+ `er ifEmpty: [0]) / (list isEmpty ifTrue: [1] ifFalse: [list size])] applyWith: #(3 1 4 1 5 9).
<syntaxhighlight lang=slate>[|:list| (list reduce: #+ `er ifEmpty: [0]) / (list isEmpty ifTrue: [1] ifFalse: [list size])] applyWith: #(3 1 4 1 5 9).
[|:list| (list reduce: #+ `er ifEmpty: [0]) / (list isEmpty ifTrue: [1] ifFalse: [list size])] applyWith: {}.</lang>
[|:list| (list reduce: #+ `er ifEmpty: [0]) / (list isEmpty ifTrue: [1] ifFalse: [list size])] applyWith: {}.</syntaxhighlight>


=={{header|Smalltalk}}==
=={{header|Smalltalk}}==
<lang smalltalk>
<syntaxhighlight lang=smalltalk>
| numbers |
| numbers |


Line 3,354: Line 3,354:
(numbers inject: 0 into: [:sumSoFar :eachElement | sumSoFar + eachElement]) / numbers size ]
(numbers inject: 0 into: [:sumSoFar :eachElement | sumSoFar + eachElement]) / numbers size ]
) displayNl.
) displayNl.
</syntaxhighlight>
</lang>
However, the empty check can be omitted, as inject returns the injected value for empty collections, and we probably do not care for the average of nothing (i.e. the division by zero exception):
However, the empty check can be omitted, as inject returns the injected value for empty collections, and we probably do not care for the average of nothing (i.e. the division by zero exception):
<lang smalltalk>
<syntaxhighlight lang=smalltalk>
| numbers |
| numbers |


numbers := #(1 2 3 4 5 6 7 8).
numbers := #(1 2 3 4 5 6 7 8).
( numbers inject: 0 into: [:sumSoFar :eachElement | sumSoFar + eachElement]) / numbers size] ) displayNl.
( numbers inject: 0 into: [:sumSoFar :eachElement | sumSoFar + eachElement]) / numbers size] ) displayNl.
</syntaxhighlight>
</lang>
also, most Smalltalk's collection classes already provide sum and average methods, which makes it:
also, most Smalltalk's collection classes already provide sum and average methods, which makes it:
{{works with|Pharo}}
{{works with|Pharo}}
{{works with|Smalltalk/X}}
{{works with|Smalltalk/X}}
<lang smalltalk>
<syntaxhighlight lang=smalltalk>
| numbers |
| numbers |


numbers := #(1 2 3 4 5 6 7 8).
numbers := #(1 2 3 4 5 6 7 8).
(numbers sum / numbers size) displayNl.
(numbers sum / numbers size) displayNl.
</syntaxhighlight>
</lang>
or
or
<lang smalltalk>
<syntaxhighlight lang=smalltalk>
| numbers |
| numbers |


numbers := #(1 2 3 4 5 6 7 8).
numbers := #(1 2 3 4 5 6 7 8).
numbers average displayNl.
numbers average displayNl.
</syntaxhighlight>
</lang>


=={{header|SNOBOL4}}==
=={{header|SNOBOL4}}==
Line 3,385: Line 3,385:
{{works with|CSnobol}}
{{works with|CSnobol}}
<lang SNOBOL4> define('avg(a)i,sum') :(avg_end)
<syntaxhighlight lang=SNOBOL4> define('avg(a)i,sum') :(avg_end)
avg i = i + 1; sum = sum + a<i> :s(avg)
avg i = i + 1; sum = sum + a<i> :s(avg)
avg = 1.0 * sum / prototype(a) :(return)
avg = 1.0 * sum / prototype(a) :(return)
Line 3,398: Line 3,398:
output = '[' str '] -> ' avg(arr)
output = '[' str '] -> ' avg(arr)
output = '[ ] -> ' avg(empty)
output = '[ ] -> ' avg(empty)
end</lang>
end</syntaxhighlight>


Output:
Output:
Line 3,406: Line 3,406:
=={{header|SQL}}==
=={{header|SQL}}==
Tested on Oracle 11gR2, the more limited the tool, the more resourceful one becomes :)
Tested on Oracle 11gR2, the more limited the tool, the more resourceful one becomes :)
<lang SQL>
<syntaxhighlight lang=SQL>
create table "numbers" ("datapoint" integer);
create table "numbers" ("datapoint" integer);


Line 3,412: Line 3,412:


select sum("datapoint")/count(*) from "numbers";
select sum("datapoint")/count(*) from "numbers";
</syntaxhighlight>
</lang>
...or...
...or...
<lang SQL>select avg("datapoint") from "numbers";</lang>
<syntaxhighlight lang=SQL>select avg("datapoint") from "numbers";</syntaxhighlight>


=={{header|Standard ML}}==
=={{header|Standard ML}}==
These functions return a real:
These functions return a real:


<lang sml>fun mean_reals [] = 0.0
<syntaxhighlight lang=sml>fun mean_reals [] = 0.0
| mean_reals xs = foldl op+ 0.0 xs / real (length xs);
| mean_reals xs = foldl op+ 0.0 xs / real (length xs);


val mean_ints = mean_reals o (map real);</lang>
val mean_ints = mean_reals o (map real);</syntaxhighlight>


The previous code is easier to read and understand, though if you want
The previous code is easier to read and understand, though if you want
Line 3,432: Line 3,432:
would rather be handled by an exception.
would rather be handled by an exception.


<lang sml>fun mean_reals [] = raise Empty
<syntaxhighlight lang=sml>fun mean_reals [] = raise Empty
| mean_reals xs = let
| mean_reals xs = let
val (total, length) =
val (total, length) =
Line 3,451: Line 3,451:
in
in
(real total / length)
(real total / length)
end;</lang>
end;</syntaxhighlight>


=={{header|Stata}}==
=={{header|Stata}}==
Line 3,486: Line 3,486:
. quietly summarize population
. quietly summarize population
. display r(mean)
. display r(mean)
16715.75</lang>
16715.75</syntaxhighlight>


=== Mean in Mata ===
=== Mean in Mata ===
<lang stata>mata
<syntaxhighlight lang=stata>mata
a=11311.1\7153.8\10553.8\5707.3\
a=11311.1\7153.8\10553.8\5707.3\
82175.7\1315.9\4724.7\10783.7
82175.7\1315.9\4724.7\10783.7


mean(a)
mean(a)
16715.75</lang>
16715.75</syntaxhighlight>


=={{header|Swift}}==
=={{header|Swift}}==
<lang swift>func meanDoubles(s: [Double]) -> Double {
<syntaxhighlight lang=swift>func meanDoubles(s: [Double]) -> Double {
return s.reduce(0, +) / Double(s.count)
return s.reduce(0, +) / Double(s.count)
}
}
func meanInts(s: [Int]) -> Double {
func meanInts(s: [Int]) -> Double {
return meanDoubles(s.map{Double($0)})
return meanDoubles(s.map{Double($0)})
}</lang>
}</syntaxhighlight>


=={{header|Tcl}}==
=={{header|Tcl}}==
<lang tcl>package require Tcl 8.5
<syntaxhighlight lang=tcl>package require Tcl 8.5
proc mean args {
proc mean args {
if {[set num [llength $args]] == 0} {return 0}
if {[set num [llength $args]] == 0} {return 0}
expr {[tcl::mathop::+ {*}$args] / double($num)}
expr {[tcl::mathop::+ {*}$args] / double($num)}
}
}
mean 3 1 4 1 5 9 ;# ==> 3.8333333333333335</lang>
mean 3 1 4 1 5 9 ;# ==> 3.8333333333333335</syntaxhighlight>


=={{header|TI-83 BASIC}}==
=={{header|TI-83 BASIC}}==
<lang ti83b>Mean(Ans</lang>
<syntaxhighlight lang=ti83b>Mean(Ans</syntaxhighlight>


=={{header|TI-89 BASIC}}==
=={{header|TI-89 BASIC}}==


<lang ti89b>Define rcmean(nums) = when(dim(nums) = 0, 0, mean(nums))</lang>
<syntaxhighlight lang=ti89b>Define rcmean(nums) = when(dim(nums) = 0, 0, mean(nums))</syntaxhighlight>


=={{header|Trith}}==
=={{header|Trith}}==
<lang trith>: mean dup empty? [drop 0] [dup [+] foldl1 swap length /] branch ;
<syntaxhighlight lang=trith>: mean dup empty? [drop 0] [dup [+] foldl1 swap length /] branch ;


[3 1 4 1 5 9] mean</lang>
[3 1 4 1 5 9] mean</syntaxhighlight>


=={{header|TypeScript}}==
=={{header|TypeScript}}==
<lang typescript>
<syntaxhighlight lang=typescript>
function mean(numbersArr)
function mean(numbersArr)
{
{
Line 3,541: Line 3,541:
alert( mean( [1,2,3,4,5] ) );
alert( mean( [1,2,3,4,5] ) );
alert( mean( [] ) );
alert( mean( [] ) );
</syntaxhighlight>
</lang>


=={{header|UNIX Shell}}==
=={{header|UNIX Shell}}==
1) First solution with bash (V >= 3), works with floats :
1) First solution with bash (V >= 3), works with floats :
<lang bash1>echo "`cat f | paste -sd+ | bc -l` / `cat f | wc -l`" | bc -l
<syntaxhighlight lang=bash1>echo "`cat f | paste -sd+ | bc -l` / `cat f | wc -l`" | bc -l
</syntaxhighlight>
</lang>
<lang bash1>cat f
<syntaxhighlight lang=bash1>cat f
1
1
2
2
Line 3,569: Line 3,569:
echo "`cat f | paste -sd+ | bc -l`/`cat f | wc -l`" |bc -l
echo "`cat f | paste -sd+ | bc -l`/`cat f | wc -l`" |bc -l
33.23134771428571428571
33.23134771428571428571
</syntaxhighlight>
</lang>


2) This example uses <tt>expr</tt>, so it only works with integers. It checks that each string in the list is an integer.
2) This example uses <tt>expr</tt>, so it only works with integers. It checks that each string in the list is an integer.


<lang bash>mean() {
<syntaxhighlight lang=bash>mean() {
if expr $# >/dev/null; then
if expr $# >/dev/null; then
(count=0
(count=0
Line 3,596: Line 3,596:
printf "test 4: "; mean -400 400 -1300 200 # -275
printf "test 4: "; mean -400 400 -1300 200 # -275
printf "test 5: "; mean - # expr: syntax error
printf "test 5: "; mean - # expr: syntax error
printf "test 6: "; mean 1 2 A 3 # expr: non-numeric argument</lang>
printf "test 6: "; mean 1 2 A 3 # expr: non-numeric argument</syntaxhighlight>


=={{header|UnixPipes}}==
=={{header|UnixPipes}}==
Line 3,603: Line 3,603:
Uses [[ksh93]]-style process substitution. Also overwrites the file named <tt>count</tt> in the current directory.
Uses [[ksh93]]-style process substitution. Also overwrites the file named <tt>count</tt> in the current directory.
{{works with|bash}}
{{works with|bash}}
<lang bash>term() {
<syntaxhighlight lang=bash>term() {
b=$1;res=$2
b=$1;res=$2
echo "scale=5;$res+$b" | bc
echo "scale=5;$res+$b" | bc
Line 3,624: Line 3,624:
}
}


(echo 3; echo 1; echo 4) | mean</lang>
(echo 3; echo 1; echo 4) | mean</syntaxhighlight>


=={{header|Ursa}}==
=={{header|Ursa}}==
<lang ursa>#
<syntaxhighlight lang=ursa>#
# arithmetic mean
# arithmetic mean
#
#
Line 3,637: Line 3,637:
end for
end for


out (/ (+ input) (size input)) endl console</lang>
out (/ (+ input) (size input)) endl console</syntaxhighlight>


=={{header|Ursala}}==
=={{header|Ursala}}==
There is a library function for means already, although it doesn't cope with
There is a library function for means already, although it doesn't cope with
empty vectors. A mean function could be defined as shown for this task.
empty vectors. A mean function could be defined as shown for this task.
<lang Ursala>#import nat
<syntaxhighlight lang=Ursala>#import nat
#import flo
#import flo


Line 3,649: Line 3,649:
#cast %e
#cast %e


example = mean <5.,3.,-2.,6.,-4.></lang>
example = mean <5.,3.,-2.,6.,-4.></syntaxhighlight>
output:
output:
<pre>1.600000e+00</pre>
<pre>1.600000e+00</pre>


=={{header|V}}==
=={{header|V}}==
<lang v>[mean
<syntaxhighlight lang=v>[mean
[sum 0 [+] fold].
[sum 0 [+] fold].
dup sum
dup sum
swap size [[1 <] [1]] when /
swap size [[1 <] [1]] when /
].</lang>
].</syntaxhighlight>


=={{header|Vala}}==
=={{header|Vala}}==
Using array to hold the numbers of the list:
Using array to hold the numbers of the list:
<lang vala>
<syntaxhighlight lang=vala>
double arithmetic(double[] list){
double arithmetic(double[] list){
double mean;
double mean;
Line 3,688: Line 3,688:
stdout.printf("%s\n", mean_zero.to_string());
stdout.printf("%s\n", mean_zero.to_string());
}
}
</syntaxhighlight>
</lang>


Output:
Output:
Line 3,697: Line 3,697:


=={{header|VBA}}==
=={{header|VBA}}==
<lang vb>Private Function mean(v() As Double, ByVal leng As Integer) As Variant
<syntaxhighlight lang=vb>Private Function mean(v() As Double, ByVal leng As Integer) As Variant
Dim sum As Double, i As Integer
Dim sum As Double, i As Integer
sum = 0: i = 0
sum = 0: i = 0
Line 3,724: Line 3,724:
Debug.Print "] = "; mean(v, leng)
Debug.Print "] = "; mean(v, leng)
Next leng
Next leng
End Sub</lang>{{out}}
End Sub</syntaxhighlight>{{out}}
<pre>mean[1; 2; 2,178; 3; 3,142] = 0
<pre>mean[1; 2; 2,178; 3; 3,142] = 0
mean[1; 2; 2,178; 3] = 0
mean[1; 2; 2,178; 3] = 0
Line 3,733: Line 3,733:


=={{header|VBScript}}==
=={{header|VBScript}}==
<syntaxhighlight lang=vb>
<lang vb>
Function mean(arr)
Function mean(arr)
size = UBound(arr) + 1
size = UBound(arr) + 1
Line 3,745: Line 3,745:
'Example
'Example
WScript.Echo mean(Array(3,1,4,1,5,9))
WScript.Echo mean(Array(3,1,4,1,5,9))
</syntaxhighlight>
</lang>


{{Out}}
{{Out}}
Line 3,752: Line 3,752:
=={{header|Vedit macro language}}==
=={{header|Vedit macro language}}==
The numeric data is stored in current edit buffer as ASCII strings, one value per line.
The numeric data is stored in current edit buffer as ASCII strings, one value per line.
<lang vedit>#1 = 0 // Sum
<syntaxhighlight lang=vedit>#1 = 0 // Sum
#2 = 0 // Count
#2 = 0 // Count
BOF
BOF
Line 3,761: Line 3,761:
}
}
if (#2) { #1 /= #2 }
if (#2) { #1 /= #2 }
Num_Type(#1)</lang>
Num_Type(#1)</syntaxhighlight>


=={{header|Vim Script}}==
=={{header|Vim Script}}==
Throws an exception if the list is empty.
Throws an exception if the list is empty.
<lang vim>function Mean(lst)
<syntaxhighlight lang=vim>function Mean(lst)
if empty(a:lst)
if empty(a:lst)
throw "Empty"
throw "Empty"
Line 3,774: Line 3,774:
endfor
endfor
return sum / len(a:lst)
return sum / len(a:lst)
endfunction</lang>
endfunction</syntaxhighlight>


=={{header|Vlang}}==
=={{header|Vlang}}==
<lang vlang>import math
<syntaxhighlight lang=vlang>import math
import arrays
import arrays
Line 3,798: Line 3,798:
println("Mean of $v.len numbers is $m\n")
println("Mean of $v.len numbers is $m\n")
}
}
}</lang>
}</syntaxhighlight>
{{out}}
{{out}}
<pre>Vector: []
<pre>Vector: []
Line 3,819: Line 3,819:


=={{header|Wart}}==
=={{header|Wart}}==
<lang python>def (mean l)
<syntaxhighlight lang=python>def (mean l)
sum.l / len.l</lang>
sum.l / len.l</syntaxhighlight>


Example run:
Example run:
Line 3,827: Line 3,827:


=={{header|WDTE}}==
=={{header|WDTE}}==
<lang WDTE>let s => import 'stream';
<syntaxhighlight lang=WDTE>let s => import 'stream';
let a => import 'arrays';
let a => import 'arrays';


Line 3,833: Line 3,833:
a.stream nums
a.stream nums
-> s.reduce [0; 0] (@ s p n => [+ (a.at p 0) 1; + (a.at p 1) n])
-> s.reduce [0; 0] (@ s p n => [+ (a.at p 0) 1; + (a.at p 1) n])
-> (@ s p => / (a.at p 1) (a.at p 0));</lang>
-> (@ s p => / (a.at p 1) (a.at p 0));</syntaxhighlight>


This is a tad messier than it has to be due to a lack of a way to get the length of an array in WDTE currently.
This is a tad messier than it has to be due to a lack of a way to get the length of an array in WDTE currently.


Usage:
Usage:
<lang WDTE>mean [1; 2; 3] -- io.writeln io.stdout;</lang>
<syntaxhighlight lang=WDTE>mean [1; 2; 3] -- io.writeln io.stdout;</syntaxhighlight>


Output:
Output:
Line 3,844: Line 3,844:


=={{header|Wortel}}==
=={{header|Wortel}}==
<lang wortel>@let {
<syntaxhighlight lang=wortel>@let {
; using a fork (sum divided-by length)
; using a fork (sum divided-by length)
mean1 @(@sum / #)
mean1 @(@sum / #)
Line 3,855: Line 3,855:
!mean2 [3 1 4 1 5 9 2]
!mean2 [3 1 4 1 5 9 2]
]]
]]
}</lang>
}</syntaxhighlight>
Returns:
Returns:
<pre>[3.5714285714285716 3.5714285714285716]</pre>
<pre>[3.5714285714285716 3.5714285714285716]</pre>


=={{header|Wren}}==
=={{header|Wren}}==
<lang ecmascript>class Arithmetic {
<syntaxhighlight lang=ecmascript>class Arithmetic {
static mean(arr) {
static mean(arr) {
if (arr.count == 0) Fiber.abort("Length must be greater than zero")
if (arr.count == 0) Fiber.abort("Length must be greater than zero")
Line 3,866: Line 3,866:
}
}
}
}
Arithmetic.mean([1,2,3,4,5]) // 3</lang>
Arithmetic.mean([1,2,3,4,5]) // 3</syntaxhighlight>


=={{header|XLISP}}==
=={{header|XLISP}}==
The specification calls for a function that takes a vector; for convenience, we convert this vector internally to a list. The mean of a zero-length vector is returned as <tt>nil</tt>, equivalent to the empty list or logical <tt>false</tt>.
The specification calls for a function that takes a vector; for convenience, we convert this vector internally to a list. The mean of a zero-length vector is returned as <tt>nil</tt>, equivalent to the empty list or logical <tt>false</tt>.
<lang lisp>(defun mean (v)
<syntaxhighlight lang=lisp>(defun mean (v)
(if (= (vector-length v) 0)
(if (= (vector-length v) 0)
nil
nil
(let ((l (vector->list v)))
(let ((l (vector->list v)))
(/ (apply + l) (length l)))))</lang>
(/ (apply + l) (length l)))))</syntaxhighlight>


=={{header|XPL0}}==
=={{header|XPL0}}==
<lang XPL0>code CrLf=9;
<syntaxhighlight lang=XPL0>code CrLf=9;
code real RlOut=48;
code real RlOut=48;


Line 3,893: Line 3,893:
[Test:= [1.0, 2.0, 5.0, -5.0, 9.5, 3.14159];
[Test:= [1.0, 2.0, 5.0, -5.0, 9.5, 3.14159];
RlOut(0, Mean(Test, 6)); CrLf(0);
RlOut(0, Mean(Test, 6)); CrLf(0);
]</lang>
]</syntaxhighlight>


Output:
Output:
Line 3,904: Line 3,904:
Where <code>$values</code> is some variable indicating a set of nodes containing numbers, the average is given by the XPath expression:
Where <code>$values</code> is some variable indicating a set of nodes containing numbers, the average is given by the XPath expression:


<lang xpath>sum($values) div count($values)</lang>
<syntaxhighlight lang=xpath>sum($values) div count($values)</syntaxhighlight>


===Runnable example===
===Runnable example===


<lang xml><xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
<syntaxhighlight lang=xml><xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
<xsl:output method="text"/>
<xsl:output method="text"/>


Line 3,915: Line 3,915:
<xsl:value-of select="sum($values) div count($values)"/>
<xsl:value-of select="sum($values) div count($values)"/>
</xsl:template>
</xsl:template>
</xsl:stylesheet></lang>
</xsl:stylesheet></syntaxhighlight>


Sample input:
Sample input:


<lang xml><numbers>
<syntaxhighlight lang=xml><numbers>
<!-- Average is 2.4 -->
<!-- Average is 2.4 -->
<number>1</number>
<number>1</number>
Line 3,926: Line 3,926:
<number>3</number>
<number>3</number>
<number>5</number>
<number>5</number>
</numbers></lang>
</numbers></syntaxhighlight>


=={{header|Yorick}}==
=={{header|Yorick}}==
<lang yorick>func mean(x) {
<syntaxhighlight lang=yorick>func mean(x) {
if(is_void(x)) return 0;
if(is_void(x)) return 0;
return x(*)(avg);
return x(*)(avg);
}</lang>
}</syntaxhighlight>


=={{header|zkl}}==
=={{header|zkl}}==
Converts int to floats (implicitly):
Converts int to floats (implicitly):
<lang zkl>fcn mean(a,b,c,etc){ z:=vm.arglist; z.reduce('+,0.0)/z.len() }
<syntaxhighlight lang=zkl>fcn mean(a,b,c,etc){ z:=vm.arglist; z.reduce('+,0.0)/z.len() }
mean(3,1,4,1,5,9); //-->3.83333
mean(3,1,4,1,5,9); //-->3.83333
mean(); //-->Exception thrown: MathError(NaN (Not a number))</lang>
mean(); //-->Exception thrown: MathError(NaN (Not a number))</syntaxhighlight>
To pass in a vector/list:
To pass in a vector/list:
<lang zkl>fcn meanV(z){ z.reduce('+,0.0)/z.len() }
<syntaxhighlight lang=zkl>fcn meanV(z){ z.reduce('+,0.0)/z.len() }
meanV(T(3,1,4,1,5,9)); // --> 3.83333</lang>
meanV(T(3,1,4,1,5,9)); // --> 3.83333</syntaxhighlight>


=={{header|Zoea}}==
=={{header|Zoea}}==
<lang Zoea>
<syntaxhighlight lang=Zoea>
program: average
program: average
case: 1
case: 1
Line 3,952: Line 3,952:
input: [7,11]
input: [7,11]
output: 9
output: 9
</syntaxhighlight>
</lang>


=={{header|zonnon}}==
=={{header|zonnon}}==
<lang zonnon>
<syntaxhighlight lang=zonnon>
module Averages;
module Averages;
type
type
Line 3,973: Line 3,973:
write("arithmetic mean: ");writeln(ArithmeticMean(x):10:2)
write("arithmetic mean: ");writeln(ArithmeticMean(x):10:2)
end Averages.
end Averages.
</syntaxhighlight>
</lang>
{{out}}
{{out}}
<pre>
<pre>