Arithmetic/Rational/Modula-3

From Rosetta Code
Revision as of 07:16, 7 November 2018 by rosettacode>Cantanima (Not sure what <noinclude> does, so I removed it.)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Template:Rational Arithmetic

This implementation implements the task in a module named Frac that exports an opaque type named T, a standard Modula-3 practice. Although the task does not require it, the module also defines the exception ZeroDenominator for occasions when one might attempt division by zero, which includes at initialization. It provides two functions that return rational numbers for 0 and 1.

Unfortunately IMHO Modula-3 eschewed operator overloading, so the arithmetic looks unpleasant.

Interface module

<lang modula3>INTERFACE Frac;

EXCEPTION ZeroDenominator;

TYPE

 T <: Public;
 Public = OBJECT
 METHODS
   (* initialization and conversion *)
   init(a, b: INTEGER): T RAISES { ZeroDenominator };
   fromInt(a: INTEGER): T;
   (* unary operators *)
   abs(): T;
   opposite(): T;
   (* binary operators *)
   plus(other: T): T;
   minus(other: T): T;
   times(other: T): T;
   dividedBy(other: T): T RAISES { ZeroDenominator };
   integerDivision(other: INTEGER): T RAISES { ZeroDenominator };
   (* relations *)
   equals(other: T): BOOLEAN;
   notEqualTo(other: T): BOOLEAN;
   lessThan(other: T): BOOLEAN;
   lessEqual(other: T): BOOLEAN;
   greaterEqual(other: T): BOOLEAN;
   greater(other: T): BOOLEAN;
   (* other easily-checked properties *)
   isInt(): BOOLEAN;
   (* inc/decrement *)
   inc(step: CARDINAL := 1);
   dec(step: CARDINAL := 1);
 END;
 PROCEDURE One():  T;
 PROCEDURE Zero(): T;
 (* I/O *)
 PROCEDURE PutRat(a: T);

END Frac.</lang>

Implementation module

The implementation keeps all rational numbers in simplest form.

<lang modula3>MODULE Frac;

IMPORT IO;

TYPE

 REVEAL T = Public BRANDED OBJECT
   num: INTEGER := 0;
   den: INTEGER := 1;
 OVERRIDES
   init := Init;
   fromInt := FromInt;
   abs := Abs;
   opposite := Opposite;
   plus := Plus;
   minus := Minus;
   times := Times;
   dividedBy := DividedBy;
   integerDivision := IntegerDivision;
   equals := Equals;
   notEqualTo := NotEqualTo;
   lessThan := LessThan;
   lessEqual := LessEqual;
   greaterEqual := GreaterEqual;
   greater := Greater;
   isInt := IsInt;
   inc := Inc;
   dec := Dec;
 END;

PROCEDURE Gcd(a, b: CARDINAL): CARDINAL = VAR

 m := MAX(a, b);
 n := MIN(a, b);
 r: CARDINAL;

BEGIN

 WHILE n # 0 DO
   r := m MOD n;
   m := n;
   n := r;
 END;
 RETURN m;

END Gcd;

PROCEDURE Simplify(VAR a: T) = VAR

 d := Gcd(ABS(a.num), ABS(a.den));

BEGIN

 a.num := a.num DIV d;
 a.den := a.den DIV d;

END Simplify;

PROCEDURE Init(self: T; a, b: INTEGER): T RAISES { ZeroDenominator } = BEGIN

 IF (b > 0) THEN
   self.num := a;
   self.den := b;
 ELSIF (b < 0) THEN
   self.num := -a;
   self.den := -b;
 ELSE
   RAISE ZeroDenominator;
 END;
 Simplify(self);
 RETURN self;

END Init;

PROCEDURE FromInt(self: T; a: INTEGER): T = BEGIN

 self.num := a;
 self.den := 1;
 RETURN self;

END FromInt;

PROCEDURE Abs(self: T): T = BEGIN

 RETURN NEW(T, num := ABS(self.num), den := self.den);

END Abs;

PROCEDURE Opposite(self: T): T = BEGIN

 RETURN NEW(T, num := -self.num, den := self.den);

END Opposite;

PROCEDURE Plus(self, other: T): T = VAR

 result := NEW( T,
     num := self.num * other.den + self.den * other.num,
     den := self.den * other.den
 );

BEGIN

 Simplify(result);
 RETURN result;

END Plus;

PROCEDURE Minus(self, other: T): T = VAR

 result := NEW( T,
     num := self.num * other.den - self.den * other.num,
     den := self.den * other.den
 );

BEGIN

 Simplify(result);
 RETURN result;

END Minus;

PROCEDURE Times(self, other: T): T = VAR

 result := NEW( T,
     num := self.num * other.num,
     den := self.den * other.den
 );

BEGIN

 Simplify(result);
 RETURN result;

END Times;

PROCEDURE DividedBy(self, other: T): T RAISES { ZeroDenominator } = VAR

 result := NEW( T,
     num := self.num * other.den,
     den := self.den * other.num
 );

BEGIN

 IF result.den = 0 THEN RAISE ZeroDenominator; END;
 IF result.den < 0 THEN
   result.num := -result.num;
   result.den := -result.den;
 END;
 Simplify(result);
 RETURN result;

END DividedBy;

PROCEDURE IntegerDivision(self: T; other: INTEGER): T RAISES { ZeroDenominator } = VAR

 result := NEW( T, num := self.num, den := self.den * other );

BEGIN

 IF other = 0 THEN RAISE ZeroDenominator; END;
 Simplify(result);
 RETURN result;

END IntegerDivision;

PROCEDURE Equals(self, other: T): BOOLEAN = BEGIN

 (* this trick works only because we simplify after each operation *)
 RETURN (self.num = other.num) AND (self.den = other.den);

END Equals;

PROCEDURE NotEqualTo(self, other: T): BOOLEAN = BEGIN

 (* this trick works only because we simplify after each operation *)
 RETURN (self.num # other.num) OR (self.den # other.den);

END NotEqualTo;

PROCEDURE LessThan(self, other: T): BOOLEAN = BEGIN

 RETURN self.num * other.den < self.den * other.num;

END LessThan;

PROCEDURE LessEqual(self, other: T): BOOLEAN = BEGIN

 RETURN self.num * other.den <= self.den * other.num;

END LessEqual;

PROCEDURE GreaterEqual(self, other: T): BOOLEAN = BEGIN

 RETURN self.num * other.den >= self.den * other.num;

END GreaterEqual;

PROCEDURE Greater(self, other: T): BOOLEAN = BEGIN

 RETURN self.num * other.den > self.den * other.num;

END Greater;

PROCEDURE Inc(self: T; step: CARDINAL) = BEGIN

 INC(self.num, step * self.den);

END Inc;

PROCEDURE Dec(self: T; step: CARDINAL) = BEGIN

 DEC(self.num, step * self.den);

END Dec;

PROCEDURE IsInt(self: T): BOOLEAN = BEGIN

 RETURN self.den = 1;

END IsInt;

PROCEDURE One(): T = BEGIN

 TRY
   RETURN NEW(T).init(1, 1);
 EXCEPT ZeroDenominator =>
   IO.Put("Something went very wrong.\n");
   RETURN NIL;
 END;

END One;

PROCEDURE Zero(): T = BEGIN

 TRY
   RETURN NEW(T).init(0, 1);
 EXCEPT ZeroDenominator =>
   IO.Put("Something went very wrong.\n");
   RETURN NIL;
 END;

END Zero;

PROCEDURE PutRat(a: T) = BEGIN

 IO.PutInt(a.num);
 IF a.den # 1 THEN
   IO.Put(" / "); IO.PutInt(a.den);
 END;

END PutRat;

BEGIN END Frac.</lang>

Test Program
Translation of: Nim

This module performs a few additional tests. The test for perfect numbers is based on that of Nim above. <lang modula3>MODULE TestRational EXPORTS Main;

IMPORT IO, Frac AS R, Word;

FROM Math IMPORT sqrt;

PROCEDURE PutBool(b: BOOLEAN) = BEGIN

 IF b THEN IO.Put("true");
 ELSE IO.Put("false");
 END;

END PutBool;

VAR

 a, b: R.T;
 n: Word.T := 2;
 limit: Word.T := 1;

BEGIN

 TRY
   a := NEW(R.T).init(2,3);
   b := NEW(R.T).init(-3,4);
 EXCEPT | R.ZeroDenominator =>
   IO.Put("Zero division!\n");
 END;
 R.PutRat(a); IO.Put(" op "); R.PutRat(b); IO.Put(" = \n");
 IO.Put("  + : "); R.PutRat(a.plus(b));  IO.PutChar('\n');
 IO.Put("  - : "); R.PutRat(a.minus(b)); IO.PutChar('\n');
 IO.Put("  * : "); R.PutRat(a.times(b)); IO.PutChar('\n');
 TRY
   IO.Put("  /: "); R.PutRat(a.dividedBy(b)); IO.PutChar('\n');
 EXCEPT | R.ZeroDenominator =>
   IO.Put("Zero division\n");
 END;
 IO.Put("  <  : "); PutBool(a.lessThan(b));     IO.PutChar('\n');
 IO.Put("  <= : "); PutBool(a.lessEqual(b));    IO.PutChar('\n');
 IO.Put("  >= : "); PutBool(a.greaterEqual(b)); IO.PutChar('\n');
 IO.Put("  >  : "); PutBool(a.greater(b));      IO.PutChar('\n');
 IO.PutChar('\n');
 IO.Put("Increasing "); R.PutRat(a); IO.Put(" by\n");
 IO.Put("  1 gives "); a.inc(1); R.PutRat(a); IO.PutChar('\n');
 IO.Put("  3 gives "); a.inc(3); R.PutRat(a); IO.PutChar('\n');
 IO.Put("Decreasing "); R.PutRat(a); IO.Put(" by\n");
 IO.Put("  1 gives "); a.dec(1); R.PutRat(a); IO.PutChar('\n');
 IO.Put("  3 gives "); a.dec(3); R.PutRat(a); IO.PutChar('\n');
 limit := Word.LeftShift(limit, 19);
 TRY
   WHILE n < limit DO
       VAR
         sum := NEW(R.T).init(1, n);
         maxFac := FLOOR(sqrt(FLOAT(n, LONGREAL)));
       BEGIN
         FOR i := 2 TO maxFac DO
           IF n MOD i = 0 THEN
             sum := sum.plus(NEW(R.T).init(1, i))
                       .plus(NEW(R.T).init(1, n DIV i));
           END;
         END;
         IF sum.isInt() THEN
           IO.Put("sum of reciprocal factors of "); IO.PutInt(n);
           IO.Put(" is exactly "); R.PutRat(sum);
           IF sum.equals(R.One()) THEN
             IO.Put(" perfect!");
           END;
           IO.PutChar('\n');
         END;
       END;
     INC(n, 2);
   END;
 EXCEPT R.ZeroDenominator =>
   IO.Put("Something went very wrong\n");
 END;

END TestRational.</lang>

Output:
2 / 3 op -3 / 4 = 
  + : -1 / 12
  - : 17 / 12
  * : -1 / 2
  /: -8 / 9
  <  : false
  <= : false
  >= : true
  >  : true

Increasing 2 / 3 by
  1 gives 5 / 3
  3 gives 14 / 3
Decreasing 14 / 3 by
  1 gives 11 / 3
  3 gives 2 / 3
sum of reciprocal factors of 6 is exactly 1 perfect!
sum of reciprocal factors of 28 is exactly 1 perfect!
sum of reciprocal factors of 120 is exactly 2
sum of reciprocal factors of 496 is exactly 1 perfect!
sum of reciprocal factors of 672 is exactly 2
sum of reciprocal factors of 8128 is exactly 1 perfect!
sum of reciprocal factors of 30240 is exactly 3
sum of reciprocal factors of 32760 is exactly 3
sum of reciprocal factors of 523776 is exactly 2