Monte Carlo methods

From Rosetta Code
Task
Monte Carlo methods
You are encouraged to solve this task according to the task description, using any language you may know.

A Monte Carlo Simulation is a way of approximating the value of a function where calculating the actual value is difficult or impossible. It uses random sampling to define constraints on the value and then makes a sort of "best guess."

A simple Monte Carlo Simulation can be used to calculate the value for pi. If you had a circle and a square where the length of a side of the square was the same as the diameter of the circle, the ratio of the area of the circle to the area of the square would be pi/4. So, if you put this circle inside the square and select many random points inside the square, the number of points inside the circle divided by the number of points inside the square and the circle would be approximately pi/4.

Write a function to run a simulation like this with a variable number of random points to select. Also, show the results of a few different sample sizes.

Ada

<ada> with Ada.Text_IO; use Ada.Text_IO; with Ada.Numerics.Float_Random; use Ada.Numerics.Float_Random;

procedure Test_Monte_Carlo is

  Dice : Generator;
  
  function Pi (Throws : Positive) return Float is
     Inside : Natural := 0;
  begin
     for Throw in 1..Throws loop
        if Random (Dice) ** 2 + Random (Dice) ** 2 <= 1.0 then
           Inside := Inside + 1;
        end if;
     end loop;
     return 4.0 * Float (Inside) / Float (Throws);
  end Pi;

begin

  Put_Line ("     10_000:" & Float'Image (Pi (     10_000)));
  Put_Line ("    100_000:" & Float'Image (Pi (    100_000)));
  Put_Line ("  1_000_000:" & Float'Image (Pi (  1_000_000)));
  Put_Line (" 10_000_000:" & Float'Image (Pi ( 10_000_000)));
  Put_Line ("100_000_000:" & Float'Image (Pi (100_000_000)));

end Test_Monte_Carlo; </ada> The implementation uses built-in uniformly distributed on [0,1] random numbers. Note that the accuracy of the result depends on the quality of the pseudo random generator: its circle length and correlation to the function being simulated. Sample output:

     10_000: 3.13920E+00
    100_000: 3.14684E+00
  1_000_000: 3.14197E+00
 10_000_000: 3.14215E+00
100_000_000: 3.14151E+00

Forth

Works with: GNU Forth
include random.fs

10000 value r

: hit? ( -- ? )
  r random dup *
  r random dup * +
  r dup * < ;

: sims ( n -- hits )
  0 swap 0 do hit? if 1+ then loop ;
1000 sims 4 * . 3232  ok
10000 sims 4 * . 31448  ok
100000 sims 4 * . 313704  ok
1000000 sims 4 * . 3141224  ok
10000000 sims 4 * . 31409400  ok

Fortran

Works with: Fortran version 90 and later
MODULE Simulation

  IMPLICIT NONE

  CONTAINS

  FUNCTION Pi(samples)
    REAL :: Pi
    REAL :: coords(2), length
    INTEGER :: i, in_circle, samples
 
    in_circle = 0
    DO i=1, samples
      CALL RANDOM_NUMBER(coords)
      coords = coords * 2 - 1
      length = SQRT(coords(1)*coords(1) + coords(2)*coords(2))
      IF (length <= 1) in_circle = in_circle + 1
    END DO
    Pi = 4.0 * REAL(in_circle) / REAL(samples)
  END FUNCTION Pi

END MODULE Simulation
 
PROGRAM MONTE_CARLO

  USE Simulation 
  
  INTEGER :: n = 10000

  DO WHILE (n <= 100000000)
    WRITE (*,*) n, Pi(n)
    n = n * 10
  END DO
    
END PROGRAM MONTE_CARLO

Output:

       10000     3.12120
      100000     3.13772
     1000000     3.13934
    10000000     3.14114
   100000000     3.14147

Java

<java>public class MC { public static void main(String[] args) { System.out.println(getPi(10000)); System.out.println(getPi(100000)); System.out.println(getPi(1000000)); System.out.println(getPi(10000000)); System.out.println(getPi(100000000));

} public static double getPi(int numThrows){ int inCircle= 0; for(int i= 0;i < numThrows;i++){ //a square with a side of length 2 centered at 0 has //x and y range of -1 to 1 double randX= (Math.random() * 2) - 1;//range -1 to 1 double randY= (Math.random() * 2) - 1;//range -1 to 1 //distance from (0,0) = sqrt((x-0)^2+(y-0)^2) double dist= Math.sqrt(randX * randX + randY * randY); if(dist < 1){//circle with diameter of 2 has radius of 1 inCircle++; } } return 4.0 * inCircle / numThrows; } }</java> Output:

3.1396
3.14256
3.141516
3.1418692
3.14168604

MAXScript

fn monteCarlo iterations =
(
    radius = 1.0
    pointsInCircle = 0
    for i in 1 to iterations do
    (
        testPoint = [(random -radius radius), (random -radius radius)]
        if length testPoint <= radius then
        (
            pointsInCircle += 1
        )
    )
    4.0 * pointsInCircle / iterations
)

OCaml

<ocaml>let get_pi throws =

 let rec helper i count =
   if i = throws then count
   else
     let rand_x = Random.float 2.0 -. 1.0
     and rand_y = Random.float 2.0 -. 1.0 in
     let dist = sqrt (rand_x *. rand_x +. rand_y *. rand_y) in
     if dist < 1.0 then
       helper (i+1) (count+1)
     else
       helper (i+1) count
 in float (4 * helper 0 0) /. float throws</ocaml>

Example:

# get_pi 10000;;
- : float = 3.15
# get_pi 100000;;
- : float = 3.13272
# get_pi 1000000;;
- : float = 3.143808
# get_pi 10000000;;
- : float = 3.1421704
# get_pi 100000000;;
- : float = 3.14153872

Python

Python 2.6rc2 (r26rc2:66507, Sep 18 2008, 14:27:33) [MSC v.1500 32 bit (Intel)] on win32

IDLE 2.6rc2

<python>>>> import random, math >>> throws = 1000 >>> 4.0 * sum(1 for p in xrange(throws) if math.hypot(*[random.random()*2-1 for q in [0,1]]) < 1) / float(throws) 3.1520000000000001 >>> throws = 1000000 >>> 4.0 * sum(1 for p in xrange(throws) if math.hypot(*[random.random()*2-1 for q in [0,1]]) < 1) / float(throws) 3.1396359999999999 >>> throws = 100000000 >>> 4.0 * sum(1 for p in xrange(throws) if math.hypot(*[random.random()*2-1 for q in [0,1]]) < 1) / float(throws) 3.1415666400000002</python>