Sudoku

From Rosetta Code
Task
Sudoku
You are encouraged to solve this task according to the task description, using any language you may know.

Solve a partially filled-in normal 9x9 Sudoku grid and display the result in a human-readable format. Algorithmics of Sudoku may help implement this.

ALGOL 68

Translation of: D

Note: This specimen retains the original D coding style.

Works with: ALGOL 68 version Revision 1 - no extensions to language used.
Works with: ALGOL 68G version Any - tested with release 1.18.0-9h.tiny.

<lang algol68>MODE AVAIL = [9]BOOL; MODE BOX = [3, 3]CHAR;

FORMAT row fmt = $"|"3(" "3(g" ")"|")l$; FORMAT line = $"+"3(7"-","+")l$; FORMAT puzzle fmt = $f(line)3(3(f(row fmt))f(line))$;

AVAIL gen full = (TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE);

OP REPR = (AVAIL avail)STRING: (

 STRING out := "";
 FOR i FROM LWB avail TO UPB avail DO
   IF avail[i] THEN out +:= REPR(ABS "0" + i) FI
 OD;
 out

);

CHAR empty = "_";

OP -:= = (REF AVAIL set, CHAR index)VOID: (

 set[ABS index - ABS "0"]:=FALSE

);

  1. these two functions assume that the number has not already been found #

PROC avail slice = (REF[]CHAR slice, REF AVAIL available)REF AVAIL:(

       FOR ele FROM LWB slice TO UPB slice DO
               IF slice[ele] /= empty THEN available-:=slice[ele] FI
       OD;
       available

);

PROC avail box = (INT x, y, REF AVAIL available)REF AVAIL:(

       #  x designates row, y designates column #
       #  get a base index for the boxes #
       INT bx := x - (x-1) MOD 3;
       INT by := y - (y-1) MOD 3;
       REF BOX box = puzzle[bx:bx+2, by:by+2];
       FOR i FROM LWB box TO UPB box DO
         FOR j FROM 2 LWB box TO 2 UPB box DO
               IF box[i, j] /= empty THEN available-:=box[i, j] FI
         OD
       OD;
       available

);

[9, 9]CHAR puzzle; PROC solve = ([,]CHAR in puzzle)VOID:(

       puzzle := in puzzle;
       TO UPB puzzle UP 2 DO
               BOOL done := TRUE;
               FOR i FROM LWB puzzle TO UPB puzzle DO
                 FOR j FROM 2 LWB puzzle TO 2 UPB puzzle DO 
                   CHAR ele := puzzle[i, j];
                   IF ele = empty THEN
                       #  poke at the elements that are "_" #
                       AVAIL remaining := avail box(i, j, 
                                          avail slice(puzzle[i, ], 
                                          avail slice(puzzle[, j], 
                                          LOC AVAIL := gen full)));
                       STRING s = REPR remaining;
                       IF UPB s = 1 THEN puzzle[i, j] := s[LWB s]
                       ELSE done := FALSE
                       FI
                   FI
                 OD
               OD;
               IF done THEN break FI
       OD;

break:

       #  write out completed puzzle #
       printf(($gl$, "Completed puzzle:"));
       printf((puzzle fmt, puzzle))

); main:(

  solve(("394__267_",
         "___3__4__",
         "5__69__2_",
         "_45___9__",
         "6_______7",
         "__7___58_",
         "_1__67__8",
         "__9__8___",
         "_264__735"))

CO # note: This codes/algorithm does not [yet] solve: #

  solve(("9__2__5__",
         "_4__6__3_",
         "__3_____6",
         "___9__2__",
         "____5__8_",
         "__7__4__3",
         "7_____1__",
         "_5__2__4_",
         "__1__6__9"))

END CO )</lang>

Output:
Completed puzzle:
+-------+-------+-------+
| 3 9 4 | 8 5 2 | 6 7 1 |
| 2 6 8 | 3 7 1 | 4 5 9 |
| 5 7 1 | 6 9 4 | 8 2 3 |
+-------+-------+-------+
| 1 4 5 | 7 8 3 | 9 6 2 |
| 6 8 2 | 9 4 5 | 3 1 7 |
| 9 3 7 | 1 2 6 | 5 8 4 |
+-------+-------+-------+
| 4 1 3 | 5 6 7 | 2 9 8 |
| 7 5 9 | 2 3 8 | 1 4 6 |
| 8 2 6 | 4 1 9 | 7 3 5 |
+-------+-------+-------+

AutoHotkey

<lang AutoHotkey>#SingleInstance, Force SetBatchLines, -1 SetTitleMatchMode, 3

   Loop 9 {
      r := A_Index, y := r*17-8 + (A_Index >= 7 ? 4 : A_Index >= 4 ? 2 : 0)
      Loop 9 {
         c := A_Index, x := c*17+5 + (A_Index >= 7 ? 4 : A_Index >= 4 ? 2 : 0)
         Gui, Add, Edit, x%x% y%y% w17 h17 v%r%_%c% Center Number Limit1 gNext
      }
   }
   Gui, Add, Button, vButton gSolve w175 x10 Center, Solve
   Gui, Add, Text, vMsg r3, Enter Sudoku puzzle and click Solve
   Gui, Show,, Sudoku Solver

Return

Solve:

   Gui, Submit, NoHide
   Loop 9
   {
      r := A_Index
      Loop 9
         If (%r%_%A_Index% = "")
            puzzle .= "@"
         Else
            puzzle .= %r%_%A_Index%
   }
   s := A_TickCount
   answer := Sudoku(puzzle)
   iterations := ErrorLevel
   e := A_TickCount
   seconds := (e-s)/1000
   StringSplit, a, answer, |
   Loop 9
   {
      r := A_Index
      Loop 9
      {
         b := (r*9)+A_Index-9
         GuiControl,, %r%_%A_Index%, % a%b%
         GuiControl, +ReadOnly, %r%_%A_Index%
       }
   }
   if answer
       GuiControl,, Msg, Solved!`nTime: %seconds%s`nIterations: %iterations%
   else
       GuiControl,, Msg, Failed! :(`nTime: %seconds%s`nIterations: %iterations%
   GuiControl,, Button, Again!
   GuiControl, +gAgain, Button

return

GuiClose:

   ExitApp

Again:

   Reload
  1. IfWinActive, Sudoku Solver

~*Enter::GoSub % GetKeyState( "Shift", "P" ) ? "~Up" : "~Down" ~Up::

   GuiControlGet, f, focus
   StringTrimLeft, f, f, 4
   f := ((f >= 1 && f <= 9) ? f+72 : f-9)
   GuiControl, Focus, Edit%f%

return ~Down::

   GuiControlGet, f, focus
   StringTrimLeft, f, f, 4
   f := ((f >= 73 && f <= 81) ? f-72 : f + 9)
   GuiControl, Focus, Edit%f%

return ~Left::

   GuiControlGet, f, focus
   StringTrimLeft, f, f, 4
   f := Mod(f + 79, 81) + 1
   GuiControl, Focus, Edit%f%

return Next: ~Right::

   GuiControlGet, f, focus
   StringTrimLeft, f, f, 4
   f := Mod(f, 81) + 1
   GuiControl, Focus, Edit%f%

return

  1. IfWinActive
Functions Start here

Sudoku( p ) { ;ErrorLevel contains the number of iterations

  p := RegExReplace(p, "[^1-9@]"), ErrorLevel := 0 ;format puzzle as single line string
  return Sudoku_Display(Sudoku_Solve(p))

}

Sudoku_Solve( p, d = 0 ) { ;d is 0-based

http://www.autohotkey.com/forum/topic46679.html
p
81 character puzzle string
(concat all 9 rows of 9 chars each)
givens represented as chars 1-9
fill-ins as any non-null, non 1-9 char
d
used internally. omit on initial call
returns
81 char string with non-givens replaced with valid solution
  If (d >= 81), ErrorLevel++
     return p  ;this is 82nd iteration, so it has successfully finished iteration 81
  If InStr( "123456789", SubStr(p, d+1, 1) ) ;this depth is a given, skip through
     return Sudoku_Solve(p, d+1)
  m := Sudoku_Constraints(p,d) ;a string of this level's constraints. 
  ; (these will not change for all 9 loops)
  Loop 9
  {
     If InStr(m, A_Index)
        Continue
     NumPut(Asc(A_Index), p, d, "Char")
     If r := Sudoku_Solve(p, d+1)
        return r
  }
  return 0

}

Sudoku_Constraints( ByRef p, d ) {

returns a string of the constraints for a particular position
    c := Mod(d,9)
  , r := (d - c) // 9
  , b := r//3*27 + c//3*3 + 1
  ;convert to 1-based
  , c++
  return ""
  ; row:
     . SubStr(p, r * 9 + 1, 9)
  ; column: 
     . SubStr(p,c   ,1) SubStr(p,c+9 ,1) SubStr(p,c+18,1)
     . SubStr(p,c+27,1) SubStr(p,c+36,1) SubStr(p,c+45,1)
     . SubStr(p,c+54,1) SubStr(p,c+63,1) SubStr(p,c+72,1)
  ;box
     . SubStr(p, b, 3) SubStr(p, b+9, 3) SubStr(p, b+18, 3) 

}

Sudoku_Display( p ) {

  If StrLen(p) = 81
     loop 81
        r .= SubStr(p, A_Index, 1) . "|"
  return r

}</lang>

BBC BASIC

<lang bbcbasic> VDU 23,22,453;453;8,20,16,128

     *FONT Arial,28
     
     DIM Board%(8,8)
     Board%() = %111111111
     
     FOR L% = 0 TO 9:P% = L%*100
       LINE 2,P%+2,902,P%+2
       IF (L% MOD 3)=0 LINE 2,P%,902,P% : LINE 2,P%+4,902,P%+4
       LINE P%+2,2,P%+2,902
       IF (L% MOD 3)=0 LINE P%,2,P%,902 : LINE P%+4,2,P%+4,902
     NEXT
     
     DATA "  4 5  6 "
     DATA " 6 1  8 9"
     DATA "3    7   "
     DATA " 8    5  "
     DATA "   4 3   "
     DATA "  6    7 "
     DATA "   2    6"
     DATA "1 5  4 3 "
     DATA " 2  7 1  "
     
     FOR R% = 8 TO 0 STEP -1
       READ A$
       FOR C% = 0 TO 8
         A% = ASCMID$(A$,C%+1) AND 15
         IF A% Board%(R%,C%) = 1 << (A%-1)
       NEXT
     NEXT R%
     
     GCOL 4
     PROCshow
     WAIT 200
     dummy% = FNsolve(Board%(), TRUE)
     GCOL 2
     PROCshow
     REPEAT WAIT 1 : UNTIL FALSE
     END
     
     DEF PROCshow
     LOCAL C%,P%,R%
     FOR C% = 0 TO 8
       FOR R% = 0 TO 8
         P% = Board%(R%,C%)
         IF (P% AND (P%-1)) = 0 THEN
           IF P% P% = LOGP%/LOG2+1.5
           MOVE C%*100+30,R%*100+90
           VDU 5,P%+48,4
         ENDIF
       NEXT
     NEXT
     ENDPROC
     
     DEF FNsolve(P%(),F%)
     LOCAL C%,D%,M%,N%,R%,X%,Y%,Q%()
     DIM Q%(8,8)
     REPEAT
       Q%() = P%()
       FOR R% = 0 TO 8
         FOR C% = 0 TO 8
           D% = P%(R%,C%)
           IF (D% AND (D%-1))=0 THEN
             M% = NOT D%
             FOR X% = 0 TO 8
               IF X%<>C% P%(R%,X%) AND= M%
               IF X%<>R% P%(X%,C%) AND= M%
             NEXT
             FOR X% = C%DIV3*3 TO C%DIV3*3+2
               FOR Y% = R%DIV3*3 TO R%DIV3*3+2
                 IF X%<>C% IF Y%<>R% P%(Y%,X%) AND= M%
               NEXT
             NEXT
           ENDIF
         NEXT
       NEXT
       Q%() -= P%()
     UNTIL SUMQ%()=0
     M% = 10
     FOR R% = 0 TO 8
       FOR C% = 0 TO 8
         D% = P%(R%,C%)
         IF D%=0 M% = 0
         IF D% AND (D%-1) THEN
           N% = 0
           REPEAT N% += D% AND 1
             D% DIV= 2
           UNTIL D% = 0
           IF N%<M% M% = N% : X% = C% : Y% = R%
         ENDIF
       NEXT
     NEXT
     IF M%=0 THEN = 0
     IF M%=10 THEN = 1
     D% = 0
     FOR M% = 0 TO 8
       IF P%(Y%,X%) AND (2^M%) THEN
         Q%() = P%()
         Q%(Y%,X%) = 2^M%
         C% = FNsolve(Q%(),F%)
         D% += C%
         IF C% IF F% P%() = Q%() : = D%
       ENDIF
     NEXT
     = D%</lang>

BCPL

<lang BCPL>// This can be run using Cintcode BCPL freely available from www.cl.cam.ac.uk/users/mr10.

// This is a really naive program to solve Su Doku problems. Even so it is usually quite fast.

// SuDoku consists of a 9x9 grid of cells. Each cell should contain // a digit in the range 1..9. Every row, column and major 3x3 // square should contain all the digits 1..9. Some cells have // given values. The problem is to find digits to place in // the unspecified cells satisfying the constraints.

// A typical problem is:

// - - - 6 3 8 - - - // 7 - 6 - - - 3 - 5 // - 1 - - - - - 4 -

// - - 8 7 1 2 4 - - // - 9 - - - - - 5 - // - - 2 5 6 9 1 - -

// - 3 - - - - - 1 - // 1 - 5 - - - 6 - 8 // - - - 1 8 4 - - -

SECTION "sudoku"

GET "libhdr"

GLOBAL { count:ug

// The 9x9 board

a1; a2; a3; a4; a5; a6; a7; a8; a9 b1; b2; b3; b4; b5; b6; b7; b8; b9 c1; c2; c3; c4; c5; c6; c7; c8; c9 d1; d2; d3; d4; d5; d6; d7; d8; d9 e1; e2; e3; e4; e5; e6; e7; e8; e9 f1; f2; f3; f4; f5; f6; f7; f8; f9 g1; g2; g3; g4; g5; g6; g7; g8; g9 h1; h2; h3; h4; h5; h6; h7; h8; h9 i1; i2; i3; i4; i5; i6; i7; i8; i9 }

MANIFEST { N1=1<<0; N2=1<<1; N3=1<<2; N4=1<<3; N5=1<<4; N6=1<<5; N7=1<<6; N8=1<<7; N9=1<<8 }

LET start() = VALOF { count := 0

 initboard()
 prboard()
 ta1()
 writef("*n*nTotal number of solutions: %n*n", count)
 RESULTIS 0

}

AND initboard() BE { a1, a2, a3, a4, a5, a6, a7, a8, a9 := 0, 0, 0, N6,N3,N8, 0, 0, 0 b1, b2, b3, b4, b5, b6, b7, b8, b9 := N7, 0,N6, 0, 0, 0, N3, 0,N5 c1, c2, c3, c4, c5, c6, c7, c8, c9 := 0,N1, 0, 0, 0, 0, 0,N4, 0 d1, d2, d3, d4, d5, d6, d7, d8, d9 := 0, 0,N8, N7,N1,N2, N4, 0, 0 e1, e2, e3, e4, e5, e6, e7, e8, e9 := 0,N9, 0, 0, 0, 0, 0,N5, 0 f1, f2, f3, f4, f5, f6, f7, f8, f9 := 0, 0,N2, N5,N6,N9, N1, 0, 0 g1, g2, g3, g4, g5, g6, g7, g8, g9 := 0,N3, 0, 0, 0, 0, 0,N1, 0 h1, h2, h3, h4, h5, h6, h7, h8, h9 := N1, 0,N5, 0, 0, 0, N6, 0,N8 i1, i2, i3, i4, i5, i6, i7, i8, i9 := 0, 0, 0, N1,N8,N4, 0, 0, 0

// Un-comment the following to test that the backtracking works // giving 184 solutions. //h1, h2, h3, h4, h5, h6, h7, h8, h9 := N1, 0,N5, 0, 0, 0, N6, 0, 0 //i1, i2, i3, i4, i5, i6, i7, i8, i9 := 0, 0, 0, 0, 0, 0, 0, 0, 0 }

AND c(n) = VALOF SWITCHON n INTO { DEFAULT: RESULTIS '?'

 CASE  0:    RESULTIS '-'
 CASE N1:    RESULTIS '1'
 CASE N2:    RESULTIS '2'
 CASE N3:    RESULTIS '3'
 CASE N4:    RESULTIS '4'
 CASE N5:    RESULTIS '5'
 CASE N6:    RESULTIS '6'
 CASE N7:    RESULTIS '7'
 CASE N8:    RESULTIS '8'
 CASE N9:    RESULTIS '9'

}

AND prboard() BE { LET form = "%c %c %c %c %c %c %c %c %c*n"

 writef("*ncount = %n*n", count)
 newline()
 writef(form, c(a1),c(a2),c(a3),c(a4),c(a5),c(a6),c(a7),c(a8),c(a9))
 writef(form, c(b1),c(b2),c(b3),c(b4),c(b5),c(b6),c(b7),c(b8),c(b9))
 writef(form, c(c1),c(c2),c(c3),c(c4),c(c5),c(c6),c(c7),c(c8),c(c9))
 newline()
 writef(form, c(d1),c(d2),c(d3),c(d4),c(d5),c(d6),c(d7),c(d8),c(d9))
 writef(form, c(e1),c(e2),c(e3),c(e4),c(e5),c(e6),c(e7),c(e8),c(e9))
 writef(form, c(f1),c(f2),c(f3),c(f4),c(f5),c(f6),c(f7),c(f8),c(f9))
 newline()
 writef(form, c(g1),c(g2),c(g3),c(g4),c(g5),c(g6),c(g7),c(g8),c(g9))
 writef(form, c(h1),c(h2),c(h3),c(h4),c(h5),c(h6),c(h7),c(h8),c(h9))
 writef(form, c(i1),c(i2),c(i3),c(i4),c(i5),c(i6),c(i7),c(i8),c(i9))
 newline()

//abort(1000) }

AND try(p, f, row, col, sq) BE { LET x = !p

 TEST x
 THEN f()
 ELSE { LET bits = row|col|sq

//prboard() // writef("x=%n %b9*n", x, bits) //abort(1000)

        IF (N1&bits)=0 DO { !p:=N1; f() }
        IF (N2&bits)=0 DO { !p:=N2; f() }
        IF (N3&bits)=0 DO { !p:=N3; f() }
        IF (N4&bits)=0 DO { !p:=N4; f() }
        IF (N5&bits)=0 DO { !p:=N5; f() }
        IF (N6&bits)=0 DO { !p:=N6; f() }
        IF (N7&bits)=0 DO { !p:=N7; f() }
        IF (N8&bits)=0 DO { !p:=N8; f() }
        IF (N9&bits)=0 DO { !p:=N9; f() }
        !p := 0
      }

}

AND ta1() BE try(@a1, ta2, a1+a2+a3+a4+a5+a6+a7+a8+a9,

                          a1+b1+c1+d1+e1+f1+g1+h1+i1,
                          a1+a2+a3+b1+b2+b3+c1+c2+c3)

AND ta2() BE try(@a2, ta3, a1+a2+a3+a4+a5+a6+a7+a8+a9,

                          a2+b2+c2+d2+e2+f2+g2+h2+i2,
                          a1+a2+a3+b1+b2+b3+c1+c2+c3)

AND ta3() BE try(@a3, ta4, a1+a2+a3+a4+a5+a6+a7+a8+a9,

                          a3+b3+c3+d3+e3+f3+g3+h3+i3,
                          a1+a2+a3+b1+b2+b3+c1+c2+c3)

AND ta4() BE try(@a4, ta5, a1+a2+a3+a4+a5+a6+a7+a8+a9,

                          a4+b4+c4+d4+e4+f4+g4+h4+i4,
                          a4+a5+a6+b4+b5+b6+c4+c5+c6)

AND ta5() BE try(@a5, ta6, a1+a2+a3+a4+a5+a6+a7+a8+a9,

                          a5+b5+c5+d5+e5+f5+g5+h5+i5,
                          a4+a5+a6+b4+b5+b6+c4+c5+c6)

AND ta6() BE try(@a6, ta7, a1+a2+a3+a4+a5+a6+a7+a8+a9,

                          a6+b6+c6+d6+e6+f6+g6+h6+i6,
                          a4+a5+a6+b4+b5+b6+c4+c5+c6)

AND ta7() BE try(@a7, ta8, a1+a2+a3+a4+a5+a6+a7+a8+a9,

                          a7+b7+c7+d7+e7+f7+g7+h7+i7,
                          a7+a8+a9+b7+b8+b9+c7+c8+c9)

AND ta8() BE try(@a8, ta9, a1+a2+a3+a4+a5+a6+a7+a8+a9,

                          a8+b8+c8+d8+e8+f8+g8+h8+i8,
                          a7+a8+a9+b7+b8+b9+c7+c8+c9)

AND ta9() BE try(@a9, tb1, a1+a2+a3+a4+a5+a6+a7+a8+a9,

                          a9+b9+c9+d9+e9+f9+g9+h9+i9,
                          a7+a8+a9+b7+b8+b9+c7+c8+c9)

AND tb1() BE try(@b1, tb2, b1+b2+b3+b4+b5+b6+b7+b8+b9,

                          a1+b1+c1+d1+e1+f1+g1+h1+i1,
                          a1+a2+a3+b1+b2+b3+c1+c2+c3)

AND tb2() BE try(@b2, tb3, b1+b2+b3+b4+b5+b6+b7+b8+b9,

                          a2+b2+c2+d2+e2+f2+g2+h2+i2,
                          a1+a2+a3+b1+b2+b3+c1+c2+c3)

AND tb3() BE try(@b3, tb4, b1+b2+b3+b4+b5+b6+b7+b8+b9,

                          a3+b3+c3+d3+e3+f3+g3+h3+i3,
                          a1+a2+a3+b1+b2+b3+c1+c2+c3)

AND tb4() BE try(@b4, tb5, b1+b2+b3+b4+b5+b6+b7+b8+b9,

                          a4+b4+c4+d4+e4+f4+g4+h4+i4,
                          a4+a5+a6+b4+b5+b6+c4+c5+c6)

AND tb5() BE try(@b5, tb6, b1+b2+b3+b4+b5+b6+b7+b8+b9,

                          a5+b5+c5+d5+e5+f5+g5+h5+i5,
                          a4+a5+a6+b4+b5+b6+c4+c5+c6)

AND tb6() BE try(@b6, tb7, b1+b2+b3+b4+b5+b6+b7+b8+b9,

                          a6+b6+c6+d6+e6+f6+g6+h6+i6,
                          a4+a5+a6+b4+b5+b6+c4+c5+c6)

AND tb7() BE try(@b7, tb8, b1+b2+b3+b4+b5+b6+b7+b8+b9,

                          a7+b7+c7+d7+e7+f7+g7+h7+i7,
                          a7+a8+a9+b7+b8+b9+c7+c8+c9)

AND tb8() BE try(@b8, tb9, b1+b2+b3+b4+b5+b6+b7+b8+b9,

                          a8+b8+c8+d8+e8+f8+g8+h8+i8,
                          a7+a8+a9+b7+b8+b9+c7+c8+c9)

AND tb9() BE try(@b9, tc1, b1+b2+b3+b4+b5+b6+b7+b8+b9,

                          a9+b9+c9+d9+e9+f9+g9+h9+i9,
                          a7+a8+a9+b7+b8+b9+c7+c8+c9)

AND tc1() BE try(@c1, tc2, c1+c2+c3+c4+c5+c6+c7+c8+c9,

                          a1+b1+c1+d1+e1+f1+g1+h1+i1,
                          a1+a2+a3+b1+b2+b3+c1+c2+c3)

AND tc2() BE try(@c2, tc3, c1+c2+c3+c4+c5+c6+c7+c8+c9,

                          a2+b2+c2+d2+e2+f2+g2+h2+i2,
                          a1+a2+a3+b1+b2+b3+c1+c2+c3)

AND tc3() BE try(@c3, tc4, c1+c2+c3+c4+c5+c6+c7+c8+c9,

                          a3+b3+c3+d3+e3+f3+g3+h3+i3,
                          a1+a2+a3+b1+b2+b3+c1+c2+c3)

AND tc4() BE try(@c4, tc5, c1+c2+c3+c4+c5+c6+c7+c8+c9,

                          a4+b4+c4+d4+e4+f4+g4+h4+i4,
                          a4+a5+a6+b4+b5+b6+c4+c5+c6)

AND tc5() BE try(@c5, tc6, c1+c2+c3+c4+c5+c6+c7+c8+c9,

                          a5+b5+c5+d5+e5+f5+g5+h5+i5,
                          a4+a5+a6+b4+b5+b6+c4+c5+c6)

AND tc6() BE try(@c6, tc7, c1+c2+c3+c4+c5+c6+c7+c8+c9,

                          a6+b6+c6+d6+e6+f6+g6+h6+i6,
                          a4+a5+a6+b4+b5+b6+c4+c5+c6)

AND tc7() BE try(@c7, tc8, c1+c2+c3+c4+c5+c6+c7+c8+c9,

                          a7+b7+c7+d7+e7+f7+g7+h7+i7,
                          a7+a8+a9+b7+b8+b9+c7+c8+c9)

AND tc8() BE try(@c8, tc9, c1+c2+c3+c4+c5+c6+c7+c8+c9,

                          a8+b8+c8+d8+e8+f8+g8+h8+i8,
                          a7+a8+a9+b7+b8+b9+c7+c8+c9)

AND tc9() BE try(@c9, td1, c1+c2+c3+c4+c5+c6+c7+c8+c9,

                          a9+b9+c9+d9+e9+f9+g9+h9+i9,
                          a7+a8+a9+b7+b8+b9+c7+c8+c9)

AND td1() BE try(@d1, td2, d1+d2+d3+d4+d5+d6+d7+d8+d9,

                          a1+b1+c1+d1+e1+f1+g1+h1+i1,
                          d1+d2+d3+e1+e2+e3+f1+f2+f3)

AND td2() BE try(@d2, td3, d1+d2+d3+d4+d5+d6+d7+d8+d9,

                          a2+b2+c2+d2+e2+f2+g2+h2+i2,
                          d1+d2+d3+e1+e2+e3+f1+f2+f3)

AND td3() BE try(@d3, td4, d1+d2+d3+d4+d5+d6+d7+d8+d9,

                          a3+b3+c3+d3+e3+f3+g3+h3+i3,
                          d1+d2+d3+e1+e2+e3+f1+f2+f3)

AND td4() BE try(@d4, td5, d1+d2+d3+d4+d5+d6+d7+d8+d9,

                          a4+b4+c4+d4+e4+f4+g4+h4+i4,
                          d4+d5+d6+e4+e5+e6+f4+f5+f6)

AND td5() BE try(@d5, td6, d1+d2+d3+d4+d5+d6+d7+d8+d9,

                          a5+b5+c5+d5+e5+f5+g5+h5+i5,
                          d4+d5+d6+e4+e5+e6+f4+f5+f6)

AND td6() BE try(@d6, td7, d1+d2+d3+d4+d5+d6+d7+d8+d9,

                          a6+b6+c6+d6+e6+f6+g6+h6+i6,
                          d4+d5+d6+e4+e5+e6+f4+f5+f6)

AND td7() BE try(@d7, td8, d1+d2+d3+d4+d5+d6+d7+d8+d9,

                          a7+b7+c7+d7+e7+f7+g7+h7+i7,
                          d7+d8+d9+e7+e8+e9+f7+f8+f9)

AND td8() BE try(@d8, td9, d1+d2+d3+d4+d5+d6+d7+d8+d9,

                          a8+b8+c8+d8+e8+f8+g8+h8+i8,
                          d7+d8+d9+e7+e8+e9+f7+f8+f9)

AND td9() BE try(@d9, te1, d1+d2+d3+d4+d5+d6+d7+d8+d9,

                          a9+b9+c9+d9+e9+f9+g9+h9+i9,
                          d7+d8+d9+e7+e8+e9+f7+f8+f9)

AND te1() BE try(@e1, te2, e1+e2+e3+e4+e5+e6+e7+e8+e9,

                          a1+b1+c1+d1+e1+f1+g1+h1+i1,
                          d1+d2+d3+e1+e2+e3+f1+f2+f3)

AND te2() BE try(@e2, te3, e1+e2+e3+e4+e5+e6+e7+e8+e9,

                          a2+b2+c2+d2+e2+f2+g2+h2+i2,
                          d1+d2+d3+e1+e2+e3+f1+f2+f3)

AND te3() BE try(@e3, te4, e1+e2+e3+e4+e5+e6+e7+e8+e9,

                          a3+b3+c3+d3+e3+f3+g3+h3+i3,
                          d1+d2+d3+e1+e2+e3+f1+f2+f3)

AND te4() BE try(@e4, te5, e1+e2+e3+e4+e5+e6+e7+e8+e9,

                          a4+b4+c4+d4+e4+f4+g4+h4+i4,
                          d4+d5+d6+e4+e5+e6+f4+f5+f6)

AND te5() BE try(@e5, te6, e1+e2+e3+e4+e5+e6+e7+e8+e9,

                          a5+b5+c5+d5+e5+f5+g5+h5+i5,
                          d4+d5+d6+e4+e5+e6+f4+f5+f6)

AND te6() BE try(@e6, te7, e1+e2+e3+e4+e5+e6+e7+e8+e9,

                          a6+b6+c6+d6+e6+f6+g6+h6+i6,
                          d4+d5+d6+e4+e5+e6+f4+f5+f6)

AND te7() BE try(@e7, te8, e1+e2+e3+e4+e5+e6+e7+e8+e9,

                          a7+b7+c7+d7+e7+f7+g7+h7+i7,
                          d7+d8+d9+e7+e8+e9+f7+f8+f9)

AND te8() BE try(@e8, te9, e1+e2+e3+e4+e5+e6+e7+e8+e9,

                          a8+b8+c8+d8+e8+f8+g8+h8+i8,
                          d7+d8+d9+e7+e8+e9+f7+f8+f9)

AND te9() BE try(@e9, tf1, e1+e2+e3+e4+e5+e6+e7+e8+e9,

                          a9+b9+c9+d9+e9+f9+g9+h9+i9,
                          d7+d8+d9+e7+e8+e9+f7+f8+f9)

AND tf1() BE try(@f1, tf2, f1+f2+f3+f4+f5+f6+f7+f8+f9,

                          a1+b1+c1+d1+e1+f1+g1+h1+i1,
                          d1+d2+d3+e1+e2+e3+f1+f2+f3)

AND tf2() BE try(@f2, tf3, f1+f2+f3+f4+f5+f6+f7+f8+f9,

                          a2+b2+c2+d2+e2+f2+g2+h2+i2,
                          d1+d2+d3+e1+e2+e3+f1+f2+f3)

AND tf3() BE try(@f3, tf4, f1+f2+f3+f4+f5+f6+f7+f8+f9,

                          a3+b3+c3+d3+e3+f3+g3+h3+i3,
                          d1+d2+d3+e1+e2+e3+f1+f2+f3)

AND tf4() BE try(@f4, tf5, f1+f2+f3+f4+f5+f6+f7+f8+f9,

                          a4+b4+c4+d4+e4+f4+g4+h4+i4,
                          d4+d5+d6+e4+e5+e6+f4+f5+f6)

AND tf5() BE try(@f5, tf6, f1+f2+f3+f4+f5+f6+f7+f8+f9,

                          a5+b5+c5+d5+e5+f5+g5+h5+i5,
                          d4+d5+d6+e4+e5+e6+f4+f5+f6)

AND tf6() BE try(@f6, tf7, f1+f2+f3+f4+f5+f6+f7+f8+f9,

                          a6+b6+c6+d6+e6+f6+g6+h6+i6,
                          d4+d5+d6+e4+e5+e6+f4+f5+f6)

AND tf7() BE try(@f7, tf8, f1+f2+f3+f4+f5+f6+f7+f8+f9,

                          a7+b7+c7+d7+e7+f7+g7+h7+i7,
                          d7+d8+d9+e7+e8+e9+f7+f8+f9)

AND tf8() BE try(@f8, tf9, f1+f2+f3+f4+f5+f6+f7+f8+f9,

                          a8+b8+c8+d8+e8+f8+g8+h8+i8,
                          d7+d8+d9+e7+e8+e9+f7+f8+f9)

AND tf9() BE try(@f9, tg1, f1+f2+f3+f4+f5+f6+f7+f8+f9,

                          a9+b9+c9+d9+e9+f9+g9+h9+i9,
                          d7+d8+d9+e7+e8+e9+f7+f8+f9)

AND tg1() BE try(@g1, tg2, g1+g2+g3+g4+g5+g6+g7+g8+g9,

                          a1+b1+c1+d1+e1+f1+g1+h1+i1,
                          g1+g2+g3+h1+h2+h3+i1+i2+i3)

AND tg2() BE try(@g2, tg3, g1+g2+g3+g4+g5+g6+g7+g8+g9,

                          a2+b2+c2+d2+e2+f2+g2+h2+i2,
                          g1+g2+g3+h1+h2+h3+i1+i2+i3)

AND tg3() BE try(@g3, tg4, g1+g2+g3+g4+g5+g6+g7+g8+g9,

                          a3+b3+c3+d3+e3+f3+g3+h3+i3,
                          g1+g2+g3+h1+h2+h3+i1+i2+i3)

AND tg4() BE try(@g4, tg5, g1+g2+g3+g4+g5+g6+g7+g8+g9,

                          a4+b4+c4+d4+e4+f4+g4+h4+i4,
                          g4+g5+g6+h4+h5+h6+i4+i5+i6)

AND tg5() BE try(@g5, tg6, g1+g2+g3+g4+g5+g6+g7+g8+g9,

                          a5+b5+c5+d5+e5+f5+g5+h5+i5,
                          g4+g5+g6+h4+h5+h6+i4+i5+i6)

AND tg6() BE try(@g6, tg7, g1+g2+g3+g4+g5+g6+g7+g8+g9,

                          a6+b6+c6+d6+e6+f6+g6+h6+i6,
                          g4+g5+g6+h4+h5+h6+i4+i5+i6)

AND tg7() BE try(@g7, tg8, g1+g2+g3+g4+g5+g6+g7+g8+g9,

                          a7+b7+c7+d7+e7+f7+g7+h7+i7,
                          g7+g8+g9+h7+h8+h9+i7+i8+i9)

AND tg8() BE try(@g8, tg9, g1+g2+g3+g4+g5+g6+g7+g8+g9,

                          a8+b8+c8+d8+e8+f8+g8+h8+i8,
                          g7+g8+g9+h7+h8+h9+i7+i8+i9)

AND tg9() BE try(@g9, th1, g1+g2+g3+g4+g5+g6+g7+g8+g9,

                          a9+b9+c9+d9+e9+f9+g9+h9+i9,
                          g7+g8+g9+h7+h8+h9+i7+i8+i9)

AND th1() BE try(@h1, th2, h1+h2+h3+h4+h5+h6+h7+h8+h9,

                          a1+b1+c1+d1+e1+f1+g1+h1+i1,
                          g1+g2+g3+h1+h2+h3+i1+i2+i3)

AND th2() BE try(@h2, th3, h1+h2+h3+h4+h5+h6+h7+h8+h9,

                          a2+b2+c2+d2+e2+f2+g2+h2+i2,
                          g1+g2+g3+h1+h2+h3+i1+i2+i3)

AND th3() BE try(@h3, th4, h1+h2+h3+h4+h5+h6+h7+h8+h9,

                          a3+b3+c3+d3+e3+f3+g3+h3+i3,
                          g1+g2+g3+h1+h2+h3+i1+i2+i3)

AND th4() BE try(@h4, th5, h1+h2+h3+h4+h5+h6+h7+h8+h9,

                          a4+b4+c4+d4+e4+f4+g4+h4+i4,
                          g4+g5+g6+h4+h5+h6+i4+i5+i6)

AND th5() BE try(@h5, th6, h1+h2+h3+h4+h5+h6+h7+h8+h9,

                          a5+b5+c5+d5+e5+f5+g5+h5+i5,
                          g4+g5+g6+h4+h5+h6+i4+i5+i6)

AND th6() BE try(@h6, th7, h1+h2+h3+h4+h5+h6+h7+h8+h9,

                          a6+b6+c6+d6+e6+f6+g6+h6+i6,
                          g4+g5+g6+h4+h5+h6+i4+i5+i6)

AND th7() BE try(@h7, th8, h1+h2+h3+h4+h5+h6+h7+h8+h9,

                          a7+b7+c7+d7+e7+f7+g7+h7+i7,
                          g7+g8+g9+h7+h8+h9+i7+i8+i9)

AND th8() BE try(@h8, th9, h1+h2+h3+h4+h5+h6+h7+h8+h9,

                          a8+b8+c8+d8+e8+f8+g8+h8+i8,
                          g7+g8+g9+h7+h8+h9+i7+i8+i9)

AND th9() BE try(@h9, ti1, h1+h2+h3+h4+h5+h6+h7+h8+h9,

                          a9+b9+c9+d9+e9+f9+g9+h9+i9,
                          g7+g8+g9+h7+h8+h9+i7+i8+i9)

AND ti1() BE try(@i1, ti2, i1+i2+i3+i4+i5+i6+i7+i8+i9,

                          a1+b1+c1+d1+e1+f1+g1+h1+i1,
                          g1+g2+g3+h1+h2+h3+i1+i2+i3)

AND ti2() BE try(@i2, ti3, i1+i2+i3+i4+i5+i6+i7+i8+i9,

                          a2+b2+c2+d2+e2+f2+g2+h2+i2,
                          g1+g2+g3+h1+h2+h3+i1+i2+i3)

AND ti3() BE try(@i3, ti4, i1+i2+i3+i4+i5+i6+i7+i8+i9,

                          a3+b3+c3+d3+e3+f3+g3+h3+i3,
                          g1+g2+g3+h1+h2+h3+i1+i2+i3)

AND ti4() BE try(@i4, ti5, i1+i2+i3+i4+i5+i6+i7+i8+i9,

                          a4+b4+c4+d4+e4+f4+g4+h4+i4,
                          g4+g5+g6+h4+h5+h6+i4+i5+i6)

AND ti5() BE try(@i5, ti6, i1+i2+i3+i4+i5+i6+i7+i8+i9,

                          a5+b5+c5+d5+e5+f5+g5+h5+i5,
                          g4+g5+g6+h4+h5+h6+i4+i5+i6)

AND ti6() BE try(@i6, ti7, i1+i2+i3+i4+i5+i6+i7+i8+i9,

                          a6+b6+c6+d6+e6+f6+g6+h6+i6,
                          g4+g5+g6+h4+h5+h6+i4+i5+i6)

AND ti7() BE try(@i7, ti8, i1+i2+i3+i4+i5+i6+i7+i8+i9,

                          a7+b7+c7+d7+e7+f7+g7+h7+i7,
                          g7+g8+g9+h7+h8+h9+i7+i8+i9)

AND ti8() BE try(@i8, ti9, i1+i2+i3+i4+i5+i6+i7+i8+i9,

                          a8+b8+c8+d8+e8+f8+g8+h8+i8,
                          g7+g8+g9+h7+h8+h9+i7+i8+i9)

AND ti9() BE try(@i9, suc, i1+i2+i3+i4+i5+i6+i7+i8+i9,

                          a9+b9+c9+d9+e9+f9+g9+h9+i9,
                          g7+g8+g9+h7+h8+h9+i7+i8+i9)

AND suc() BE { count := count + 1

 prboard()

}</lang>

Bracmat

The program: <lang bracmat>{sudokuSolver.bra

Solves any 9x9 sudoku, using backtracking. Not a simple brute force algorithm!}

sudokuSolver=

 ( sudoku
 =   ( new
     =   create
       .   ( create
           =   a
             .     !arg:%(<3:?a) ?arg
                 &   ( !a
                     .     !arg:
                         & 1 2 3 4 5 6 7 8 9
                       | create$!arg
                     )
                     create$(!a+1 !arg)
               | 
           )
         & create$(0 0 0 0):?(its.Tree)
         & ( init
           =   cell remainingCells remainingRows x y
             .       !arg
                   : ( ?y
                     . ?x
                     . (.%?cell ?remainingCells) ?remainingRows
                     )
                 &   (   !cell:#
                       & ( !cell
                         .   mod$(!x,3)
                             div$(!x,3)
                             mod$(!y,3)
                             div$(!y,3)
                         )
                     | 
                     )
                     (   !remainingCells:
                       & init$(!y+1.0.!remainingRows)
                     |   init
                       $ ( !y
                         . !x+1
                         . (.!remainingCells) !remainingRows
                         )
                     )
               | 
           )
         & out$!arg
         &   (its.Set)$(!(its.Tree).init$(0.0.!arg))
           : ?(its.Tree)
     )
     ( Display
     =   val
       .     put$(str$("|~~~|~~~|~~~|" \n))
           &   !(its.Tree)
             :   ?
                 ( ?
                 .     ?
                       ( ?&put$"|"
                       .     ?
                             ( ?
                             .     ?
                                   ( ( ?
                                     .     ?val
                                         & !val:% %
                                         & put$"-"
                                       |   !val:
                                         & put$" "
                                       | put$!val
                                     )
                                   & ~
                                   )
                                   ?
                               | ?&put$"|"&~
                             )
                             ?
                         | ?&put$\n&~
                       )
                       ?
                   |   ?
                     & put$(str$("|~~~|~~~|~~~|" \n))
                     & ~
                 )
                 ?
         | 
     )
     ( Set
     =     update certainValue a b c d
         , tree branch todo DOING loop dcba minlen len minp
       .   ( update
           =     path rempath value tr
               , k z x y trc p v branch s n
             .   !arg:(?path.?value.?tr.?trc)
               & (   !path:%?path ?rempath
                   & `(     !tr
                          : ?k (!path:?p.?branch) ?z
                        & `(   update$(!rempath.!value.!branch.!p !trc)
                             : ?s
                           &     update
                               $ (!path !rempath.!value.!z.!trc)
                             : ?n
                           & !k (!p.!s) !n
                           )
                      | !tr
                      )
                 | !DOING:(?.!trc)&!value
                 |   !tr:?x !value ?y
                   & `( !x !y
                      : (   ~:@
                          & (   !todo:? (?v.!trc) ?
                              & ( !v:!x !y
                                |     out
                                    $ (mismatch v !v "<>" x y !x !y)
                                  & get'
                                )
                            | (!x !y.!trc) !todo:?todo
                            )
                        | % %
                        | &!DOING:(?.!trc)
                        )
                      )
                 | !tr
                 )
           )
         & !arg:(?tree.?todo)
         & ( loop
           =   !todo:
             |     !todo
                 : ((?certainValue.%?d %?c %?b %?a):?DOING) ?todo
               &   update$(!a ? !c ?.!certainValue.!tree.)
                 : ?tree
               &   update$(!a !b <>!c ?.!certainValue.!tree.)
                 : ?tree
               &   update$(<>!a ? !c !d.!certainValue.!tree.)
                 : ?tree
               & !loop
           )
         & !loop
         & ( ~( !tree
              :   ?
                  (?.? (?.? (?.? (?.% %) ?) ?) ?)
                  ?
              )
           |   9:?minlen
             & :?minp
             & ( len
               =   
                 .   !arg:% %?arg&1+len$!arg
                   | 1
               )
             & (   !tree
                 :   ?
                     ( ?a
                     .   ?
                         ( ?b
                         .   ?
                             ( ?c
                             .   ?
                                 ( ?d
                                 .   % %:?p
                                   & len$!p:<!minlen:?minlen
                                   & !d !c !b !a:?dcba
                                   & !p:?:?minp
                                   & ~
                                 )
                                 ?
                             )
                             ?
                         )
                         ?
                     )
                     ?
               |   !minp
                 :   ?
                     ( %@?n
                     & (its.Set)$(!tree.!n.!dcba):?tree
                     )
                     ?
               )
           )
         & !tree
     )
     (Tree=)
 )
 ( new
 =   puzzle
   .   new$((its.sudoku),!arg):?puzzle
     & (puzzle..Display)$
 );</lang>

Solve a sudoku that is hard for a brute force solver: <lang bracmat>new'( sudokuSolver

   , (.- - - - - - - - -)
     (.- - - - - 3 - 8 5)
     (.- - 1 - 2 - - - -)
     (.- - - 5 - 7 - - -)
     (.- - 4 - - - 1 - -)
     (.- 9 - - - - - - -)
     (.5 - - - - - - 7 3)
     (.- - 2 - 1 - - - -)
     (.- - - - 4 - - - 9)
   );</lang>

Solution:

|~~~|~~~|~~~|
|987|654|321|
|246|173|985|
|351|928|746|
|~~~|~~~|~~~|
|128|537|694|
|634|892|157|
|795|461|832|
|~~~|~~~|~~~|
|519|286|473|
|472|319|568|
|863|745|219|
|~~~|~~~|~~~|

C

See e.g. this GPLed solver written in C.

The following code is really only good for size 3 puzzles. A longer, even less readable version here could handle size 4s. <lang c>#include <stdio.h>

void show(int *x) { int i, j; for (i = 0; i < 9; i++) { if (!(i % 3)) putchar('\n'); for (j = 0; j < 9; j++) printf(j % 3 ? "%2d" : "%3d", *x++); putchar('\n'); } }

int trycell(int *x, int pos) { int row = pos / 9; int col = pos % 9; int i, j, used = 0;

if (pos == 81) return 1; if (x[pos]) return trycell(x, pos + 1);

for (i = 0; i < 9; i++) used |= 1 << (x[i * 9 + col] - 1);

for (j = 0; j < 9; j++) used |= 1 << (x[row * 9 + j] - 1);

row = row / 3 * 3; col = col / 3 * 3; for (i = row; i < row + 3; i++) for (j = col; j < col + 3; j++) used |= 1 << (x[i * 9 + j] - 1);

for (x[pos] = 1; x[pos] <= 9; x[pos]++, used >>= 1) if (!(used & 1) && trycell(x, pos + 1)) return 1;

x[pos] = 0; return 0; }

void solve(const char *s) { int i, x[81]; for (i = 0; i < 81; i++) x[i] = s[i] >= '1' && s[i] <= '9' ? s[i] - '0' : 0;

if (trycell(x, 0)) show(x); else puts("no solution"); }

int main(void) { solve( "5x..7...." "6..195..." ".98....6." "8...6...3" "4..8.3..1" "7...2...6" ".6....28." "...419..5" "....8..79" );

return 0; }</lang>

C_sharp

“Manual” Solution

Translation of: Java

<lang csharp>using System;

class SudokuSolver {

   private int[] grid;
   public SudokuSolver(String s)
   {
       grid = new int[81];
       for (int i = 0; i < s.Length; i++)
       {
           grid[i] = int.Parse(s[i].ToString());
       }
   }
   public void solve()
   {
       try
       {
           placeNumber(0);
           Console.WriteLine("Unsolvable!");
       }
       catch (Exception ex)
       {
           Console.WriteLine(ex.Message);
           Console.WriteLine(this);
       }
   }
   public void placeNumber(int pos)
   {
       if (pos == 81)
       {
           throw new Exception("Finished!");
       }
       if (grid[pos] > 0)
       {
           placeNumber(pos + 1);
           return;
       }
       for (int n = 1; n <= 9; n++)
       {
           if (checkValidity(n, pos % 9, pos / 9))
           {
               grid[pos] = n;
               placeNumber(pos + 1);
               grid[pos] = 0;
           }
       }
   }
   public bool checkValidity(int val, int x, int y)
   {
       for (int i = 0; i < 9; i++)
       {
           if (grid[y * 9 + i] == val || grid[i * 9 + x] == val)
               return false;
       }
       int startX = (x / 3) * 3;
       int startY = (y / 3) * 3;
       for (int i = startY; i < startY + 3; i++)
       {
           for (int j = startX; j < startX + 3; j++)
           {
               if (grid[i * 9 + j] == val)
                   return false;
           }
       }
       return true;
   }
   public override string ToString()
   {
       string sb = "";
       for (int i = 0; i < 9; i++)
       {
           for (int j = 0; j < 9; j++)
           {
               sb += (grid[i * 9 + j] + " ");
               if (j == 2 || j == 5)
                   sb += ("| ");
           }
           sb += ('\n');
           if (i == 2 || i == 5)
               sb += ("------+-------+------\n");
       }
       return sb;
   }
   public static void Main(String[] args)
   {
       new SudokuSolver("850002400" +
                        "720000009" +
                        "004000000" +
                        "000107002" +
                        "305000900" +
                        "040000000" +
                        "000080070" +
                        "017000000" +
                        "000036040").solve();
       Console.Read();
   }

}</lang>

“Automatic” Solution

<lang csharp>using Microsoft.SolverFoundation.Solvers;

namespace Sudoku {

   class Program
   {
       private static int[,] B = new int[,] {{9,7,0, 3,0,0, 0,6,0},
                                             {0,6,0, 7,5,0, 0,0,0},
                                             {0,0,0, 0,0,8, 0,5,0},
                                             {0,0,0, 0,0,0, 6,7,0},
                                             {0,0,0, 0,3,0, 0,0,0},
                                             {0,5,3, 9,0,0, 2,0,0},
                                             {7,0,0, 0,2,5, 0,0,0},
                                             {0,0,2, 0,1,0, 0,0,8},
                                             {0,4,0, 0,0,7, 3,0,0}};
       private static CspTerm[] GetSlice(CspTerm[][] sudoku, int Ra, int Rb, int Ca, int Cb)
       {
           CspTerm[] slice = new CspTerm[9];
           int i = 0;
           for (int row = Ra; row < Rb + 1; row++)
               for (int col = Ca; col < Cb + 1; col++)
               {
                   {
                       slice[i++] = sudoku[row][col];
                   }
               }
           return slice;
       }
       static void Main(string[] args)
       {
           ConstraintSystem S = ConstraintSystem.CreateSolver();
           CspDomain Z = S.CreateIntegerInterval(1, 9);
           CspTerm[][] sudoku = S.CreateVariableArray(Z, "cell", 9, 9);
           for (int row = 0; row < 9; row++)
           {
               for (int col = 0; col < 9; col++)
               {
                   if (B[row, col] > 0)
                   {
                       S.AddConstraints(S.Equal(B[row, col], sudoku[row][col]));
                   }
               }
               S.AddConstraints(S.Unequal(GetSlice(sudoku, row, row, 0, 8)));
           }
           for (int col = 0; col < 9; col++)
           {
               S.AddConstraints(S.Unequal(GetSlice(sudoku, 0, 8, col, col)));
           }
           for (int a = 0; a < 3; a++)
           {
               for (int b = 0; b < 3; b++)
               {
                   S.AddConstraints(S.Unequal(GetSlice(sudoku, a * 3, a * 3 + 2, b * 3, b * 3 + 2)));
               }
           }
           ConstraintSolverSolution soln = S.Solve();
           object[] h = new object[9];
           for (int row = 0; row < 9; row++)
           {
               if ((row % 3) == 0) System.Console.WriteLine();
               for (int col = 0; col < 9; col++)
               {
                   soln.TryGetValue(sudoku[row][col], out h [col]);
               }
               System.Console.WriteLine("{0}{1}{2} {3}{4}{5} {6}{7}{8}", h[0],h[1],h[2],h[3],h[4],h[5],h[6],h[7],h[8]);
           }
       }
   }

}</lang> Produces:

975 342 861
861 759 432
324 168 957

219 584 673
487 236 519
653 971 284

738 425 196
592 613 748
146 897 325

C++

Translation of: Java

<lang cpp>#include <iostream> using namespace std;

class SudokuSolver { private:

   int grid[81];

public:

   SudokuSolver(string s) {
       for (unsigned int i = 0; i < s.length(); i++) {
           grid[i] = (int) (s[i] - '0');
       }
   }
   void solve() {
       try {
           placeNumber(0);
           cout << "Unsolvable!" << endl;
       } catch (char* ex) {
           cout << ex << endl;
           cout << this->toString() << endl;
       }
   }
   void placeNumber(int pos) {
       if (pos == 81) {
           throw (char*) "Finished!";
       }
       if (grid[pos] > 0) {
           placeNumber(pos + 1);
           return;
       }
       for (int n = 1; n <= 9; n++) {
           if (checkValidity(n, pos % 9, pos / 9)) {
               grid[pos] = n;
               placeNumber(pos + 1);
               grid[pos] = 0;
           }
       }
   }
   bool checkValidity(int val, int x, int y) {
       for (int i = 0; i < 9; i++) {
           if (grid[y * 9 + i] == val || grid[i * 9 + x] == val)
               return false;
       }
       int startX = (x / 3) * 3;
       int startY = (y / 3) * 3;
       for (int i = startY; i < startY + 3; i++) {
           for (int j = startX; j < startX + 3; j++) {
               if (grid[i * 9 + j] == val)
                   return false;
           }
       }
       return true;
   }
   string toString() {
       string sb;
       for (int i = 0; i < 9; i++) {
           for (int j = 0; j < 9; j++) {
               char c[2];
               c[0] = grid[i * 9 + j] + '0';
               c[1] = '\0';
               sb.append(c);
               sb.append(" ");
               if (j == 2 || j == 5)
                   sb.append("| ");
           }
           sb.append("\n");
           if (i == 2 || i == 5)
               sb.append("------+-------+------\n");
       }
       return sb;
   }

};

int main() {

   SudokuSolver ss(
           (string) "850002400" +
           (string) "720000009" +
           (string) "004000000" +
           (string) "000107002" +
           (string) "305000900" +
           (string) "040000000" +
           (string) "000080070" +
           (string) "017000000" +
           (string) "000036040"
           );
   ss.solve();

}</lang>

Clojure

<lang clojure>(ns rosettacode.sudoku

 (:use [clojure.pprint :only (cl-format)]))

(defn- compatible? [m x y n]

 (let [n= #(= n (get-in m [%1 %2]))]
   (or (n= y x)
     (let [c (count m)]
       (and (zero? (get-in m [y x]))
            (not-any? #(or (n= y %) (n= % x)) (range c))
            (let [zx (* c (quot x c)), zy (* c (quot y c))]
              (every? false?
                (map n= (range zy (+ zy c)) (range zx (+ zx c))))))))))

(defn solve [m]

 (let [c (count m)]
   (loop [m m, x 0, y 0]
     (if (= y c) m
       (let [ng (->> (range 1 c)
                     (filter #(compatible? m x y %))
                     first
                     (assoc-in m [y x]))]
         (if (= x (dec c))
           (recur ng 0 (inc y))
           (recur ng (inc x) y)))))))</lang>

<lang clojure>sudoku>(cl-format true "~{~{~a~^ ~}~%~}"

(solve [[3 9 4 0 0 2 6 7 0]
        [0 0 0 3 0 0 4 0 0]
        [5 0 0 6 9 0 0 2 0]
        [0 4 5 0 0 0 9 0 0]
        [6 0 0 0 0 0 0 0 7]
        [0 0 7 0 0 0 5 8 0]
        [0 1 0 0 6 7 0 0 8]
        [0 0 9 0 0 8 0 0 0]
        [0 2 6 4 0 0 7 3 5]])

3 9 4 8 5 2 6 7 1 2 6 8 3 7 1 4 5 9 5 7 1 6 9 4 8 2 3 1 4 5 7 8 3 9 6 2 6 8 2 9 4 5 3 1 7 9 3 7 1 2 6 5 8 4 4 1 3 5 6 7 2 9 8 7 5 9 2 3 8 1 4 6 8 2 6 4 1 9 7 3 5

nil</lang>

Common Lisp

A simple solver without optimizations (except for pre-computing the possible entries of a cell). <lang lisp>(defun row-neighbors (row column grid &aux (neighbors '()))

 (dotimes (i 9 neighbors)
   (let ((x (aref grid row i)))
     (unless (or (eq '_ x) (= i column))
       (push x neighbors)))))

(defun column-neighbors (row column grid &aux (neighbors '()))

 (dotimes (i 9 neighbors)
   (let ((x (aref grid i column)))
     (unless (or (eq x '_) (= i row))
       (push x neighbors)))))

(defun square-neighbors (row column grid &aux (neighbors '()))

 (let* ((rmin (* 3 (floor row 3)))    (rmax (+ rmin 3))
        (cmin (* 3 (floor column 3))) (cmax (+ cmin 3)))
   (do ((r rmin (1+ r))) ((= r rmax) neighbors)
     (do ((c cmin (1+ c))) ((= c cmax))
       (let ((x (aref grid r c)))
         (unless (or (eq x '_) (= r row) (= c column))
           (push x neighbors)))))))

(defun choices (row column grid)

 (nset-difference
  (list 1 2 3 4 5 6 7 8 9)
  (nconc (row-neighbors row column grid)
         (column-neighbors row column grid)
         (square-neighbors row column grid))))

(defun solve (grid &optional (row 0) (column 0))

 (cond
  ((= row 9)
   grid)
  ((= column 9)
   (solve grid (1+ row) 0))
  ((not (eq '_ (aref grid row column)))
   (solve grid row (1+ column)))
  (t (dolist (choice (choices row column grid) (setf (aref grid row column) '_))
       (setf (aref grid row column) choice)
       (when (eq grid (solve grid row (1+ column)))
         (return grid))))))</lang>

Example:

> (defparameter *puzzle*
  #2A((3 9 4    _ _ 2    6 7 _)
      (_ _ _    3 _ _    4 _ _)
      (5 _ _    6 9 _    _ 2 _)
    
      (_ 4 5    _ _ _    9 _ _)
      (6 _ _    _ _ _    _ _ 7)
      (_ _ 7    _ _ _    5 8 _)
    
      (_ 1 _    _ 6 7    _ _ 8)
      (_ _ 9    _ _ 8    _ _ _)
      (_ 2 6    4 _ _    7 3 5)))
*PUZZLE*

> (pprint (solve *puzzle*))

#2A((3 9 4 8 5 2 6 7 1)
    (2 6 8 3 7 1 4 5 9)
    (5 7 1 6 9 4 8 2 3)
    (1 4 5 7 8 3 9 6 2)
    (6 8 2 9 4 5 3 1 7)
    (9 3 7 1 2 6 5 8 4)
    (4 1 3 5 6 7 2 9 8)
    (7 5 9 2 3 8 1 4 6)
    (8 2 6 4 1 9 7 3 5))

Curry

Copied from Curry: Example Programs. <lang curry>----------------------------------------------------------------------------- --- Solving Su Doku puzzles in Curry with FD constraints --- --- @author Michael Hanus --- @version December 2005


import CLPFD import List

-- Solving a Su Doku puzzle represented as a matrix of numbers (possibly free -- variables): sudoku :: Int -> Success sudoku m =

domain (concat m) 1 9 &                         -- define domain of all digits
foldr1 (&) (map allDifferent m)  &             -- all rows contain different digits
foldr1 (&) (map allDifferent (transpose m))  & -- all columns have different digits
foldr1 (&) (map allDifferent (squaresOfNine m)) & -- all 3x3 squares are different
labeling [FirstFailConstrained] (concat m)

-- translate a matrix into a list of small 3x3 squares squaresOfNine :: a -> a squaresOfNine [] = [] squaresOfNine (l1:l2:l3:ls) = group3Rows [l1,l2,l3] ++ squaresOfNine ls

group3Rows l123 = if null (head l123) then [] else

concatMap (take 3) l123 : group3Rows (map (drop 3) l123)

-- read a Su Doku specification written as a list of strings containing digits -- and spaces readSudoku :: [String] -> Int readSudoku s = map (map transDigit) s

where
  transDigit c = if c==' ' then x else ord c - ord '0'
     where x free

-- show a solved Su Doku matrix showSudoku :: Int -> String showSudoku = unlines . map (concatMap (\i->[chr (i + ord '0'),' ']))

-- the main function, e.g., evaluate (main s1): main s | sudoku m = putStrLn (showSudoku m)

where m = readSudoku s

s1 = ["9 2 5 ",

     " 4  6  3 ",
     "  3     6",
     "   9  2  ",
     "    5  8 ",
     "  7  4  3",
     "7     1  ",
     " 5  2  4 ",
     "  1  6  9"]

s2 = ["819 5 ",

     "  2   75 ",
     " 371 4 6 ",
     "4  59 1  ",
     "7  3 8  2",
     "  3 62  7",
     " 5 7 921 ",
     " 64   9  ",
     "   2  438"]</lang>


Alternative version

Works with: PAKCS

Minimal w/o read or show utilities. <lang curry>import CLPFD import Constraint (allC) import List (transpose)


sudoku :: Int -> Success sudoku rows =

   domain (concat rows) 1 9
 & different rows
 & different (transpose rows)
 & different blocks
 & labeling [] (concat rows)
 where
   different = allC allDifferent
   blocks = [concat ys | xs <- each3 rows
                       , ys <- transpose $ map each3 xs
            ]
   each3 xs = case xs of
       (x:y:z:rest) -> [x,y,z] : each3 rest
       rest         -> [rest]


test = [ [_,_,3,_,_,_,_,_,_]

      , [4,_,_,_,8,_,_,3,6]
      , [_,_,8,_,_,_,1,_,_]
      , [_,4,_,_,6,_,_,7,3]
      , [_,_,_,9,_,_,_,_,_]
      , [_,_,_,_,_,2,_,_,5]
      , [_,_,4,_,7,_,_,6,8]
      , [6,_,_,_,_,_,_,_,_]
      , [7,_,_,6,_,_,5,_,_]
      ]

main | sudoku xs = xs where xs = test</lang>

Output:
Execution time: 0 msec. / elapsed: 10 msec.
[[1,2,3,4,5,6,7,8,9],[4,5,7,1,8,9,2,3,6],[9,6,8,3,2,7,1,5,4],[2,4,9,5,6,1,8,7,3],[5,7,6,9,3,8,4,1,2],[8,3,1,7,4,2,6,9,5],[3,1,4,2,7,5,9,6,8],[6,9,5,8,1,4,3,2,7],[7,8,2,6,9,3,5,4,1]]

D

Translation of: C++

A little over-engineered solution, that shows some strong static typing useful in larger programs. <lang d>import std.stdio, std.range, std.string, std.algorithm, std.array,

      std.ascii, std.typecons;

struct Digit {

   immutable char d;
   this(in char d_) pure nothrow @safe @nogc
   in { assert(d_ >= '0' && d_ <= '9'); }
   body { this.d = d_; }
   this(in int d_) pure nothrow @safe @nogc
   in { assert(d_ >= '0' && d_ <= '9'); }
   body { this.d = cast(char)d_; } // Required cast.
   alias d this;

}

enum size_t sudokuUnitSide = 3; enum size_t sudokuSide = sudokuUnitSide ^^ 2; // Sudoku grid side. alias SudokuTable = Digit[sudokuSide ^^ 2];


Nullable!SudokuTable sudokuSolver(in ref SudokuTable problem) pure nothrow {

   alias Tgrid = uint;
   Tgrid[SudokuTable.length] grid = void;
   problem[].map!(c => c - '0').copy(grid[]);
   // DMD doesn't inline this function. Performance loss.
   Tgrid access(in size_t x, in size_t y) nothrow @safe @nogc {
       return grid[y * sudokuSide + x];
   }
   // DMD doesn't inline this function. If you want to retain
   // the same performance as the C++ entry and you use the DMD
   // compiler then this function must be manually inlined.
   bool checkValidity(in Tgrid val, in size_t x, in size_t y)
   pure nothrow @safe @nogc {
       /*static*/ foreach (immutable i; staticIota!(0, sudokuSide))
           if (access(i, y) == val || access(x, i) == val)
               return false;
       immutable startX = (x / sudokuUnitSide) * sudokuUnitSide;
       immutable startY = (y / sudokuUnitSide) * sudokuUnitSide;
       /*static*/ foreach (immutable i; staticIota!(0, sudokuUnitSide))
           /*static*/ foreach (immutable j; staticIota!(0, sudokuUnitSide))
               if (access(startX + j, startY + i) == val)
                   return false;
       return true;
   }
   bool canPlaceNumbers(in size_t pos=0) nothrow @safe @nogc {
       if (pos == SudokuTable.length)
           return true;
       if (grid[pos] > 0)
           return canPlaceNumbers(pos + 1);
       foreach (immutable n; 1 .. sudokuSide + 1)
           if (checkValidity(n, pos % sudokuSide, pos / sudokuSide)) {
               grid[pos] = n;
               if (canPlaceNumbers(pos + 1))
                   return true;
               grid[pos] = 0;
           }
       return false;
   }
   if (canPlaceNumbers) {
       //return typeof(return)(grid[]
       //                      .map!(c => Digit(c + '0'))
       //                      .array);
       immutable SudokuTable result = grid[]
                                      .map!(c => Digit(c + '0'))
                                      .array;
       return typeof(return)(result);
   } else
       return typeof(return)();

}

string representSudoku(in ref SudokuTable sudo) pure nothrow @safe out(result) {

   assert(result.countchars("1-9") == sudo[].count!q{a != '0'});
   assert(result.countchars(".") == sudo[].count!q{a == '0'});

} body {

   static assert(sudo.length == 81,
       "representSudoku works only with a 9x9 Sudoku.");
   string result;
   foreach (immutable i; 0 .. sudokuSide) {
       foreach (immutable j; 0 .. sudokuSide) {
           result ~= sudo[i * sudokuSide + j];
           result ~= ' ';
           if (j == 2 || j == 5)
               result ~= "| ";
       }
       result ~= "\n";
       if (i == 2 || i == 5)
           result ~= "------+-------+------\n";
   }
   return result.replace("0", ".");

}

void main() {

   enum ValidateCells(string s) = s.map!Digit.array;
   immutable SudokuTable problem = ValidateCells!("
       850002400
       720000009
       004000000
       000107002
       305000900
       040000000
       000080070
       017000000
       000036040".removechars(whitespace));
   problem.representSudoku.writeln;
   immutable solution = problem.sudokuSolver;
   if (solution.isNull)
       writeln("Unsolvable!");
   else
       solution.get.representSudoku.writeln;

}</lang>

Output:
8 5 . | . . 2 | 4 . .
7 2 . | . . . | . . 9
. . 4 | . . . | . . .
------+-------+------
. . . | 1 . 7 | . . 2
3 . 5 | . . . | 9 . .
. 4 . | . . . | . . .
------+-------+------
. . . | . 8 . | . 7 .
. 1 7 | . . . | . . .
. . . | . 3 6 | . 4 . 

8 5 9 | 6 1 2 | 4 3 7 
7 2 3 | 8 5 4 | 1 6 9 
1 6 4 | 3 7 9 | 5 2 8 
------+-------+------
9 8 6 | 1 4 7 | 3 5 2 
3 7 5 | 2 6 8 | 9 1 4 
2 4 1 | 5 9 3 | 7 8 6 
------+-------+------
4 3 2 | 9 8 1 | 6 7 5 
6 1 7 | 4 2 5 | 8 9 3 
5 9 8 | 7 3 6 | 2 4 1 

Short Version

Adapted from: http://code.activestate.com/recipes/576725-brute-force-sudoku-solver/ <lang d>import std.stdio, std.algorithm, std.range;

const(int)[] solve(immutable int[] s) pure nothrow @safe {

   immutable i = s.countUntil(0);
   if (i == -1)
       return s;
   enum B = (int i, int j) => i / 27 ^ j / 27 | (i%9 / 3 ^ j%9 / 3);
   immutable c = iota(81)
                 .filter!(j => !((i - j) % 9 * (i/9 ^ j/9) * B(i, j)))
                 .map!(j => s[j]).array;
   foreach (immutable v; 1 .. 10)
       if (!c.canFind(v)) {
           const r = solve(s[0 .. i] ~ v ~ s[i + 1 .. $]);
           if (!r.empty)
               return r;
       }
   return null;

}

void main() {

   immutable problem = [
       8, 5, 0, 0, 0, 2, 4, 0, 0,
       7, 2, 0, 0, 0, 0, 0, 0, 9,
       0, 0, 4, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 1, 0, 7, 0, 0, 2,
       3, 0, 5, 0, 0, 0, 9, 0, 0,
       0, 4, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 8, 0, 0, 7, 0,
       0, 1, 7, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 3, 6, 0, 4, 0];
   writefln("%(%s\n%)", problem.solve.chunks(9));

}</lang>

Output:
[8, 5, 9, 6, 1, 2, 4, 3, 7]
[7, 2, 3, 8, 5, 4, 1, 6, 9]
[1, 6, 4, 3, 7, 9, 5, 2, 8]
[9, 8, 6, 1, 4, 7, 3, 5, 2]
[3, 7, 5, 2, 6, 8, 9, 1, 4]
[2, 4, 1, 5, 9, 3, 7, 8, 6]
[4, 3, 2, 9, 8, 1, 6, 7, 5]
[6, 1, 7, 4, 2, 5, 8, 9, 3]
[5, 9, 8, 7, 3, 6, 2, 4, 1]

No-Heap Version

This version is similar to the precedent one, but it shows idioms to avoid memory allocations on the heap. This is enforced by the use of the @nogc attribute. <lang d>import std.stdio, std.algorithm, std.range, std.typecons;

Nullable!(const ubyte[81]) solve(in ubyte[81] s) pure nothrow @safe @nogc {

   immutable i = s[].countUntil(0);
   if (i == -1)
       return typeof(return)(s);
   static immutable B = (in int i, in int j) pure nothrow @safe @nogc =>
       i / 27 ^ j / 27 | (i % 9 / 3 ^ j % 9 / 3);
   ubyte[81] c = void;
   size_t len = 0;
   foreach (immutable int j; 0 .. c.length)
       if (!((i - j) % 9 * (i/9 ^ j/9) * B(i, j)))
           c[len++] = s[j];
   foreach (immutable ubyte v; 1 .. 10)
       if (!c[0 .. len].canFind(v)) {
           ubyte[81] s2 = void;
           s2[0 .. i] = s[0 .. i];
           s2[i] = v;
           s2[i + 1 .. $] = s[i + 1 .. $];
           const r = solve(s2);
           if (!r.isNull)
               return typeof(return)(r);
       }
   return typeof(return)();

}

void main() {

   immutable ubyte[81] problem = [
       8, 5, 0, 0, 0, 2, 4, 0, 0,
       7, 2, 0, 0, 0, 0, 0, 0, 9,
       0, 0, 4, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 1, 0, 7, 0, 0, 2,
       3, 0, 5, 0, 0, 0, 9, 0, 0,
       0, 4, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 8, 0, 0, 7, 0,
       0, 1, 7, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 3, 6, 0, 4, 0];
   writefln("%(%s\n%)", problem.solve.get[].chunks(9));

}</lang> Same output.

Delphi

Example taken from C++ <lang delphi>type

 TIntArray = array of Integer;
 { TSudokuSolver }
 TSudokuSolver = class
 private
   FGrid: TIntArray;
   function CheckValidity(val: Integer; x: Integer; y: Integer): Boolean;
   function ToString: string; reintroduce;
   function PlaceNumber(pos: Integer): Boolean;
 public
   constructor Create(s: string);
   procedure Solve;
 end;

implementation

uses

 Dialogs;

{ TSudokuSolver }

function TSudokuSolver.CheckValidity(val: Integer; x: Integer; y: Integer

 ): Boolean;

var

 i: Integer;
 j: Integer;
 StartX: Integer;
 StartY: Integer;

begin

 for i := 0 to 8 do
 begin
   if (FGrid[y * 9 + i] = val) or
      (FGrid[i * 9 + x] = val) then
   begin
     Result := False;
     Exit;
   end;
 end;
 StartX := (x div 3) * 3;
 StartY := (y div 3) * 3;
 for i := StartY to Pred(StartY + 3) do
 begin
   for j := StartX to Pred(StartX + 3) do
   begin
     if FGrid[i * 9 + j] = val then
     begin
       Result := False;
       Exit;
     end;
   end;
 end;
 Result := True;

end;

function TSudokuSolver.ToString: string; var

 sb: string;
 i: Integer;
 j: Integer;
 c: char;

begin

 sb := ;
 for i := 0 to 8 do
 begin
   for j := 0 to 8 do
   begin
     c := (IntToStr(FGrid[i * 9 + j]) + '0')[1];
     sb := sb + c + ' ';
     if (j = 2) or (j = 5) then sb := sb + '| ';
   end;
   sb := sb + #13#10;
   if (i = 2) or (i = 5) then
     sb := sb + '-----+-----+-----' + #13#10;
 end;
 Result := sb;

end;

function TSudokuSolver.PlaceNumber(pos: Integer): Boolean; var

 n: Integer;

begin

 Result := False;
 if Pos = 81 then
 begin
   Result := True;
   Exit;
 end;
 if FGrid[pos] > 0 then
 begin
   Result := PlaceNumber(Succ(pos));
   Exit;
 end;
 for n := 1 to 9 do
 begin
   if CheckValidity(n, pos mod 9, pos div 9) then
   begin
     FGrid[pos] := n;
     Result := PlaceNumber(Succ(pos));
     if not Result then
       FGrid[pos] := 0;
   end;
 end;

end;

constructor TSudokuSolver.Create(s: string); var

 lcv: Cardinal;

begin

 SetLength(FGrid, 81);
 for lcv := 0 to Pred(Length(s)) do
   FGrid[lcv] := StrToInt(s[Succ(lcv)]);

end;

procedure TSudokuSolver.Solve; begin

 if not PlaceNumber(0) then
   ShowMessage('Unsolvable')
 else
   ShowMessage('Solved!');
 end;

end;</lang> Usage: <lang delphi>var

 SudokuSolver: TSudokuSolver;

begin

 SudokuSolver := TSudokuSolver.Create('850002400' +
                                      '720000009' +
                                      '004000000' +
                                      '000107002' +
                                      '305000900' +
                                      '040000000' +
                                      '000080070' +
                                      '017000000' +
                                      '000036040');
 try
   SudokuSolver.Solve;
 finally
   FreeAndNil(SudokuSolver);
 end;

end;</lang>

Elixir

Translation of: Erlang

<lang elixir>defmodule Sudoku do

 def display( grid ), do: ( for y <- 1..9, do: display_row(y, grid) )
 
 def start( knowns ), do: :dict.from_list( knowns )
 
 def solve( grid ) do
   sure = solve_all_sure( grid )
   solve_unsure( potentials(sure), sure )
 end
 
 def task do
   simple = [{{1, 1}, 3}, {{2, 1}, 9}, {{3, 1},4}, {{6, 1}, 2}, {{7, 1}, 6}, {{8, 1}, 7},
     {{4, 2}, 3}, {{7, 2}, 4},
     {{1, 3}, 5}, {{4, 3}, 6}, {{5, 3}, 9}, {{8, 3}, 2},
     {{2, 4}, 4}, {{3, 4}, 5}, {{7, 4}, 9},
     {{1, 5}, 6}, {{9, 5}, 7},
     {{3, 6}, 7}, {{7, 6}, 5}, {{8, 6}, 8},
     {{2, 7}, 1}, {{5, 7}, 6}, {{6, 7}, 7}, {{9, 7}, 8},
     {{3, 8}, 9}, {{6, 8}, 8},
     {{2, 9}, 2}, {{3, 9}, 6}, {{4, 9}, 4}, {{7, 9}, 7}, {{8, 9}, 3}, {{9, 9}, 5}]
   task( simple )
   difficult = [{{6, 2}, 3}, {{8, 2}, 8}, {{9, 2}, 5},
     {{3, 3}, 1}, {{5, 3}, 2},
     {{4, 4}, 5}, {{6, 4}, 7},
     {{3, 5}, 4}, {{7, 5}, 1},
     {{2, 6}, 9},
     {{1, 7}, 5}, {{8, 7}, 7}, {{9, 7}, 3},
     {{3, 8}, 2}, {{5, 8}, 1},
     {{5, 9}, 4}, {{9, 9}, 9}]
   task( difficult )
 end
 
 defp bt( grid ), do: bt_reject( is_not_allowed(grid), grid )
 
 defp bt_accept( true, board ), do: throw( {:ok, board} )
 defp bt_accept( false, grid ), do: bt_loop( potentials_one_position(grid), grid )
 
 defp bt_loop( {position, values}, grid ), do: ( for x <- values, do: bt( :dict.store(position, x, grid) ) )
 
 defp bt_reject( true, _grid ), do: :backtrack
 defp bt_reject( false, grid ), do: bt_accept( is_all_correct(grid), grid )
 
 defp display_row( row, grid ) do
   for x <- [1, 4, 7], do: display_row_group( x, row, grid )
   display_row_nl( row )
 end
 
 defp display_row_group( start, row, grid ) do
   for x <- [start, start+1, start+2], do: :io.fwrite(" ~c", [display_value(x, row, grid)])
   IO.write( " " )
 end
 
 defp display_row_nl( n ) when n == 3 or n == 6 or n == 9, do: IO.puts "\n"
 defp display_row_nl( _N ), do: IO.puts ""
 
 defp display_value( x, y, grid ), do: display_value( :dict.find({x, y}, grid) )
 
 defp display_value( :error ), do: ?.
 defp display_value( {:ok, value} ), do: value + ?0
 
 defp is_all_correct( grid ), do: :dict.size( grid ) == 81
 
 defp is_not_allowed( grid ) do
   is_not_allowed_rows( grid ) or is_not_allowed_columns( grid ) or is_not_allowed_groups( grid )
 end
 
 defp is_not_allowed_columns( grid ), do: Enum.any?( values_all_columns(grid), fn x-> is_not_allowed_values(x) end)
 
 defp is_not_allowed_groups( grid ),  do: Enum.any?( values_all_groups(grid),  fn x-> is_not_allowed_values(x) end)
 
 defp is_not_allowed_rows( grid ),    do: Enum.any?( values_all_rows(grid),    fn x-> is_not_allowed_values(x) end)
 
 defp is_not_allowed_values( values ), do: length( values ) != length( Enum.uniq(values) )
 
 defp group_positions( {x, y} ), do: ( for colum <- group_positions_close(x), row <- group_positions_close(y), do: {colum, row} )
 
 defp group_positions_close( n ) when n < 4, do: [1,2,3]
 defp group_positions_close( n ) when n < 7, do: [4,5,6]
 defp group_positions_close( _n )          , do: [7,8,9]
 
 defp positions_not_in_grid( grid ) do
   keys = :dict.fetch_keys( grid )
   for x <- 1..9, y <- 1..9, not Enum.member?(keys, {x, y}), do: {x, y}
 end
 
 defp potentials_one_position( grid ) do
   [{_shortest, position, values} | _t] = Enum.sort( for {position, values} <- potentials( grid ), do: {length(values), position, values} )
   {position, values}
 end
 
 defp potentials( grid ), do: List.flatten( for x <- positions_not_in_grid(grid), do: potentials(x, grid) )
 
 defp potentials( position, grid ) do
   useds = potentials_used_values( position, grid )
   {position, (for value <- :lists.seq(1, 9) -- useds, do: value) }
 end
 
 defp potentials_used_values( {x, y}, grid ) do
   row_values    = (for row <- 1..9, row != x, do: {row, y})          |> potentials_values( grid )
   column_values = (for column <- 1..9, column != y, do: {x, column}) |> potentials_values( grid )
   group_values  = List.delete( group_positions({x, y}), {x, y} )     |> potentials_values( grid )
   row_values ++ column_values ++ group_values
 end
 
 defp potentials_values( keys, grid ) do
   row_values_unfiltered = for x <- keys, do: :dict.find(x, grid)
   for {:ok, value} <- row_values_unfiltered, do: value
 end
 
 defp values_all_columns( grid ), do: ( for x <- 1..9, do: values_all_columns(x, grid) )
 
 defp values_all_columns( x, grid ) do
   ( for y <- 1..9, do: {x, y} ) |> potentials_values( grid )
 end
 
 defp values_all_groups( grid ) do
   [[g1,g2,g3], [g4,g5,g6], [g7,g8,g9]] = for x <- [1, 4, 7], do: values_all_groups(x, grid)
   [g1,g2,g3,g4,g5,g6,g7,g8,g9]
 end
 
 defp values_all_groups( x, grid ), do: ( for x_offset <- [x, x+1, x+2], do: values_all_groups(x, x_offset, grid) )
 
 defp values_all_groups( _x, x_offset, grid ) do
   ( for y_offset <- group_positions_close(x_offset), do: {x_offset, y_offset} )
   |> potentials_values( grid )
 end
 
 defp values_all_rows( grid ), do: ( for y <- 1..9, do: values_all_rows(y, grid) )
 
 defp values_all_rows( y, grid ) do
   ( for x <- 1..9, do: {x, y} ) |> potentials_values( grid )
 end
 
 defp solve_all_sure( grid ), do: solve_all_sure( solve_all_sure_values(grid), grid )
 
 defp solve_all_sure( [], grid ), do: grid
 defp solve_all_sure( sures, grid ), do: solve_all_sure( List.foldl(sures, grid, fn(x,acc)-> solve_all_sure_store(x,acc) end) )
 
 defp solve_all_sure_values( grid ), do: (for{position, [value]} <- potentials(grid), do: {position, value} )
 
 defp solve_all_sure_store( {position, value}, acc ), do: :dict.store( position, value, acc )
 
 defp solve_unsure( [], grid ), do: grid
 defp solve_unsure( _potentials, grid ) do
   try do
     bt( grid )
   catch
     {:ok, board} -> board
   end
 end
 
 defp task( knowns ) do
   IO.puts "start"
   start = start( knowns )
   display( start )
   IO.puts "solved"
   solved = solve( start )
   display( solved )
   IO.puts ""
 end

end

Sudoku.task</lang>

Output:
start
 3 9 4  . . 2  6 7 .
 . . .  3 . .  4 . .
 5 . .  6 9 .  . 2 .

 . 4 5  . . .  9 . .
 6 . .  . . .  . . 7
 . . 7  . . .  5 8 .

 . 1 .  . 6 7  . . 8
 . . 9  . . 8  . . .
 . 2 6  4 . .  7 3 5

solved
 3 9 4  8 5 2  6 7 1
 2 6 8  3 7 1  4 5 9
 5 7 1  6 9 4  8 2 3

 1 4 5  7 8 3  9 6 2
 6 8 2  9 4 5  3 1 7
 9 3 7  1 2 6  5 8 4

 4 1 3  5 6 7  2 9 8
 7 5 9  2 3 8  1 4 6
 8 2 6  4 1 9  7 3 5


start
 . . .  . . .  . . .
 . . .  . . 3  . 8 5
 . . 1  . 2 .  . . .

 . . .  5 . 7  . . .
 . . 4  . . .  1 . .
 . 9 .  . . .  . . .

 5 . .  . . .  . 7 3
 . . 2  . 1 .  . . .
 . . .  . 4 .  . . 9

solved
 9 8 7  6 5 4  3 2 1
 2 4 6  1 7 3  9 8 5
 3 5 1  9 2 8  7 4 6

 1 2 8  5 3 7  6 9 4
 6 3 4  8 9 2  1 5 7
 7 9 5  4 6 1  8 3 2

 5 1 9  2 8 6  4 7 3
 4 7 2  3 1 9  5 6 8
 8 6 3  7 4 5  2 1 9

Erlang

I first try to solve the Sudoku grid without guessing. For the guessing part I eschew spawning a process for each guess, instead opting for backtracking. It is fun trying new things. <lang Erlang> -module( sudoku ).

-export( [display/1, start/1, solve/1, task/0] ).

display( Grid ) -> [display_row(Y, Grid) || Y <- lists:seq(1, 9)]. %% A known value is {{Column, Row}, Value} %% Top left corner is {1, 1}, Bottom right corner is {9,9} start( Knowns ) -> dict:from_list( Knowns ).

solve( Grid ) -> Sure = solve_all_sure( Grid ), solve_unsure( potentials(Sure), Sure ).

task() -> Simple = [{{1, 1}, 3}, {{2, 1}, 9}, {{3, 1},4}, {{6, 1}, 2}, {{7, 1}, 6}, {{8, 1}, 7}, {{4, 2}, 3}, {{7, 2}, 4}, {{1, 3}, 5}, {{4, 3}, 6}, {{5, 3}, 9}, {{8, 3}, 2}, {{2, 4}, 4}, {{3, 4}, 5}, {{7, 4}, 9}, {{1, 5}, 6}, {{9, 5}, 7}, {{3, 6}, 7}, {{7, 6}, 5}, {{8, 6}, 8}, {{2, 7}, 1}, {{5, 7}, 6}, {{6, 7}, 7}, {{9, 7}, 8}, {{3, 8}, 9}, {{6, 8}, 8}, {{2, 9}, 2}, {{3, 9}, 6}, {{4, 9}, 4}, {{7, 9}, 7}, {{8, 9}, 3}, {{9, 9}, 5}], task( Simple ), Difficult = [{{6, 2}, 3}, {{8, 2}, 8}, {{9, 2}, 5}, {{3, 3}, 1}, {{5, 3}, 2}, {{4, 4}, 5}, {{6, 4}, 7}, {{3, 5}, 4}, {{7, 5}, 1}, {{2, 6}, 9}, {{1, 7}, 5}, {{8, 7}, 7}, {{9, 7}, 3}, {{3, 8}, 2}, {{5, 8}, 1}, {{5, 9}, 4}, {{9, 9}, 9}], task( Difficult ).


bt( Grid ) -> bt_reject( is_not_allowed(Grid), Grid ).

bt_accept( true, Board ) -> erlang:throw( {ok, Board} ); bt_accept( false, Grid ) -> bt_loop( potentials_one_position(Grid), Grid ).

bt_loop( {Position, Values}, Grid ) -> [bt( dict:store(Position, X, Grid) ) || X <- Values].

bt_reject( true, _Grid ) -> backtrack; bt_reject( false, Grid ) -> bt_accept( is_all_correct(Grid), Grid ).

display_row( Row, Grid ) -> [display_row_group( X, Row, Grid ) || X <- [1, 4, 7]], display_row_nl( Row ).

display_row_group( Start, Row, Grid ) -> [io:fwrite(" ~c", [display_value(X, Row, Grid)]) || X <- [Start, Start+1, Start+2]], io:fwrite( " " ).

display_row_nl( N ) when N =:= 3; N =:= 6; N =:= 9 -> io:nl(), io:nl(); display_row_nl( _N ) -> io:nl().

display_value( X, Y, Grid ) -> display_value( dict:find({X, Y}, Grid) ).

display_value( error ) -> $.; display_value( {ok, Value} ) -> Value + $0.

is_all_correct( Grid ) -> dict:size( Grid ) =:= 81.

is_not_allowed( Grid ) -> is_not_allowed_rows( Grid ) orelse is_not_allowed_columns( Grid ) orelse is_not_allowed_groups( Grid ).

is_not_allowed_columns( Grid ) -> lists:any( fun is_not_allowed_values/1, values_all_columns(Grid) ).

is_not_allowed_groups( Grid ) -> lists:any( fun is_not_allowed_values/1, values_all_groups(Grid) ).

is_not_allowed_rows( Grid ) -> lists:any( fun is_not_allowed_values/1, values_all_rows(Grid) ).

is_not_allowed_values( Values ) -> erlang:length( Values ) =/= erlang:length( lists:usort(Values) ).

group_positions( {X, Y} ) -> [{Colum, Row} || Colum <- group_positions_close(X), Row <- group_positions_close(Y)].

group_positions_close( N ) when N < 4 -> [1,2,3]; group_positions_close( N ) when N < 7 -> [4,5,6]; group_positions_close( _N ) -> [7,8,9].

positions_not_in_grid( Grid ) -> Keys = dict:fetch_keys( Grid ), [{X, Y} || X <- lists:seq(1, 9), Y <- lists:seq(1, 9), not lists:member({X, Y}, Keys)].

potentials_one_position( Grid ) -> [{_Shortest, Position, Values} | _T] = lists:sort( [{erlang:length(Values), Position, Values} || {Position, Values} <- potentials( Grid )] ), {Position, Values}.

potentials( Grid ) -> lists:flatten( [potentials(X, Grid) || X <- positions_not_in_grid(Grid)] ).

potentials( Position, Grid ) -> Useds = potentials_used_values( Position, Grid ), {Position, [Value || Value <- lists:seq(1, 9) -- Useds]}.

potentials_used_values( {X, Y}, Grid ) -> Row_positions = [{Row, Y} || Row <- lists:seq(1, 9), Row =/= X], Row_values = potentials_values( Row_positions, Grid ), Column_positions = [{X, Column} || Column <- lists:seq(1, 9), Column =/= Y], Column_values = potentials_values( Column_positions, Grid ), Group_positions = lists:delete( {X, Y}, group_positions({X, Y}) ), Group_values = potentials_values( Group_positions, Grid ), Row_values ++ Column_values ++ Group_values.

potentials_values( Keys, Grid ) -> Row_values_unfiltered = [dict:find(X, Grid) || X <- Keys], [Value || {ok, Value} <- Row_values_unfiltered].

values_all_columns( Grid ) -> [values_all_columns(X, Grid) || X <- lists:seq(1, 9)].

values_all_columns( X, Grid ) -> Positions = [{X, Y} || Y <- lists:seq(1, 9)], potentials_values( Positions, Grid ).

values_all_groups( Grid ) -> [G123, G456, G789] = [values_all_groups(X, Grid) || X <- [1, 4, 7]], [G1,G2,G3] = G123, [G4,G5,G6] = G456, [G7,G8,G9] = G789, [G1,G2,G3,G4,G5,G6,G7,G8,G9].

values_all_groups( X, Grid ) ->[values_all_groups(X, X_offset, Grid) || X_offset <- [X, X+1, X+2]].

values_all_groups( _X, X_offset, Grid ) -> Positions = [{X_offset, Y_offset} || Y_offset <- group_positions_close(X_offset)], potentials_values( Positions, Grid ).

values_all_rows( Grid ) ->[values_all_rows(Y, Grid) || Y <- lists:seq(1, 9)].

values_all_rows( Y, Grid ) -> Positions = [{X, Y} || X <- lists:seq(1, 9)], potentials_values( Positions, Grid ).

solve_all_sure( Grid ) -> solve_all_sure( solve_all_sure_values(Grid), Grid ).

solve_all_sure( [], Grid ) -> Grid; solve_all_sure( Sures, Grid ) -> solve_all_sure( lists:foldl(fun solve_all_sure_store/2, Grid, Sures) ).

solve_all_sure_values( Grid ) -> [{Position, Value} || {Position, [Value]} <- potentials(Grid)].

solve_all_sure_store( {Position, Value}, Acc ) -> dict:store( Position, Value, Acc ).

solve_unsure( [], Grid ) -> Grid; solve_unsure( _Potentials, Grid ) ->

   try
   bt( Grid )
   catch
   _:{ok, Board} -> Board
   end.

task( Knowns ) -> io:fwrite( "Start~n" ), Start = start( Knowns ), display( Start ), io:fwrite( "Solved~n" ), Solved = solve( Start ), display( Solved ), io:nl(). </lang>

Output:
5> sudoku:task().
Start
 3 9 4  . . 2  6 7 . 
 . . .  3 . .  4 . . 
 5 . .  6 9 .  . 2 . 

 . 4 5  . . .  9 . . 
 6 . .  . . .  . . 7 
 . . 7  . . .  5 8 . 

 . 1 .  . 6 7  . . 8 
 . . 9  . . 8  . . . 
 . 2 6  4 . .  7 3 5 

Solved
 3 9 4  8 5 2  6 7 1 
 2 6 8  3 7 1  4 5 9 
 5 7 1  6 9 4  8 2 3 

 1 4 5  7 8 3  9 6 2 
 6 8 2  9 4 5  3 1 7 
 9 3 7  1 2 6  5 8 4 

 4 1 3  5 6 7  2 9 8 
 7 5 9  2 3 8  1 4 6 
 8 2 6  4 1 9  7 3 5 


Start
 . . .  . . .  . . . 
 . . .  . . 3  . 8 5 
 . . 1  . 2 .  . . . 

 . . .  5 . 7  . . . 
 . . 4  . . .  1 . . 
 . 9 .  . . .  . . . 

 5 . .  . . .  . 7 3 
 . . 2  . 1 .  . . . 
 . . .  . 4 .  . . 9 

Solved
 9 8 7  6 5 4  3 2 1 
 2 4 6  1 7 3  9 8 5 
 3 5 1  9 2 8  7 4 6 

 1 2 8  5 3 7  6 9 4 
 6 3 4  8 9 2  1 5 7 
 7 9 5  4 6 1  8 3 2 

 5 1 9  2 8 6  4 7 3 
 4 7 2  3 1 9  5 6 8 
 8 6 3  7 4 5  2 1 9 

ERRE

Sudoku solver. Program solves Sudoku grid with an iterative method: it's taken from ERRE distribution disk and so comments are in Italian. Grid data are contained in the file SUDOKU.TXT

Example of SUDOKU.TXT

503600009

010002600

900000080

000700005

006804100

200003000

030000008

004300050

800006702

0 is the empty cell.

<lang ERRE> !-------------------------------------------------------------------- ! risolve Sudoku: in input il file SUDOKU.TXT ! Metodo seguito : cancellazioni successive e quando non possibile ! ricerca combinatoria sulle celle con due valori ! possibili - max. 30 livelli di ricorsione ! Non risolve se,dopo l'analisi per la cancellazione, ! restano solo celle a 4 valori !--------------------------------------------------------------------

PROGRAM SUDOKU

LABEL 76,77,88,91,97,99

DIM TAV$[9,9]  ! 81 caselle in nove quadranti

                         ! cella non definita --> 0/. nel file SUDOKU.TXT
                         ! diventa 123456789 dopo LEGGI_SCHEMA

!--------------------------------------------------------------------------- ! tabelle per gestire la ricerca combinatoria ! (primo indice--> livelli ricorsione) !--------------------------------------------------------------------------- DIM TAV2$[30,9,9],INFO[30,4]

!$INCLUDE="PC.LIB"

PROCEDURE MESSAGGI(MEX%)

    CASE MEX% OF
      1-> LOCATE(21,1) PRINT("Cancellazione successiva - liv. 1") END ->
      2-> LOCATE(21,1) PRINT("Cancellazione successiva - liv. 2") END ->
      3-> LOCATE(22,1) PRINT("Ricerca combinatoria - liv.";LIVELLO;"   ") END ->
    END CASE

END PROCEDURE

PROCEDURE VISUALIZZA_SCHEMA

  LOCATE(1,1)
  PRINT("+---+---+---+---+---+---+---+---+----+")
  FOR I=1 TO 9 DO
      FOR J=1 TO 9 DO
           PRINT("|";)
           IF LEN(TAV$[I,J])=1 THEN
                 PRINT(" ";TAV$[I,J];" ";)
              ELSE
                 PRINT("   ";)
           END IF
      END FOR
      PRINT("³")
      IF I<>9 THEN PRINT("+---+---+---+---+---+---+---+---+----+") END IF
  END FOR
  PRINT("+---+---+---+---+---+---+---+---+----+")

END PROCEDURE

!------------------------------------------------------------------------ ! in input la cella (riga,colonna) ! in output se ha un valore definito !------------------------------------------------------------------------ PROCEDURE VALORE_DEFINITO

  FLAG%=FALSE
  IF LEN(TAV$[RIGA,COLONNA])=1 THEN FLAG%=TRUE END IF

END PROCEDURE


PROCEDURE SALVA_CONFIG

    LIVELLO=LIVELLO+1
    FOR R=1 TO 9 DO
        FOR S=1 TO 9 DO
            TAV2$[LIVELLO,R,S]=TAV$[R,S]
        END FOR
    END FOR
    INFO[LIVELLO,0]=1 INFO[LIVELLO,1]=RIGA INFO[LIVELLO,2]=COLONNA
    INFO[LIVELLO,3]=SECOND INFO[LIVELLO,4]=THIRD

END PROCEDURE

PROCEDURE RIPRISTINA_CONFIG 91:

    LIVELLO=LIVELLO-1
    IF INFO[LIVELLO,0]=3 THEN GOTO 91 END IF
    FOR R=1 TO 9 DO
        FOR S=1 TO 9 DO
            TAV$[R,S]=TAV2$[LIVELLO,R,S]
        END FOR
    END FOR
    RIGA=INFO[LIVELLO,1] COLONNA=INFO[LIVELLO,2]
    SECOND=INFO[LIVELLO,3] THIRD=INFO[LIVELLO,4]
    IF INFO[LIVELLO,0]=1 THEN
        TAV$[RIGA,COLONNA]=MID$(STR$(SECOND),2)
    END IF
    IF INFO[LIVELLO,0]=2 THEN
        IF THIRD<>0 THEN
               TAV$[RIGA,COLONNA]=MID$(STR$(THIRD),2)
           ELSE
               GOTO 91
        END IF
    END IF
    INFO[LIVELLO,0]=INFO[LIVELLO,0]+1
    VISUALIZZA_SCHEMA

END PROCEDURE

PROCEDURE VERIFICA_SE_FINITO

   COMPLETO%=TRUE
   FOR RIGA=1 TO 9 DO
       PRD#=1
       FOR COLONNA=1 TO 9 DO
           PRD#=PRD#*VAL(TAV$[RIGA,COLONNA])
       END FOR
       IF PRD#<>362880 THEN COMPLETO%=FALSE EXIT END IF
   END FOR
   IF NOT COMPLETO% THEN EXIT PROCEDURE END IF
   FOR COLONNA=1 TO 9 DO
       PRD#=1
       FOR RIGA=1 TO 9 DO
           PRD#=PRD#*VAL(TAV$[RIGA,COLONNA])
       END FOR
       IF PRD#<>362880 THEN COMPLETO%=FALSE EXIT END IF
   END FOR

END PROCEDURE

!------------------------------------------------------------------- ! toglie i valore certi dalle celle sulla ! stessa riga-stessa colonna-stesso quadrante !------------------------------------------------------------------- PROCEDURE TOGLI_VALORE

!iniziamo a togliere il valore dalla stessa riga ....

    FOR J=1 TO 9 DO
        CH$=TAV$[RIGA,J] CH=VAL(Z$)
        IF LEN(CH$)<>1 THEN
           CHANGE(CH$,CH,"-"->CH$)
           TAV$[RIGA,J]=CH$
        END IF
    END FOR

!... iniziamo a togliere il valore dalla stessa colonna ...

    FOR I=1 TO 9 DO
        CH$=TAV$[I,COLONNA] CH=VAL(Z$)
        IF LEN(CH$)<>1 THEN
           CHANGE(CH$,CH,"-"->CH$)
           TAV$[I,COLONNA]=CH$
        END IF
    END FOR

!... iniziamo a togliere il valore dallo stesso quadrante

    R=INT(RIGA/3.1)*3+1
    S=INT(COLONNA/3.1)*3+1
    FOR I=R TO R+2 DO
       FOR J=S TO S+2 DO
         CH$=TAV$[I,J] CH=VAL(Z$)
         IF LEN(CH$)<>1 THEN
            CHANGE(CH$,CH,"-"->CH$)
            TAV$[I,J]=CH$
         END IF
       END FOR
    END FOR
    MESSAGGI(1)

END PROCEDURE

PROCEDURE ESAMINA_SCHEMA

    FOR RIGA=1 TO 9 DO
       FOR COLONNA=1 TO 9 DO
          VALORE_DEFINITO
          IF FLAG% THEN
              Z$=TAV$[RIGA,COLONNA]
              TOGLI_VALORE
          END IF
       END FOR
    END FOR

END PROCEDURE

PROCEDURE IDENTIFICA_UNICO

    FOR KL=1 TO 9 DO
       KL$=MID$(STR$(KL),2)
       NN=0
       FOR H=1 TO LEN(ZZ$) DO
          IF MID$(ZZ$,H,1)=KL$ THEN NN=NN+1 END IF
       END FOR
       IF NN=1 THEN Q=INSTR(ZZ$,KL$) KL=9 END IF
    END FOR

END PROCEDURE

!---------------------------------------------------------------------------- ! intercetta i valori unici per le celle ancora non definite !---------------------------------------------------------------------------- PROCEDURE TOGLI_VALORE2

    MESSAGGI(2)

! iniziamo dalle righe ....

    OK%=FALSE
    FOR RIGA=1 TO 9 DO
       ZZ$=""
       FOR COLONNA=1 TO 9 DO
           IF LEN(TAV$[RIGA,COLONNA])<>1 THEN
                ZZ$=ZZ$+TAV$[RIGA,COLONNA]
             ELSE
                ZZ$=ZZ$+STRING$(9," ")
           END IF
       END FOR
       Q=0 IDENTIFICA_UNICO
       IF Q<>0 THEN
           COLONNA=INT(Q/9.1)+1
           TAV$[RIGA,COLONNA]=KL$
           OK%=TRUE EXIT
       END IF
    END FOR
    IF OK% THEN GOTO 76 END IF

! .... poi dalle colonne ....

    FOR COLONNA=1 TO 9 DO
       ZZ$=""
       FOR RIGA=1 TO 9 DO
           IF LEN(TAV$[RIGA,COLONNA])<>1 THEN
               ZZ$=ZZ$+TAV$[RIGA,COLONNA]
             ELSE
               ZZ$=ZZ$+STRING$(9," ")
           END IF
       END FOR
       Q=0 IDENTIFICA_UNICO
       IF Q<>0 THEN
           RIGA=INT(Q/9.1)+1
           TAV$[RIGA,COLONNA]=KL$ OK%=TRUE EXIT
       END IF
    END FOR
    IF OK% THEN GOTO 76 END IF

!.... e infine i quadranti

    FOR QUADRANTE=1 TO 9 DO
        ZZ$=""
        CASE QUADRANTE OF
          1-> R=1 S=1 END ->
          2-> R=1 S=4 END ->
          3-> R=1 S=7 END ->
          4-> R=4 S=1 END ->
          5-> R=4 S=4 END ->
          6-> R=4 S=7 END ->
          7-> R=7 S=1 END ->
          8-> R=7 S=4 END ->
          9-> R=7 S=7 END ->
        END CASE
        FOR RIGA=R TO R+2 DO
           FOR COLONNA=S TO S+2 DO
               IF LEN(TAV$[RIGA,COLONNA])<>1 THEN
                   ZZ$=ZZ$+TAV$[RIGA,COLONNA]
                 ELSE
                   ZZ$=ZZ$+STRING$(9," ")
               END IF
           END FOR
        END FOR
        Q=0 IDENTIFICA_UNICO
        IF Q<>0 THEN
           CASE Q OF
             1..9->   ALFA=R   BETA=S   END ->
             10..18-> ALFA=R   BETA=S+1 END ->
             19..27-> ALFA=R   BETA=S+2 END ->
             28..36-> ALFA=R+1 BETA=S   END ->
             37..45-> ALFA=R+1 BETA=S+1 END ->
             46..54-> ALFA=R+1 BETA=S+2 END ->
             55..63-> ALFA=R+2 BETA=S   END ->
             64..72-> ALFA=R+2 BETA=S+1 END ->
             OTHERWISE
                ALFA=R+2 BETA=S+2
           END CASE

77:

           TAV$[ALFA,BETA]=KL$ EXIT
        END IF
    END FOR

76:

    MESSAGGI(2)

END PROCEDURE

PROCEDURE CONVERTI_VALORE

   FINE%=TRUE NESSUNO%=TRUE
   FOR RIGA=1 TO 9 DO
       FOR COLONNA=1 TO 9 DO
          CH$=TAV$[RIGA,COLONNA]
          IF LEN(CH$)<>1 THEN
              FINE%=FALSE ! flag per fine partita -- trovati tutti
              Q=0         ! conta i '-' nella stringa se ce ne sono 8,
                          ! trovato valore
              FOR Z=1 TO LEN(CH$) DO
                 IF MID$(CH$,Z,1)="-" THEN Q=Q+1 ELSE LAST=Z END IF
              END FOR
              IF Q=8 THEN
                  CH$=MID$(STR$(LAST),2)
                  TAV$[RIGA,COLONNA]=CH$
                  NESSUNO%=FALSE
              END IF
          END IF
       END FOR
   END FOR

END PROCEDURE

PROCEDURE LEGGI_SCHEMA

   OPEN("I",1,"sudoku.txt")
   FOR I=1 TO 9 DO
      INPUT(LINE,#1,RIGA$)
      FOR J=1 TO 9 DO
          CH$=MID$(RIGA$,J,1)
          IF CH$="0" OR CH$="." THEN
               TAV$[I,J]="123456789"
            ELSE
               TAV$[I,J]=CH$
          END IF
      END FOR
   END FOR

CLOSE(1) END PROCEDURE

!--------------------------------------------------------------------------- ! Praticamente - visita di un albero binario (caso con cella a 2 valori ! possibili) !--------------------------------------------------------------------------- PROCEDURE RICERCA_COMBINATORIA

  TRE%=TRUE
  FOR RIGA=1 TO 9 DO
      FOR COLONNA=1 TO 9 DO
          CH$=TAV$[RIGA,COLONNA]
          IF LEN(CH$)<>1 THEN
              Q=0 FIRST=0 SECOND=0 THIRD=0
              FOR Z=1 TO LEN(CH$) DO
                 IF MID$(CH$,Z,1)="-" THEN
                    Q=Q+1
                   ELSE
                    IF FIRST=0 THEN
                        FIRST=Z
                      ELSE
                        SECOND=Z
                    END IF
                 END IF
              END FOR
              IF Q=7 THEN
                 SALVA_CONFIG
                 TAV$[RIGA,COLONNA]=MID$(STR$(FIRST),2)
                 TRE%=FALSE
                 GOTO 97
              END IF
          END IF
      END FOR
  END FOR
  IF TRE% THEN GOTO 88 END IF

97:

  MESSAGGI(3)
  EXIT PROCEDURE

88:

  QUATTRO%=TRUE
  FOR RIGA=1 TO 9 DO
      FOR COLONNA=1 TO 9 DO
          CH$=TAV$[RIGA,COLONNA]
          IF LEN(CH$)<>1 THEN
              Q=0 FIRST=0 SECOND=0 THIRD=0
              FOR Z=1 TO LEN(CH$) DO
                 IF MID$(CH$,Z,1)="-" THEN
                     Q=Q+1
                   ELSE
                     IF FIRST=0 THEN
                         FIRST=Z
                       ELSE
                         IF SECOND=0 THEN
                             SECOND=Z
                           ELSE
                             THIRD=Z
                         END IF
                     END IF
                 END IF
              END FOR
              IF Q=6 THEN
                  SALVA_CONFIG
                  TAV$[RIGA,COLONNA]=MID$(STR$(FIRST),2)
                  QUATTRO%=FALSE
                  GOTO 97
              END IF
          END IF
      END FOR
 END FOR
 IF QUATTRO% THEN
     LIVELLO=LIVELLO+1
     RIPRISTINA_CONFIG
     GOTO 97
 END IF
 ! se restano solo celle con 4 valori,forza la chiusura del ramo dell'albero
 !$RCODE="STOP"

END PROCEDURE

BEGIN

  CLS
  LIVELLO=1 NZ%=0
  LEGGI_SCHEMA
  WHILE TRUE DO
     VISUALIZZA_SCHEMA

99:

     NZ%=NZ%+1
     ESAMINA_SCHEMA
     CONVERTI_VALORE
     EXIT IF FINE%
     IF NESSUNO% THEN
         TOGLI_VALORE2
         IF OK%=0 THEN
            RICERCA_COMBINATORIA  ! cerca altri celle da assegnare
         END IF
     END IF
  END WHILE
  VISUALIZZA_SCHEMA
  VERIFICA_SE_FINITO
  IF NOT COMPLETO% THEN
      LIVELLO=LIVELLO+1
      RIPRISTINA_CONFIG
      GOTO 99
  END IF

END PROGRAM


</lang>

Forth

Works with: 4tH version 3.60.0

<lang forth>include lib/interprt.4th include lib/istype.4th include lib/argopen.4th

\ --------------------- \ Variables \ ---------------------

81 string sudokugrid 9 array sudoku_row 9 array sudoku_col 9 array sudoku_box

\ ------------- \ 4tH interface \ -------------

>grid ( n2 a1 n1 -- n3)
 rot dup >r 9 chars * sudokugrid + dup >r swap
 0 do                                 ( a1 a2)
   over i chars + c@ dup is-digit     ( a1 a2 c f)
   if [char] 0 - over c! char+ else drop then
 loop                                 ( a1 a2)
 nip r> - 9 /  r> +                   ( n3)

0 s" 090004007" >grid s" 000007900" >grid s" 800000000" >grid s" 405800000" >grid s" 300000002" >grid s" 000009706" >grid s" 000000004" >grid s" 003500000" >grid s" 200600080" >grid drop

\ --------------------- \ Logic \ --------------------- \ Basically : \ Grid is parsed. All numbers are put into sets, which are \ implemented as bitmaps (sudoku_row, sudoku_col, sudoku_box) \ which represent sets of numbers in each row, column, box. \ only one specific instance of a number can exist in a \ particular set.

\ SOLVER is recursively called \ SOLVER looks for the next best guess using FINDNEXTSPACE \ tries this trail down... if fails, backtracks... and tries \ again.


\ Grid Related

xy 9 * + ; \ x y -- offset ;
getrow 9 / ;
getcol 9 mod ;
getbox dup getrow 3 / 3 * swap getcol 3 / + ;

\ Puts and gets numbers from/to grid only

setnumber sudokugrid + c! ; \ n position --
getnumber sudokugrid + c@ ;
cleargrid sudokugrid 81 bounds do 0 i c! loop ;

\ -------------- \ Set related: sets are sudoku_row, sudoku_col, sudoku_box

\ ie x y --  ; adds x into bitmap y

addbits_row cells sudoku_row + dup @ rot 1 swap lshift or swap ! ;
addbits_col cells sudoku_col + dup @ rot 1 swap lshift or swap ! ;
addbits_box cells sudoku_box + dup @ rot 1 swap lshift or swap ! ;

\ ie x y --  ; remove number x from bitmap y

removebits_row cells sudoku_row + dup @ rot 1 swap lshift invert and swap ! ;
removebits_col cells sudoku_col + dup @ rot 1 swap lshift invert and swap ! ;
removebits_box cells sudoku_box + dup @ rot 1 swap lshift invert and swap ! ;

\ clears all bitsmaps to 0

clearbitmaps 9 0 do i cells
                    0 over sudoku_row + !
                    0 over sudoku_col + !
                    0 swap sudoku_box + !
          loop ;

\ Adds number to grid and sets

addnumber \ number position --
   2dup setnumber
   2dup getrow addbits_row
   2dup getcol addbits_col
        getbox addbits_box

\ Remove number from grid, and sets

removenumber \ position --
   dup getnumber swap    
   2dup getrow removebits_row
   2dup getcol removebits_col
   2dup getbox removebits_box
   nip 0 swap setnumber

\ gets bitmap at position, ie \ position -- bitmap

getrow_bits getrow cells sudoku_row + @ ;
getcol_bits getcol cells sudoku_col + @ ;
getbox_bits getbox cells sudoku_box + @ ;

\ position -- composite bitmap (or'ed)

getbits
   dup getrow_bits
   over getcol_bits
   rot getbox_bits or or

\ algorithm from c.l.f circa 1995 ? Will Baden

countbits ( number -- bits )
       [HEX] DUP  55555555 AND  SWAP  1 RSHIFT  55555555 AND  +
             DUP  33333333 AND  SWAP  2 RSHIFT  33333333 AND  +
             DUP  0F0F0F0F AND  SWAP  4 RSHIFT  0F0F0F0F AND  +
       [DECIMAL] 255 MOD

\ Try tests a number in a said position of grid \ Returns true if it's possible, else false.

try \ number position -- true/false
     getbits 1 rot lshift and 0=

\ --------------

parsegrid \ Parses Grid to fill sets.. Run before solver.
  sudokugrid                          \ to ensure all numbers are parsed into sets/bitmaps
  81 0 do
    dup i + c@                            
      dup if                              
        dup i try if                    
          i addnumber                          
        else
          unloop drop drop FALSE exit      
        then  
      else
        drop
      then
  loop
  drop
  TRUE

\ Morespaces? manually checks for spaces ... \ Obviously this can be optimised to a count var, done initially \ Any additions/subtractions made to the grid could decrement \ a 'spaces' variable.

morespaces?
    0  sudokugrid 81 bounds do i c@  0= if 1+ then loop ;
findnextmove \ -- n ; n = index next item, if -1 finished.
  -1  10                              \  index  prev_possibilities  --
                                      \  err... yeah... local variables, kind of...
  81 0 do
     i sudokugrid + c@ 0= IF
            i getbits countbits 9 swap -
            \ get bitmap and see how many possibilities
            \ stack diagram:
            \ index prev_possibilities  new_possiblities --
            2dup > if          
                                      \ if new_possibilities < prev_possibilities...
                nip nip i swap  
                                      \ new_index new_possibilies --
            else                      \ else prev_possibilities < new possibilities, so:
                drop                  \ new_index new_possibilies --        
            then                
     THEN
  loop
  drop

\ findnextmove returns index of best next guess OR returns -1 \ if no more guesses. You then have to check to see if there are \ spaces left on the board unoccupied. If this is the case, you \ need to back up the recursion and try again.

solver
    findnextmove
        dup 0< if
            morespaces? if
               drop false exit
            else
               drop true exit
            then
        then
    10 1 do
       i over try if          
          i over addnumber
          recurse  if
               drop unloop TRUE EXIT
          else
               dup removenumber
          then
       then
    loop
    drop FALSE

\ SOLVER

startsolving
  clearbitmaps                        \ reparse bitmaps and reparse grid
  parsegrid                           \ just in case..
  solver
  AND

\ --------------------- \ Display Grid \ ---------------------

\ Prints grid nicely

.sudokugrid
 CR CR
 sudokugrid
 81 0 do
   dup i + c@ .
   i 1+
     dup 3 mod 0= if
        dup 9 mod 0= if
           CR
           dup 27 mod 0= if
             dup 81 < if ." ------+-------+------" CR then
           then
        else
          ." | "
        then      
     then
   drop
 loop
 drop
 CR

\ --------------------- \ Higher Level Words \ ---------------------

checkifoccupied ( offset -- t/f)
   sudokugrid + c@
add ( n x y --)
   xy 2dup
     dup checkifoccupied if
       dup removenumber
     then
   try if
     addnumber
     .sudokugrid
   else
     CR ." Not a valid move. " CR
     2drop
   then
rm
   xy removenumber
   .sudokugrid
clearit
   cleargrid
   clearbitmaps
   .sudokugrid
solveit
 CR 
 startsolving
 if
   ." Solution found!" CR .sudokugrid
 else
   ." No solution found!" CR CR
 then
showit .sudokugrid ;

\ Print help menu

help
 CR
 ." Type clearit     ; to clear grid " CR
 ."      1-9 x y add ; to add 1-9 to grid at x y (0 based) " CR
 ."      x y rm      ; to remove number at x y " CR
 ."      showit      ; redisplay grid " CR
 ."      solveit     ; to solve " CR
 ."      help        ; for help " CR
 CR

\ --------------------- \ Execution starts here \ ---------------------

godoit
   clearbitmaps
   parsegrid if
     CR ." Grid valid!"
   else
     CR ." Warning: grid invalid!"
   then
   .sudokugrid
   help

\ ------------- \ 4tH interface \ -------------

read-sudoku
 input 1 arg-open 0
 begin dup 9 < while refill while 0 parse >grid repeat
 drop close
bye quit ;

create wordlist \ dictionary

 ," clearit" ' clearit ,
 ," add"     ' add ,
 ," rm"      ' rm ,
 ," showit"  ' showit ,
 ," solveit" ' solveit ,
 ," quit"    ' bye ,
 ," exit"    ' bye ,
 ," bye"     ' bye ,
 ," q"       ' bye ,
 ," help"    ' help ,
 NULL ,

wordlist to dictionary

noname ." Unknown command '" type ." '" cr ; is NotFound
                                      \ sudoku interpreter
sudoku
 argn 1 > if read-sudoku then
 godoit
 begin
   ." OK" cr
   refill drop ['] interpret
   catch if ." Error" cr then
 again

sudoku</lang>

Fortran

Works with: Fortran version 90 and later

This implementation uses a brute force method. The subroutine solve recursively checks valid entries using the rules defined in the function is_safe. When solve is called beyond the end of the sudoku, we know that all the currently entered values are valid. Then the result is displayed. <lang fortran>program sudoku

 implicit none
 integer, dimension (9, 9) :: grid
 integer, dimension (9, 9) :: grid_solved
 grid = reshape ((/               &
   & 0, 0, 3, 0, 2, 0, 6, 0, 0,   &
   & 9, 0, 0, 3, 0, 5, 0, 0, 1,   &
   & 0, 0, 1, 8, 0, 6, 4, 0, 0,   &
   & 0, 0, 8, 1, 0, 2, 9, 0, 0,   &
   & 7, 0, 0, 0, 0, 0, 0, 0, 8,   &
   & 0, 0, 6, 7, 0, 8, 2, 0, 0,   &
   & 0, 0, 2, 6, 0, 9, 5, 0, 0,   &
   & 8, 0, 0, 2, 0, 3, 0, 0, 9,   &
   & 0, 0, 5, 0, 1, 0, 3, 0, 0/), &
   & shape = (/9, 9/),            &
   & order = (/2, 1/))
 call pretty_print (grid)
 call solve (1, 1)
 write (*, *)
 call pretty_print (grid_solved)

contains

 recursive subroutine solve (i, j)
   implicit none
   integer, intent (in) :: i
   integer, intent (in) :: j
   integer :: n
   integer :: n_tmp
   if (i > 9) then
     grid_solved = grid
   else
     do n = 1, 9
       if (is_safe (i, j, n)) then
         n_tmp = grid (i, j)
         grid (i, j) = n
         if (j == 9) then
           call solve (i + 1, 1)
         else
           call solve (i, j + 1)
         end if
         grid (i, j) = n_tmp
       end if
     end do
   end if
 end subroutine solve
 function is_safe (i, j, n) result (res)
   implicit none
   integer, intent (in) :: i
   integer, intent (in) :: j
   integer, intent (in) :: n
   logical :: res
   integer :: i_min
   integer :: j_min
   if (grid (i, j) == n) then
     res = .true.
     return
   end if
   if (grid (i, j) /= 0) then
     res = .false.
     return
   end if
   if (any (grid (i, :) == n)) then
     res = .false.
     return
   end if
   if (any (grid (:, j) == n)) then
     res = .false.
     return
   end if
   i_min = 1 + 3 * ((i - 1) / 3)
   j_min = 1 + 3 * ((j - 1) / 3)
   if (any (grid (i_min : i_min + 2, j_min : j_min + 2) == n)) then
     res = .false.
     return
   end if
   res = .true.
 end function is_safe
 subroutine pretty_print (grid)
   implicit none
   integer, dimension (9, 9), intent (in) :: grid
   integer :: i
   integer :: j
   character (*), parameter :: bar = '+-----+-----+-----+'
   character (*), parameter :: fmt = '(3 ("|", i0, 1x, i0, 1x, i0), "|")'
   write (*, '(a)') bar
   do j = 0, 6, 3
     do i = j + 1, j + 3
       write (*, fmt) grid (i, :)
     end do
     write (*, '(a)') bar
   end do
 end subroutine pretty_print

end program sudoku</lang>

Output:

+-----+-----+-----+
|0 0 3|0 2 0|6 0 0|
|9 0 0|3 0 5|0 0 1|
|0 0 1|8 0 6|4 0 0|
+-----+-----+-----+
|0 0 8|1 0 2|9 0 0|
|7 0 0|0 0 0|0 0 8|
|0 0 6|7 0 8|2 0 0|
+-----+-----+-----+
|0 0 2|6 0 9|5 0 0|
|8 0 0|2 0 3|0 0 9|
|0 0 5|0 1 0|3 0 0|
+-----+-----+-----+

+-----+-----+-----+
|4 8 3|9 2 1|6 5 7|
|9 6 7|3 4 5|8 2 1|
|2 5 1|8 7 6|4 9 3|
+-----+-----+-----+
|5 4 8|1 3 2|9 7 6|
|7 2 9|5 6 4|1 3 8|
|1 3 6|7 9 8|2 4 5|
+-----+-----+-----+
|3 7 2|6 8 9|5 1 4|
|8 1 4|2 5 3|7 6 9|
|6 9 5|4 1 7|3 8 2|
+-----+-----+-----+

Go

Solution using Knuth's DLX. This code follows his paper fairly closely. Input to function solve is an 81 character string. This seems to be a conventional computer representation for Sudoku puzzles. <lang go>package main

import "fmt"

// sudoku puzzle representation is an 81 character string var puzzle = "" +

   "394  267 " +
   "   3  4  " +
   "5  69  2 " +
   " 45   9  " +
   "6       7" +
   "  7   58 " +
   " 1  67  8" +
   "  9  8   " +
   " 264  735"

func main() {

   printGrid("puzzle:", puzzle)
   if s := solve(puzzle); s == "" {
       fmt.Println("no solution")
   } else {
       printGrid("solved:", s)
   }

}

// print grid (with title) from 81 character string func printGrid(title, s string) {

   fmt.Println(title)
   for r, i := 0, 0; r < 9; r, i = r+1, i+9 {
       fmt.Printf("%c %c %c | %c %c %c | %c %c %c\n", s[i], s[i+1], s[i+2],
           s[i+3], s[i+4], s[i+5], s[i+6], s[i+7], s[i+8])
       if r == 2 || r == 5 {
           fmt.Println("------+-------+------")
       }
   }

}

// solve puzzle in 81 character string format. // if solved, result is 81 character string. // if not solved, result is the empty string. func solve(u string) string {

   // construct an dlx object with 324 constraint columns.
   // other than the number 324, this is not specific to sudoku.
   d := newDlxObject(324)
   // now add constraints that define sudoku rules.
   for r, i := 0, 0; r < 9; r++ {
       for c := 0; c < 9; c, i = c+1, i+1 {
           b := r/3*3 + c/3
           n := int(u[i] - '1')
           if n >= 0 && n < 9 {
               d.addRow([]int{i, 81 + r*9 + n, 162 + c*9 + n,
                   243 + b*9 + n})
           } else {
               for n = 0; n < 9; n++ {
                   d.addRow([]int{i, 81 + r*9 + n, 162 + c*9 + n,
                       243 + b*9 + n})
               }
           }
       }
   }
   // run dlx.  not sudoku specific.
   d.search()
   // extract the sudoku-specific 81 character result from the dlx solution.
   return d.text()

}

// Knuth's data object type x struct {

   c          *y
   u, d, l, r *x
   // except x0 is not Knuth's.  it's pointer to first constraint in row,
   // so that the sudoku string can be constructed from the dlx solution.
   x0 *x

}

// Knuth's column object type y struct {

   x
   s int // size
   n int // name

}

// an object to hold the matrix and solution type dlx struct {

   ch []y  // all column headers
   h  *y   // ch[0], the root node
   o  []*x // solution

}

// constructor creates the column headers but no rows. func newDlxObject(nCols int) *dlx {

   ch := make([]y, nCols+1)
   h := &ch[0]
   d := &dlx{ch, h, nil}
   h.c = h
   h.l = &ch[nCols].x
   ch[nCols].r = &h.x
   nh := ch[1:]
   for i := range ch[1:] {
       hi := &nh[i]
       ix := &hi.x
       hi.n = i
       hi.c = hi
       hi.u = ix
       hi.d = ix
       hi.l = &h.x
       h.r = ix
       h = hi
   }
   return d

}

// rows define constraints func (d *dlx) addRow(nr []int) {

   if len(nr) == 0 {
       return
   }
   r := make([]x, len(nr))
   x0 := &r[0]
   for x, j := range nr {
       ch := &d.ch[j+1]
       ch.s++
       np := &r[x]
       np.c = ch
       np.u = ch.u
       np.d = &ch.x
       np.l = &r[(x+len(r)-1)%len(r)]
       np.r = &r[(x+1)%len(r)]
       np.u.d, np.d.u, np.l.r, np.r.l = np, np, np, np
       np.x0 = x0
   }

}

// extracts 81 character sudoku string func (d *dlx) text() string {

   b := make([]byte, len(d.o))
   for _, r := range d.o {
       x0 := r.x0
       b[x0.c.n] = byte(x0.r.c.n%9) + '1'
   }
   return string(b)

}

// the dlx algorithm func (d *dlx) search() bool {

   h := d.h
   j := h.r.c
   if j == h {
       return true
   }
   c := j 
   for minS := j.s; ; {
       j = j.r.c
       if j == h {
           break
       }
       if j.s < minS {
           c, minS = j, j.s
       }
   }
   cover(c)
   k := len(d.o)
   d.o = append(d.o, nil)
   for r := c.d; r != &c.x; r = r.d {
       d.o[k] = r
       for j := r.r; j != r; j = j.r {
           cover(j.c)
       }
       if d.search() {
           return true
       }
       r = d.o[k]
       c = r.c
       for j := r.l; j != r; j = j.l {
           uncover(j.c)
       }
   }
   d.o = d.o[:len(d.o)-1]
   uncover(c)
   return false

}

func cover(c *y) {

   c.r.l, c.l.r = c.l, c.r
   for i := c.d; i != &c.x; i = i.d {
       for j := i.r; j != i; j = j.r {
           j.d.u, j.u.d = j.u, j.d
           j.c.s--
       }
   }

}

func uncover(c *y) {

   for i := c.u; i != &c.x; i = i.u {
       for j := i.l; j != i; j = j.l {
           j.c.s++
           j.d.u, j.u.d = j, j
       }
   }
   c.r.l, c.l.r = &c.x, &c.x

}</lang>

Output:
puzzle:
3 9 4 |     2 | 6 7  
      | 3     | 4    
5     | 6 9   |   2  
------+-------+------
  4 5 |       | 9    
6     |       |     7
    7 |       | 5 8  
------+-------+------
  1   |   6 7 |     8
    9 |     8 |      
  2 6 | 4     | 7 3 5
solved:
3 9 4 | 8 5 2 | 6 7 1
2 6 8 | 3 7 1 | 4 5 9
5 7 1 | 6 9 4 | 8 2 3
------+-------+------
1 4 5 | 7 8 3 | 9 6 2
6 8 2 | 9 4 5 | 3 1 7
9 3 7 | 1 2 6 | 5 8 4
------+-------+------
4 1 3 | 5 6 7 | 2 9 8
7 5 9 | 2 3 8 | 1 4 6
8 2 6 | 4 1 9 | 7 3 5

Groovy

Adaptive "Non-guessing Then Guessing" Solution

Non-guessing part is iterative. Guessing part is recursive. Implementation uses exception handling to back out of bad guesses. <lang groovy>final CELL_VALUES = ('1'..'9')

class GridException extends Exception {

   GridException(String message) { super(message) }

}

def string2grid = { string ->

   assert string.size() == 81
   (0..8).collect { i -> (0..8).collect { j -> string[9*i+j] } }

}

def gridRow = { grid, slot -> grid[slot.i] as Set }

def gridCol = { grid, slot -> grid.collect { it[slot.j] } as Set }

def gridBox = { grid, slot ->

   def t, l; (t, l) = [slot.i.intdiv(3)*3, slot.j.intdiv(3)*3]
   (0..2).collect { row -> (0..2).collect { col -> grid[t+row][l+col] } }.flatten() as Set

}

def slotList = { grid ->

   def slots = (0..8).collect { i -> (0..8).findAll { j -> grid[i][j] == '.' } \
           .collect {j -> [i: i, j: j] } }.flatten()

}

def assignCandidates = { grid, slots = slotList(grid) ->

   slots.each { slot ->
       def unavailable = [gridRow, gridCol, gridBox].collect { it(grid, slot) }.sum() as Set
       slot.candidates = CELL_VALUES - unavailable
   }
   slots.sort { - it.candidates.size() }
   if (slots && ! slots[-1].candidates) {
       throw new GridException('Invalid Sudoku Grid, overdetermined slot: ' + slots[-1])
   }
   slots

}

def isSolved = { grid -> ! (grid.flatten().find { it == '.' }) }

def solve solve = { grid ->

   def slots = assignCandidates(grid)
   if (! slots) { return grid }
   while (slots[-1].candidates.size() == 1) {
       def slot = slots.pop()
       grid[slot.i][slot.j] = slot.candidates[0]
       if (! slots) { return grid }
       slots = assignCandidates(grid, slots)
   }
   if (! slots) { return grid } 
   def slot = slots.pop()
   slot.candidates.each {
       if (! isSolved(grid)) {
           try {
               def sGrid = grid.collect { row -> row.collect { cell -> cell } }
               sGrid[slot.i][slot.j] = it
               grid = solve(sGrid)
           } catch (GridException ge) {
               grid[slot.i][slot.j] = '.'
           }
       }
   }
   if (!isSolved(grid)) {
       slots = assignCandidates(grid)
       throw new GridException('Invalid Sudoku Grid, underdetermined slots: ' + slots)
   }
   grid

}</lang> Test/Benchmark Cases

Mentions of "exceptionally difficult" example in Wikipedia refer to this page: Exceptionally difficult Sudokus <lang groovy>def sudokus = [

 //Used in Curry solution:                             ~ 0.1 seconds
   '819..5.....2...75..371.4.6.4..59.1..7..3.8..2..3.62..7.5.7.921..64...9.....2..438',

 //Used in Perl and PicoLisp solutions:                ~ 0.1 seconds
   '53..247....2...8..1..7.39.2..8.72.49.2.98..7.79.....8.....3.5.696..1.3...5.69..1.',

 //Used in Fortran solution:                           ~ 0.1 seconds
   '..3.2.6..9..3.5..1..18.64....81.29..7.......8..67.82....26.95..8..2.3..9..5.1.3..',

 //Used in many other solutions, notably Ada:          ~ 0.1 seconds
   '394..267....3..4..5..69..2..45...9..6.......7..7...58..1..67..8..9..8....264..735',

 //Used in C# solution:                                ~ 0.2 seconds
   '97.3...6..6.75.........8.5.......67.....3.....539..2..7...25.....2.1...8.4...73..',

 //Used in Oz solution:                                ~ 0.2 seconds
   '4......6.5...8.9..3....1....2.7....1.9.....4.8....3.5....2....7..6.5...8.1......6',

 //Used in many other solutions, notably C++:          ~ 0.3 seconds
   '85...24..72......9..4.........1.7..23.5...9...4...........8..7..17..........36.4.',

 //Used in VBA solution:                               ~ 0.3 seconds
   '..1..5.7.92.6.......8...6...9..2.4.1.........3.4.8..9...7...3.......7.69.1.8..7..',

 //Used in Forth solution:                             ~ 0.8 seconds
   '.9...4..7.....79..8........4.58.....3.......2.....97.6........4..35.....2..6...8.',

 //3rd "exceptionally difficult" example in Wikipedia: ~ 2.3 seconds
   '12.3....435....1....4........54..2..6...7.........8.9...31..5.......9.7.....6...8',

 //Used in Curry solution:                             ~ 2.4 seconds
   '9..2..5...4..6..3...3.....6...9..2......5..8...7..4..37.....1...5..2..4...1..6..9',

 //"AL Escargot", so-called "hardest sudoku" (HA!):    ~ 3.0 seconds
   '1....7.9..3..2...8..96..5....53..9...1..8...26....4...3......1..4......7..7...3..',

 //1st "exceptionally difficult" example in Wikipedia: ~ 6.5 seconds
   '12.4..3..3...1..5...6...1..7...9.....4.6.3.....3..2...5...8.7....7.....5.......98',

 //Used in Bracmat and Scala solutions:                ~ 6.7 seconds
   '..............3.85..1.2.......5.7.....4...1...9.......5......73..2.1........4...9',

 //2nd "exceptionally difficult" example in Wikipedia: ~ 8.8 seconds
   '.......39.....1..5..3.5.8....8.9...6.7...2...1..4.......9.8..5..2....6..4..7.....',

 //Used in MATLAB solution:                            ~15   seconds
   '....839..1......3...4....7..42.3....6.......4....7..1..2........8...92.....25...6',

 //4th "exceptionally difficult" example in Wikipedia: ~29   seconds
   '..3......4...8..36..8...1...4..6..73...9..........2..5..4.7..686........7..6..5..']

sudokus.each { sudoku ->

   def grid = string2grid(sudoku)
   println '\nPUZZLE'
   grid.each { println it }

   println '\nSOLUTION'
   def start = System.currentTimeMillis()
   def solution = solve(grid)
   def elapsed = (System.currentTimeMillis() - start)/1000
   solution.each { println it }
   println "\nELAPSED: ${elapsed} seconds"

}</lang>

Output:

(last only)

PUZZLE
[., ., 3, ., ., ., ., ., .]
[4, ., ., ., 8, ., ., 3, 6]
[., ., 8, ., ., ., 1, ., .]
[., 4, ., ., 6, ., ., 7, 3]
[., ., ., 9, ., ., ., ., .]
[., ., ., ., ., 2, ., ., 5]
[., ., 4, ., 7, ., ., 6, 8]
[6, ., ., ., ., ., ., ., .]
[7, ., ., 6, ., ., 5, ., .]

SOLUTION
[1, 2, 3, 4, 5, 6, 7, 8, 9]
[4, 5, 7, 1, 8, 9, 2, 3, 6]
[9, 6, 8, 3, 2, 7, 1, 5, 4]
[2, 4, 9, 5, 6, 1, 8, 7, 3]
[5, 7, 6, 9, 3, 8, 4, 1, 2]
[8, 3, 1, 7, 4, 2, 6, 9, 5]
[3, 1, 4, 2, 7, 5, 9, 6, 8]
[6, 9, 5, 8, 1, 4, 3, 2, 7]
[7, 8, 2, 6, 9, 3, 5, 4, 1]

ELAPSED: 28.978 seconds

Haskell

Visit the Haskell wiki Sudoku

J

See Solving Sudoku in J.

Java

<lang java>public class Sudoku {

   private int mBoard[][];
   private int mBoardSize;
   private int mBoxSize;
   private boolean mRowSubset[][];
   private boolean mColSubset[][];
   private boolean mBoxSubset[][];
   public Sudoku(int board[][]) {
       mBoard = board;
       mBoardSize = mBoard.length;
       mBoxSize = (int)Math.sqrt(mBoardSize);
   }
   public void initSubsets() {
       mRowSubset = new boolean[mBoardSize][mBoardSize];
       mColSubset = new boolean[mBoardSize][mBoardSize];
       mBoxSubset = new boolean[mBoardSize][mBoardSize];
       for(int i = 0; i < mBoard.length; i++) {
           for(int j = 0; j < mBoard.length; j++) {
               int value = mBoard[i][j];
               if(value != 0) {
                   setSubsetValue(i, j, value, true);
               }
           }
       }
   }
   private void setSubsetValue(int i, int j, int value, boolean present) {
       mRowSubset[i][value - 1] = present;
       mColSubset[j][value - 1] = present;
       mBoxSubset[computeBoxNo(i, j)][value - 1] = present;
   }
   public boolean solve() {
       return solve(0, 0);
   }
   public boolean solve(int i, int j) {
       if(i == mBoardSize) {
           i = 0;
           if(++j == mBoardSize) {
               return true;
           }
       }
       if(mBoard[i][j] != 0) {
           return solve(i + 1, j);
       }
       for(int value = 1; value <= mBoardSize; value++) {
           if(isValid(i, j, value)) {
               mBoard[i][j] = value;
               setSubsetValue(i, j, value, true);
               if(solve(i + 1, j)) {
                   return true;
               }
               setSubsetValue(i, j, value, false);
           }
       }
       mBoard[i][j] = 0;
       return false;
   }
   private boolean isValid(int i, int j, int val) {
       val--;
       boolean isPresent = mRowSubset[i][val] || mColSubset[j][val] || mBoxSubset[computeBoxNo(i, j)][val];
       return !isPresent;
   }
   private int computeBoxNo(int i, int j) {
       int boxRow = i / mBoxSize;
       int boxCol = j / mBoxSize;
       return boxRow * mBoxSize + boxCol;
   }
   public void print() {
       for(int i = 0; i < mBoardSize; i++) {
           if(i % mBoxSize == 0) {
               System.out.println(" -----------------------");
           }
           for(int j = 0; j < mBoardSize; j++) {
               if(j % mBoxSize == 0) {
                   System.out.print("| ");
               }
               System.out.print(mBoard[i][j] != 0 ? ((Object) (Integer.valueOf(mBoard[i][j]))) : " ");
               System.out.print(' ');
           }
           System.out.println("|");
       }
       System.out.println(" -----------------------");
   }

}</lang>

Lua

<lang lua>--9x9 sudoku solver in lua --based on a branch and bound solution --fields are not tried in plain order --but in a way to detect dead ends earlier concat=table.concat insert=table.insert constraints = { } --contains a table with 3 constraints for every field -- a contraint "cons" is a table containing all fields which must not have the same value -- a field "f" is an integer from 1 to 81 columns = { } --contains all column-constraints variable "c" rows = { } --contains all row-constraints variable "r" blocks = { } --contains all block-constraints variable "b"

--initialize all constraints for f = 1, 81 do

 constraints[f] = { }

end all_constraints = { } --union of colums, rows and blocks for i = 1, 9 do

 columns[i] = {
   unknown = 9, --number of fields not yet solved
   unknowns = { } --fields not yet solved
 }
 insert(all_constraints, columns[i])
 rows[i] = {
   unknown = 9, -- see l.15
   unknowns = { } -- see l.16
 }
 insert(all_constraints, rows[i])
 blocks[i] = {
   unknown = 9, --see l.15
   unknowns = { } --see l.16
 }
 insert(all_constraints, blocks[i])

end constraints_by_unknown = { } --contraints sorted by their number of unknown fields for i = 0, 9 do

 constraints_by_unknown[i] = {
   count = 0 --how many contraints are in here
 }

end for r = 1, 9 do

 for c = 1, 9 do
   local f = (r - 1) * 9 + c
   insert(rows[r], f)
   insert(constraints[f], rows[r])
   insert(columns[c], f)
   insert(constraints[f], columns[c])
 end

end for i = 1, 3 do

 for j = 1, 3 do
   local r = (i - 1) * 3 + j
   for k = 1, 3 do
     for l = 1, 3 do
       local c = (k - 1) * 3 + l
       local f = (r - 1) * 9 + c
       local b = (i - 1) * 3 + k
       insert(blocks[b], f)
       insert(constraints[f], blocks[b])
     end
   end
 end

end working = { } --save the read values in here function read() --read the values from stdin

 local f = 1
 local l = io.read("*a")
 for d in l:gmatch("(%d)") do
   local n = tonumber(d)
   if n > 0 then
     working[f] = n
     for _,cons in pairs(constraints[f]) do
       cons.unknown = cons.unknown - 1
     end
   else
     for _,cons in pairs(constraints[f]) do
       cons.unknowns[f] = f
     end
   end
   f = f + 1
 end
 assert((f == 82), "Wrong number of digits")

end read() function printer(t) --helper function for printing a 1-81 table

 local pattern = {1,2,3,false,4,5,6,false,7,8,9} --place seperators for better readability
 for _,r in pairs(pattern) do
   if r then
     local function p(c)
       return c and t[(r - 1) * 9 + c] or "|" 
     end
     local line={}
     for k,v in pairs(pattern) do
       line[k]=p(v)
     end
     print(concat(line))
   else
     print("---+---+---")
   end
 end

end order = { } --when to try a field for _,cons in pairs(all_constraints) do --put all constraints in the corresponding constraints_by_unknown set

 local level = constraints_by_unknown[cons.unknown]
 level[cons] = cons
 level.count = level.count + 1

end function first(t) --helper function to get a value from a set

 for k, v in pairs(t) do
   if k == v then
     return k
   end
 end

end function establish_order() -- determine the sequence in which the fields are to be tried

 local solved = constraints_by_unknown[0].count
 while solved < 27 do --there 27 constraints
 --contraints with no unknown fields are considered "solved"
 --keep in mind the actual solving happens in function branch
   local i = 1
   while constraints_by_unknown[i].count == 0 do
     i = i + 1
     -- find a unsolved contraint with the least number of unsolved fields
   end
   local cons = first(constraints_by_unknown[i])
   local f = first(cons.unknowns)
   -- take one of its unknown fields and append it to "order"
   insert(order, f)
   for _,c in pairs(constraints[f]) do
   --each constraint "c" of "f" is moved up one "level"
   --delete "f" from the constraints unknown fields
   --decrease unknown of "c"
     c.unknowns[f] = nil
     local level = constraints_by_unknown[c.unknown]
     level[c] = nil
     level.count = level.count - 1
     c.unknown = c.unknown - 1
     level = constraints_by_unknown[c.unknown]
     level[c] = c
     level.count = level.count + 1
     constraints_by_unknown[c.unknown][c] = c
   end
   solved = constraints_by_unknown[0].count
 end

end establish_order() max = #order --how many fields are to be solved function bound(f,i)

 for _,c in pairs(constraints[f]) do
   for _,x in pairs(c) do
     if i == working[x] then 
       return false --i is already used in fs column/row/block
     end
   end
 end
 return true

end function branch(n)

 local f = order[n] --recursively iterate over fields in order
 if n > max then
   return working --all fields solved without collision
 else
   for i = 1, 9 do --check all values
     if bound(f, i) then --if there is no collision
       working[f] = i
       local res = branch(n + 1) --try next field
       if res then
         return res --all fields solved without collision
       else
         working[f] = nil --this lead to a dead end
       end
     else
       working[f] = nil --reset field because of a collision
     end
   end
   return false --this is a dead end
 end

end x = branch(1) if x then

 return printer(x)

end</lang> Input:

003 000 000
400 080 036
008 000 100

040 060 073
000 900 000
000 002 005

004 070 068
600 000 000
700 600 500
Output:
123|456|789
457|189|236
968|327|154
---+---+---
249|561|873
576|938|412
831|742|695
---+---+---
314|275|968
695|814|327
782|693|541

Time with luajit: 9.245s

Mathematica

<lang mathematica>solve[sudoku_] :=

NestWhile[
 Join @@ Table[
    Table[ReplacePart[s, #1 -> n], {n, #2}] & @@ 
     First@SortBy[{#, 
          Complement[Range@9, sFirst@#, s;; , Last@#, 
           Catenate@
            Extract[Partition[s, {3, 3}], Quotient[#, 3, -2]]]} & /@ 
        Position[s, 0, {2}], 
       Length@Last@# &], {s, #}] &, {sudoku}, ! FreeQ[#, 0] &]</lang>

Example: <lang>solve[{{9, 7, 0, 3, 0, 0, 0, 6, 0},

 {0, 6, 0, 7, 5, 0, 0, 0, 0},
 {0, 0, 0, 0, 0, 8, 0, 5, 0},
 {0, 0, 0, 0, 0, 0, 6, 7, 0},
 {0, 0, 0, 0, 3, 0, 0, 0, 0},
 {0, 5, 3, 9, 0, 0, 2, 0, 0},
 {7, 0, 0, 0, 2, 5, 0, 0, 0},
 {0, 0, 2, 0, 1, 0, 0, 0, 8},
 {0, 4, 0, 0, 0, 7, 3, 0, 0}}]</lang>
Output:
{{{9, 7, 5, 3, 4, 2, 8, 6, 1}, {8, 6, 1, 7, 5, 9, 4, 3, 2}, {3, 2, 4, 
   1, 6, 8, 9, 5, 7}, {2, 1, 9, 5, 8, 4, 6, 7, 3}, {4, 8, 7, 2, 3, 6, 
   5, 1, 9}, {6, 5, 3, 9, 7, 1, 2, 8, 4}, {7, 3, 8, 4, 2, 5, 1, 9, 
   6}, {5, 9, 2, 6, 1, 3, 7, 4, 8}, {1, 4, 6, 8, 9, 7, 3, 2, 5}}}

MATLAB

This solution impliments a recursive, depth-first search of the possible values unfilled sudoku cells can take. The search tree is pruned using logical deduction rules and takes about a minute to solve some of the more difficult puzzles. This code can be cleaned by making the main code blocks, denoted by "%% [Block Title]," into their own separate functions. This can also be further improved by implementing a Sudoku class and making this solver a member function. There are also several lines of code that can be vectorized to improve efficiency, but at the expense of readability.

For this to work, this code must be placed in a file named "sudokuSolver.m" <lang MATLAB>function solution = sudokuSolver(sudokuGrid)

   %Define what each of the sub-boxes of the sudoku grid are by defining
   %the start and end coordinates of each sub-box. The indecies represent
   %the column and row of a grid coordinate on the actual sudoku grid.
   %The contents of each cell with the same grid coordinates contain the
   %information to determine which sub-box that grid coordinate is
   %contained in on the sudoku grid. The array in position 1, i.e.
   %subBoxes{row,column}(1), represents the row indecies of the subbox.
   %The array in position 2, i.e. subBoxes{row,column}(2),represents the
   %column indecies of the subbox.
   
   subBoxes(1:9,1:9) = Template:(1:3),(1:3);
   subBoxes(4:6,:)= Template:(4:6),(1:3);
   subBoxes(7:9,:)= Template:(7:9),(1:3);
   
   for column = (4:6)
       for row = (1:9) 
           subBoxes{row,column}(2)= {4:6};
       end
   end
   for column = (7:9)
       for row = (1:9) 
           subBoxes{row,column}(2)= {7:9};
       end
   end
   %Generate a cell of arrays which contain the possible values of the
   %sudoku grid for each cell in the grid. The possible values a specific
   %grid coordinate can take share the same indices as the sudoku grid
   %coordinate they represent.
   %For example sudokuGrid(m,n) can be possibly filled in by the
   %values stored in the array at possibleValues(m,n).
   possibleValues(1:9,1:9) = { (1:9) };
   
   %Filter the possibleValues so that no entry exists for coordinates that
   %have already been filled in. This will replace any array with an empty
   %array in the possibleValues cell matrix at the coordinates of a grid
   %already filled in the sudoku grid.
   possibleValues( ~isnan(sudokuGrid) )={[]};
   
   %Iterate through each grid coordinate and filter out the possible
   %values for that grid point that aren't alowed by the rules given the
   %current values that are filled in. Or, if there is only one possible
   %value for the current coordinate, fill it in.
   
   solution = sudokuGrid; %so the original sudoku input isn't modified
   memory = 0; %contains the previous iterations possibleValues
   dontStop = true; %stops the while loop when nothing else can be reasoned about the sudoku
   
   while( dontStop )

%% Process of elimination deduction method

       while( ~isequal(possibleValues,memory) ) %Stops using the process of elimination deduction method when this deduction rule stops working
           memory = possibleValues; %Copies the current possibleValues into memory, for the above conditional on the next iteration.
           %Iterate through everything
           for row = (1:9) 
               for column = (1:9)
                   if isnan( solution(row,column) ) %If grid coordinate hasn't been filled in, try to determine it's value.
                       %Look at column to see what values have already
                       %been filled in and thus the current grid
                       %coordinate can't be
                       removableValues = solution( ~isnan(solution(:,column)),column );
                       %If there are any values that have been assigned to
                       %other cells in the same column, filter those out
                       %of the current cell's possiblValues
                       if ~isempty(removableValues)
                           for m = ( 1:numel(removableValues) )
                               possibleValues{row,column}( possibleValues{row,column}==removableValues(m) )=[];
                           end
                       end
                       %If the current grid coordinate can only atain one
                       %possible value, assign it that value
                       if numel( possibleValues{row,column} ) == 1
                           solution(row,column) = possibleValues{row,column};
                           possibleValues(row,column)={[]};
                       end
                   end  %end if
                   if isnan( solution(row,column) ) %If grid coordinate hasn't been filled in, try to determine it's value. 
                       %Look at row to see what values have already
                       %been filled in and thus the current grid
                       %coordinate can't be
                       removableValues = solution( row,~isnan(solution(row,:)) );
                       %If there are any values that have been assigned to
                       %other cells in the same row, filter those out
                       %of the current cell's possiblValues
                       if ~isempty(removableValues)
                           for m = ( 1:numel(removableValues) )
                               possibleValues{row,column}( possibleValues{row,column}==removableValues(m) )=[];
                           end
                       end
                       
                       %If the current grid coordinate can only atain one
                       %possible value, assign it that value
                       if numel( possibleValues{row,column} ) == 1
                           solution(row,column) = possibleValues{row,column};
                           possibleValues(row,column)={[]};
                       end
                   end %end if
                   if isnan( solution(row,column) ) %If grid coordinate hasn't been filled in, try to determine it's value. 
                       
                       %Look at sub-box to see if any possible values can be
                       %filtered out. First pull the boundaries of the sub-box
                       %containing the current array coordinate           
                       currentBoxBoundaries=subBoxes{row,column};
                       %Then pull the sub-boxes values out of the solution
                       box = solution(currentBoxBoundaries{:});
                       %Look at sub-box to see what values have already
                       %been filled in and thus the current grid
                       %coordinate can't be
                       removableValues = box( ~isnan(box) );
                       %If there are any values that have been assigned to
                       %other cells in the same sub-box, filter those out
                       %of the current cell's possiblValues
                       if ~isempty(removableValues)
                           for m = ( 1:numel(removableValues) )
                               possibleValues{row,column}( possibleValues{row,column}==removableValues(m) )=[];
                           end
                       end
                       
                       %If the current grid coordinate can only atain one
                       %possible value, assign it that value
                       if numel( possibleValues{row,column} ) == 1
                           solution(row,column) = possibleValues{row,column};
                           possibleValues(row,column)={[]};
                       end
                   end %end if
                   
               end %end for column
           end %end for row
       end %stop process of elimination
       

%% Check that there are no contradictions in the solved grid coordinates.

       %Check that each row at most contains one of each of the integers
       %from 1 to 9
       if ~isempty( find( histc( solution,(1:9),1 )>1 ) )
           solution = false;
           return
       end
       
       %Check that each column at most contains one of each of the integers
       %from 1 to 9
       if ~isempty( find( histc( solution,(1:9),2 )>1 ) )
           solution = false;
           return
       end
       
       %Check that each sub-box at most contains one of each of the integers
       %from 1 to 9
       subBoxBins = zeros(9,9);
       counter = 0;
       for row = [2 5 8]
           for column = [2 5 8]
               counter = counter +1;
               
               %because the sub-boxes are extracted as square matricies,
               %we need to reshape them into row vectors so all of the 
               %boxes can be input into histc simultaneously
               subBoxBins(counter,:) = reshape( solution(subBoxes{row,column}{:}),1,9 ); 
           end
       end
       if ~isempty( find( histc( subBoxBins,(1:9),2 )>1 ) )
           solution = false;
           return
       end
               
       %Check to make sure there are no grid coordinates that are not
       %filled in and have no possible values.
       
       [rowStack,columnStack] = find(isnan(solution)); %extracts the indicies of the unsolved grid coordinates
       if (numel(rowStack) > 0)
           
           for counter = (1:numel(rowStack))
               if isempty(possibleValues{rowStack(counter),columnStack(counter)})
                   solution = false;
                   return
               end  
           end
       
       %if there are no more grid coordinates to be filed in then the
       %sudoku is solved and we can return the solution without further 
       %computation
       elseif (numel(rowStack) == 0)
           return
       end   
       

%% Use the unique relative compliment of sets deduction method

       %Because no more information can be determined by the process of
       %ellimination we have to try a new method of reasoning. Now we will
       %look at the possible values a cell can take. If there is a value that
       %that grid coordinate can take but no other coordinates in the same row,
       %column or sub-box can take that value then we assign that coordinate
       %that value.
       keepGoing = true; %signals to keep applying rules to the current grid-coordinate because it hasn't been solved using previous rules
       dontStop = false; %if this method doesn't figure anything out, this will terminate the top level while loop
       
       [rowStack,columnStack] = find(isnan(solution)); %This will also take care of the case where the sudoku is solved
       counter = 0; %makes sure the loop terminates when there are no more cells to consider
       
       while( keepGoing && (counter < numel(rowStack)) ) %stop this method of reasoning when the value of one of the cells has been determined and return to the process of elimination method
       
           counter = counter + 1;
           
           row = rowStack(counter);
           column = columnStack(counter);
           
           gridPossibles = [possibleValues{row,column}];
           
           coords = (1:9);
           coords(column) = [];
           rowPossibles = [possibleValues{row,coords}]; %extract possible values for everything in the same row except the current grid coordinate
           
           totalMatches = zeros( numel(gridPossibles),1 ); %preallocate for speed
           
           %count how many times a possible value for the current cell
           %appears as a possible value for the cells in the same row
           for n = ( 1:numel(gridPossibles) )
               totalMatches(n) = sum( (rowPossibles == gridPossibles(n)) ); 
           end
           
           %remove any possible values for the current cell that have
           %matches in other cells
           gridPossibles = gridPossibles(totalMatches==0);
           
           %if there is only one possible value that the current cell can
           %take that aren't shared by other cells, assign that value to
           %the current cell.
           if numel(gridPossibles) == 1
               
               solution(row,column) = gridPossibles;
               possibleValues(row,column)={[]};
               keepGoing = false; %stop this method of deduction and return to the process of elimination
               dontStop = true; %keep the top level loop going
               
           end
           
           if(keepGoing) %do the same as above but for the current cell's column
               gridPossibles = [possibleValues{row,column}];
               
               coords = (1:9);
               coords(row) = [];
               columnPossibles = [possibleValues{coords,column}];
               totalMatches = zeros( numel(gridPossibles),1 );
               for n = ( 1:numel(gridPossibles) )
                   totalMatches(n) = sum( (columnPossibles == gridPossibles(n)) );
               end
               gridPossibles = gridPossibles(totalMatches==0);
               if numel(gridPossibles) == 1
                   solution(row,column) = gridPossibles;
                   possibleValues(row,column)={[]};
                   keepGoing = false;
                   dontStop = true;
               end
           end
           
           if(keepGoing) %do the same as above but for the current cell's sub-box
               gridPossibles = [possibleValues{row,column}];
               
               currentBoxBoundaries = subBoxes{row,column};
               subBoxPossibles = [];
               for m = currentBoxBoundaries{1}
                   for n = currentBoxBoundaries{2}
                       if ~((m == row) && (n == column))
                           subBoxPossibles = [subBoxPossibles possibleValues{m,n}];
                       end
                   end
               end
               totalMatches = zeros( numel(gridPossibles),1 );
               for n = ( 1:numel(gridPossibles) )
                   totalMatches(n) = sum( (subBoxPossibles == gridPossibles(n)) );
               end
               gridPossibles = gridPossibles(totalMatches==0);
               if numel(gridPossibles) == 1
                   solution(row,column) = gridPossibles;
                   possibleValues(row,column)={[]};
                   keepGoing = false;
                   dontStop = true;
               end
           end %end 
           
       end %end  set comliment rule while loop 
   end %end top-level while loop

%% Depth-first search of the solution tree

   %There is no more reasoning that can solve the puzzle so now it is time
   %for a depth-first search of the possible answers, basically
   %guess-and-check. This is implimented recursively.
   
   [rowStack,columnStack] = find(isnan(solution)); %Get all of the unsolved cells
   
   if (numel(rowStack) > 0) %If all of the above stuff terminates then there will be at least one grid coordinate not filled in
               
       %Treat the rowStack and columnStack like stacks, and pop the top
       %value off the stack to act as the current node whose
       %possibleValues to search through, then assign the possible values
       %of that grid coordinate to a variable that holds that values to
       %search through
       searchTreeNodes = possibleValues{rowStack(1),columnStack(1)}; 
       
       keepSearching = true; %used to continue the search
       counter = 0; %counts the amount of possible values searched for the current node
       tempSolution = solution; %used so that the solution is not overriden until a solution hase been found
       
       while( keepSearching && (counter < numel(searchTreeNodes)) ) %stop recursing if we run out of possible values for the current node
       
           counter = counter + 1;
           tempSolution(rowStack(1),columnStack(1)) = searchTreeNodes(counter); %assign a possible value to the current node in the tree
           tempSolution = sudokuSolver(tempSolution); %recursively call the solver with the current guess value for the current grid coordinate           
           
           if ~islogical(tempSolution) %if tempSolution is not a boolean but a valid sudoku stop recursing and set solution to tempSolution
              keepSearching = false;
              solution = tempSolution;
           elseif counter == numel(searchTreeNodes) %if we have run out of guesses for the current node, stop recursing and return a value of "false" for the solution
              solution = false;
           else %reset tempSolution to the current state of the board and try the next guess for the possible value of the current cell
              tempSolution = solution;
           end
           
       end %end recursion
   end  %end if 
   

%% End of program end %end sudokuSolver</lang> Test Input: All empty cells must have a value of NaN. <lang MATLAB>sudoku = [NaN NaN NaN NaN 8 3 9 NaN NaN

    1   NaN   NaN   NaN   NaN   NaN   NaN     3   NaN
  NaN   NaN     4   NaN   NaN   NaN   NaN     7   NaN
  NaN     4     2   NaN     3   NaN   NaN   NaN   NaN
    6   NaN   NaN   NaN   NaN   NaN   NaN   NaN     4
  NaN   NaN   NaN   NaN     7   NaN   NaN     1   NaN
  NaN     2   NaN   NaN   NaN   NaN   NaN   NaN   NaN
  NaN     8   NaN   NaN   NaN     9     2   NaN   NaN
  NaN   NaN   NaN     2     5   NaN   NaN   NaN     6]</lang>

Output: <lang MATLAB>solution =

    7     6     5     4     8     3     9     2     1
    1     9     8     7     2     6     4     3     5
    2     3     4     9     1     5     6     7     8
    8     4     2     5     3     1     7     6     9
    6     1     7     8     9     2     3     5     4
    3     5     9     6     7     4     8     1     2
    9     2     6     1     4     7     5     8     3
    5     8     1     3     6     9     2     4     7
    4     7     3     2     5     8     1     9     6</lang>

OCaml

uses the library ocamlgraph <lang ocaml>(* Ocamlgraph demo program: solving the Sudoku puzzle using graph coloring

  Copyright 2004-2007 Sylvain Conchon, Jean-Christophe Filliatre, Julien Signoles
  This software is free software; you can redistribute it and/or modify 
  it under the terms of the GNU Library General Public License version 2,
  with the special exception on linking described in file LICENSE.
  This software is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *)

open Format open Graph

(* We use undirected graphs with nodes containing a pair of integers

  (the cell coordinates in 0..8 x 0..8).
  The integer marks of the nodes will store the colors. *)

module G = Imperative.Graph.Abstract(struct type t = int * int end)

(* The Sudoku grid = a graph with 9x9 nodes *) let g = G.create ()

(* We create the 9x9 nodes, add them to the graph and keep them in a matrix

  for later access *)

let nodes =

 let new_node i j = let v = G.V.create (i, j) in G.add_vertex g v; v in
 Array.init 9 (fun i -> Array.init 9 (new_node i))

let node i j = nodes.(i).(j) (* shortcut for easier access *)

(* We add the edges:

  two nodes are connected whenever they can't have the same value,
  i.e. they belong to the same line, the same column or the same 3x3 group *)

let () =

 for i = 0 to 8 do for j = 0 to 8 do
   for k = 0 to 8 do
     if k <> i then G.add_edge g (node i j) (node k j);
     if k <> j then G.add_edge g (node i j) (node i k);
   done;
   let gi = 3 * (i / 3) and gj = 3 * (j / 3) in
   for di = 0 to 2 do for dj = 0 to 2 do
     let i' = gi + di and j' = gj + dj in
     if i' <> i || j' <> j then G.add_edge g (node i j) (node i' j')
   done done
 done done

(* Displaying the current state of the graph *) let display () =

 for i = 0 to 8 do
   for j = 0 to 8 do printf "%d" (G.Mark.get (node i j)) done;
   printf "\n";
 done;
 printf "@?"

(* We read the initial constraints from standard input and we display g *) let () =

 for i = 0 to 8 do
   let s = read_line () in
   for j = 0 to 8 do match s.[j] with
     | '1'..'9' as ch -> G.Mark.set (node i j) (Char.code ch - Char.code '0')
     | _ -> ()
   done
 done;
 display ();
 printf "---------@."

(* We solve the Sudoku by 9-coloring the graph g and we display the solution *) module C = Coloring.Mark(G)

let () = C.coloring g 9; display ()</lang>

Oz

Using built-in constraint propagation and search. <lang oz>declare

 %% a puzzle is a function that returns an initial board configuration
 fun {Puzzle1}
    %% a board is a list of 9 rows
    [[4 _ _  _ _ _  _ 6 _]
     [5 _ _  _ 8 _  9 _ _]
     [3 _ _  _ _ 1  _ _ _]
   
     [_ 2 _  7 _ _  _ _ 1]
     [_ 9 _  _ _ _  _ 4 _]
     [8 _ _  _ _ 3  _ 5 _]
   
     [_ _ _  2 _ _  _ _ 7]
     [_ _ 6  _ 5 _  _ _ 8] 
     [_ 1 _  _ _ _  _ _ 6]]
 end
 %% Returns a list of solutions for the given puzzle.
 fun {Solve Puzzle}
    {SearchAll {GetScript Puzzle}}
 end
 %% Creates a solver script for a puzzle.
 fun {GetScript Puzzle}
    proc {$ Board}
       %% Every row is a list of nine finite domain vars
       %% with the domain 1..9.
       Board = {MapRange fun {$ _} {FD.list 9 1#9} end}
       %% Post initial configuration.
       Board = {Puzzle}
       
       %% The core constraints:
       {ForAll {Rows Board} FD.distinct}
       {ForAll {Columns Board} FD.distinct}
       {ForAll {Boxes Board} FD.distinct}
       %% Search if necessary.
       {FD.distribute ff {Flatten Board}}
    end
 end

 %% Returns the board as a list of rows.
 fun {Rows Board}
    Board %% This is already the representation we have chosen.
 end

 %% Returns the board as a list of columns.
 fun {Columns Board}
    {MapRange fun {$ I} {Column Board I} end}
 end

 %% Returns the board as a list of boxes (sub-grids).
 fun {Boxes Board}
    {MapRange fun {$ I} {Box Board I} end}
 end

 %% Helper function: map the range 1..9 to something.
 fun {MapRange F}
    {Map [1 2 3 4 5 6 7 8 9] F}
 end

 %% Returns a column of the board as a list of fields.
 fun {Column Board Index}
    {Map Board
     fun {$ Row}
        {Nth Row Index}
     end
    }
 end

 %% Returns a box of the board as a list of fields.
 fun {Box Board Index}
    Index0 = Index-1
    Fields = {Flatten Board}
    Start = (Index0 div 3) * 27 + (Index0 mod 3)*3   
 in
    {Flatten
     for I in 0..2 collect:C do
        {C {List.take {List.drop Fields Start+I*9} 3}}
     end
    }
 end

in

 {Inspect {Solve Puzzle1}.1}</lang>

Perl

<lang Perl>#!/usr/bin/perl use integer; use strict;

my @A = qw(

   5 3 0  0 2 4  7 0 0 
   0 0 2  0 0 0  8 0 0 
   1 0 0  7 0 3  9 0 2 
   0 0 8  0 7 2  0 4 9 
   0 2 0  9 8 0  0 7 0 
   7 9 0  0 0 0  0 8 0 
   0 0 0  0 3 0  5 0 6 
   9 6 0  0 1 0  3 0 0 
   0 5 0  6 9 0  0 1 0

);

sub solve {

   my $i;
   foreach $i ( 0 .. 80 ) {

next if $A[$i]; my %t = map { $_ / 9 == $i / 9 || $_ % 9 == $i % 9 || $_ / 27 == $i / 27 && $_ % 9 / 3 == $i % 9 / 3 ? $A[$_] : 0, 1; } 0 .. 80; solve( $A[$i] = $_ ) for grep !$t{$_}, 1 .. 9; return $A[$i] = 0;

   }
   $i = 0;
   foreach (@A) {

print "-----+-----+-----\n" if !($i%27) && $i; print !($i%9) ? : $i%3 ? ' ' : '|', $_; print "\n" unless ++$i%9;

   }

} solve();</lang>

Output:
5 3 9|8 2 4|7 6 1
6 7 2|1 5 9|8 3 4
1 8 4|7 6 3|9 5 2
-----+-----+-----
3 1 8|5 7 2|6 4 9
4 2 5|9 8 6|1 7 3
7 9 6|3 4 1|2 8 5
-----+-----+-----
8 4 1|2 3 7|5 9 6
9 6 7|4 1 5|3 2 8
2 5 3|6 9 8|4 1 7

Perl 6

Translation of: Perl

<lang perl6>use v6; my @A = <

   5 3 0  0 2 4  7 0 0 
   0 0 2  0 0 0  8 0 0 
   1 0 0  7 0 3  9 0 2 

   0 0 8  0 7 2  0 4 9 
   0 2 0  9 8 0  0 7 0 
   7 9 0  0 0 0  0 8 0 

   0 0 0  0 3 0  5 0 6 
   9 6 0  0 1 0  3 0 0 
   0 5 0  6 9 0  0 1 0

>;

my &I = * div 9; # line number my &J = * % 9; # column number my &K = { ($_ div 27) * 3 + $_ % 9 div 3 }; # bloc number

sub solve {

   for ^@A -> $i {

next if @A[$i]; my @taken-values = @A[ grep { I($_) == I($i) || J($_) == J($i) || K($_) == K($i) }, ^@A ]; for grep none(@taken-values), 1..9 { @A[$i] = $_; solve; } return @A[$i] = 0;

   }
   my $i = 1;
   for ^@A {

print "@A[$_] "; print " " if $i %% 3; print "\n" if $i %% 9; print "\n" if $i++ %% 27;

   }

} solve;</lang>

Output:
5 3 9  8 2 4  7 6 1  
6 7 2  1 5 9  8 3 4  
1 8 4  7 6 3  9 5 2  

3 1 8  5 7 2  6 4 9  
4 2 5  9 8 6  1 7 3  
7 9 6  3 4 1  2 8 5  

8 4 1  2 3 7  5 9 6  
9 6 7  4 1 5  3 2 8  
2 5 3  6 9 8  4 1 7

This is an alternative solution that uses a more ellaborate set of choices instead of brute-forcing it.

<lang perl6>#!/usr/bin/env perl6 use v6;

  1. In this code, a sudoku puzzle is represented as a two-dimentional
  2. array. The cells that are not yet solved are represented by yet
  3. another array of all the possible values.
  4. This implementation is not a simple brute force evaluation of all
  5. the options, but rather makes four extra attempts to guide the
  6. solution:
  7. 1) For every change in the grid, usually made by an attempt at a
  8. solution, we will reduce the search space of the possible values
  9. in all the other cells before going forward.
  10. 2) When a cell that is not yet resolved is the only one that can
  11. hold a specific value, resolve it immediately instead of
  12. performing the regular search.
  13. 3) Instead of trying from cell 1,1 and moving in sequence, this
  14. implementation will start trying on the cell that is the closest
  15. to being solved already.
  16. 4) Instead of trying all possible values in sequence, start with
  17. the value that is the most unique. I.e.: If the options for this
  18. cell are 1,4,6 and 6 is only a candidate for two of the
  19. competing cells, we start with that one.
  1. keep a list with all the cells, handy for traversal

my @cells = do for 0..8 X 0..8 -> $x, $y { [ $x, $y ] };

  1. Try to solve this puzzle and return the resolved puzzle if it is at
  2. all solvable in this configuration.

sub solve($sudoku, Int $level) {

   # cleanup the impossible values first,
   if (cleanup-impossible-values($sudoku, $level)) {
       # try to find implicit answers
       while (find-implicit-answers($sudoku, $level)) {
           # and every time you find some, re-do the cleanup and try again
           cleanup-impossible-values($sudoku, $level);
       }
       # Now let's actually try to solve a new value. But instead of
       # going in sequence, we select the cell that is the closest to
       # being solved already. This will reduce the overall number of
       # guesses.
       for sort { solution-complexity-factor($sudoku, $_[0], $_[1]) },
       grep { $sudoku[$_[0]][$_[1]] ~~ Array },
       @cells -> $cell
       {
           my Int ($x, $y) = @($cell);
           # Now let's try the possible values in the order of
           # uniqueness.
           for sort { matches-in-competing-cells($sudoku, $x, $y, $_) }, @($sudoku[$x][$y]) -> $val {
               trace $level, "Trying $val on "~($x+1)~","~($y+1)~" "~$sudoku[$x][$y].perl;
               my $solution = clone-sudoku($sudoku);
               $solution[$x][$y] = $val;
               my $solved = solve($solution, $level+1);
               if $solved {
                   trace $level, "Solved... ($val on "~($x+1)~","~($y+1)~")";
                   return $solved;
               }
           }
           # if we fell through, it means that we found no valid
           # value for this cell
           trace $level, "Backtrack, path unsolvable... (on "~($x+1)~" "~($y+1)~")";
           return 0;
       }
       # all cells are already solved.
       return $sudoku;
   } else {
       # if the cleanup failed, it means this is an invalid grid.
       return False;
   }

}

  1. This function reduces the search space from values that are already
  2. assigned to competing cells.

sub cleanup-impossible-values($sudoku, Int $level = 1) {

   my Bool $resolved;
   repeat {
       $resolved = False;
       for grep { $sudoku[$_[0]][$_[1]] ~~ Array },
       @cells -> $cell {
           my Int ($x, $y) = @($cell);
           # which block is this cell in
           my Int $bx = Int($x / 3);
           my Int $by = Int($y / 3);
           
           # A unfilled cell is not resolved, so it shouldn't match
           my multi match-resolved-cell(Array $other, Int $this) {
               return 0;
           }
           my multi match-resolved-cell(Int $other, Int $this) {
               return $other == $this;
           }
           # Reduce the possible values to the ones that are still
           # valid
           my @r =
               grep { !match-resolved-cell($sudoku[any(0..2)+3*$bx][any(0..2)+3*$by], $_) }, # same block
               grep { !match-resolved-cell($sudoku[any(0..8)][$y], $_) }, # same line
               grep { !match-resolved-cell($sudoku[$x][any(0..8)], $_) }, # same column
               @($sudoku[$x][$y]);
           if (@r.elems == 1) {
               # if only one element is left, then make it resolved
               $sudoku[$x][$y] = @r[0];
               $resolved = True;
           } elsif (@r.elems == 0) {
               # This is an invalid grid
               return 0;
           } else {
               $sudoku[$x][$y] = @r;
           }
       }
   } while $resolved; # repeat if there was any change
   return 1;

}

sub solution-complexity-factor($sudoku, Int $x, Int $y) {

   my Int $bx = Int($x / 3); # this block
   my Int $by = Int($y / 3);
   my multi count-values(Array $val) {
       return $val.elems;
   }
   my multi count-values(Int $val) {
       return 1;
   }
   # the number of possible values should take precedence
   my Int $f = 1000 * count-values($sudoku[$x][$y]);
   for 0..2 X 0..2 -> $lx, $ly {
       $f += count-values($sudoku[$lx+$bx*3][$ly+$by*3])
   }
   for 0..^($by*3), (($by+1)*3)..8 -> $ly {
       $f += count-values($sudoku[$x][$ly])
   }
   for 0..^($bx*3), (($bx+1)*3)..8 -> $lx {
       $f += count-values($sudoku[$lx][$y])
   }
   return $f;

}

sub matches-in-competing-cells($sudoku, Int $x, Int $y, Int $val) {

   my Int $bx = Int($x / 3); # this block
   my Int $by = Int($y / 3);
   # Function to decide which possible value to try first
   my multi cell-matching(Int $cell) {
       return $val == $cell ?? 1 !! 0;
   }
   my multi cell-matching(Array $cell) {
       return $cell.grep({ $val == $_ }) ?? 1 !! 0;
   }
   my Int $c = 0;
   for 0..2 X 0..2 -> $lx, $ly {
       $c += cell-matching($sudoku[$lx+$bx*3][$ly+$by*3])
   }
   for 0..^($by*3), (($by+1)*3)..8 -> $ly {
       $c += cell-matching($sudoku[$x][$ly])
   }
   for 0..^($bx*3), (($bx+1)*3)..8 -> $lx {
       $c += cell-matching($sudoku[$lx][$y])
   }
   return $c;

}

sub find-implicit-answers($sudoku, Int $level) {

   my Bool $resolved = False;
   for grep { $sudoku[$_[0]][$_[1]] ~~ Array },
   @cells -> $cell {
       my Int ($x, $y) = @($cell);
       for @($sudoku[$x][$y]) -> $val {
           # If this is the only cell with this val as a possibility,
           # just make it resolved already
           if (matches-in-competing-cells($sudoku, $x, $y, $val) == 1) {
               $sudoku[$x][$y] = $val;
               $resolved = True;
           }
       }
   }
   return $resolved;

}

my $puzzle =

   map { [ map { $_ == 0 ?? [1..9] !! $_+0  }, @($_) ] },
   [ 0,0,0,0,3,7,6,0,0 ],
   [ 0,0,0,6,0,0,0,9,0 ],
   [ 0,0,8,0,0,0,0,0,4 ],
   [ 0,9,0,0,0,0,0,0,1 ],
   [ 6,0,0,0,0,0,0,0,9 ],
   [ 3,0,0,0,0,0,0,4,0 ],
   [ 7,0,0,0,0,0,8,0,0 ],
   [ 0,1,0,0,0,9,0,0,0 ],
   [ 0,0,2,5,4,0,0,0,0 ];

my $solved = solve($puzzle, 0); if $solved {

   print-sudoku($solved,0);

} else {

   say "unsolvable.";

}

  1. Utility functions, not really part of the solution

sub trace(Int $level, Str $message) {

   say '.' x $level, $message;

}

sub clone-sudoku($sudoku) {

   my $clone;
   for 0..8 X 0..8 -> $x, $y {
       $clone[$x][$y] = $sudoku[$x][$y];
   }
   return $clone;

}

sub print-sudoku($sudoku, Int $level = 1) {

   trace $level, '-' x 5*9;
   for @($sudoku) -> $row {
       trace $level, join " ", do for @($row) -> $cell {
           $cell ~~ Array ?? "#{$cell.elems}#" !! " $cell " 
       }
   }

}</lang>

Output:
Trying 8 on 9,1 [8, 9]
.Trying 6 on 9,2 [3, 6]
..Trying 7 on 9,9 [3, 7]
...Trying 1 on 9,8 [1, 3]
....Trying 4 on 8,1 [4, 5]
.....Trying 3 on 7,2 [3, 5]
......Trying 3 on 8,7 [2, 3]
.......Trying 6 on 8,9 [2, 6]
.......Trying 2 on 8,9 [2, 6]
.......Backtrack, path unsolvable... (on 8 9)
......Trying 2 on 8,7 [2, 3]
.......Trying 3 on 8,9 [3, 6]
.......Trying 6 on 8,9 [3, 6]
.......Backtrack, path unsolvable... (on 8 9)
......Backtrack, path unsolvable... (on 8 7)
.....Trying 5 on 7,2 [3, 5]
......Trying 5 on 8,7 [2, 5]
.......Trying 6 on 8,9 [2, 6]
.......Trying 2 on 8,9 [2, 6]
.......Backtrack, path unsolvable... (on 8 9)
......Trying 2 on 8,7 [2, 5]
.......Trying 5 on 8,9 [5, 6]
.......Trying 6 on 8,9 [5, 6]
.......Backtrack, path unsolvable... (on 8 9)
......Backtrack, path unsolvable... (on 8 7)
.....Backtrack, path unsolvable... (on 7 2)
....Trying 5 on 8,1 [4, 5]
.....Trying 3 on 8,3 [3, 4]
......Trying 6 on 8,9 [2, 6]
.......Trying 3 on 7,9 [3, 5]
........Trying 5 on 1,9 [2, 5]
.........Trying 3 on 3,8 [3, 7]
..........Trying 4 on 2,1 [1, 4]
..........Trying 1 on 2,1 [1, 4]
..........Backtrack, path unsolvable... (on 2 1)
.........Trying 7 on 3,8 [3, 7]
..........Trying 3 on 3,7 [1, 3]
..........Trying 1 on 3,7 [1, 3]
..........Backtrack, path unsolvable... (on 3 7)
.........Backtrack, path unsolvable... (on 3 8)
........Trying 2 on 1,9 [2, 5]
.........Trying 3 on 3,8 [3, 7]
..........Trying 7 on 2,7 [1, 7]
...........Trying 9 on 3,1 [2, 9]
...........Trying 2 on 3,1 [2, 9]
...........Backtrack, path unsolvable... (on 3 1)
..........Trying 1 on 2,7 [1, 7]
..........Backtrack, path unsolvable... (on 2 7)
.........Trying 7 on 3,8 [3, 7]
..........Trying 3 on 3,7 [1, 3]
..........Trying 1 on 3,7 [1, 3]
...........Trying 9 on 3,1 [2, 9]
...........Trying 2 on 3,1 [2, 9]
...........Backtrack, path unsolvable... (on 3 1)
..........Backtrack, path unsolvable... (on 3 7)
.........Backtrack, path unsolvable... (on 3 8)
........Backtrack, path unsolvable... (on 1 9)
.......Trying 5 on 7,9 [3, 5]
........Trying 8 on 1,9 [2, 8]
.........Trying 2 on 3,7 [1, 2]
.........Trying 1 on 3,7 [1, 2]
.........Backtrack, path unsolvable... (on 3 7)
........Trying 2 on 1,9 [2, 8]
.........Trying 7 on 3,8 [5, 7]
..........Trying 5 on 3,7 [1, 5]
...........Trying 2 on 2,1 [2, 4]
...........Trying 4 on 2,1 [2, 4]
...........Backtrack, path unsolvable... (on 2 1)
..........Trying 1 on 3,7 [1, 5]
...........Trying 9 on 3,1 [2, 9]
...........Trying 2 on 3,1 [2, 9]
...........Backtrack, path unsolvable... (on 3 1)
..........Backtrack, path unsolvable... (on 3 7)
.........Trying 5 on 3,8 [5, 7]
..........Trying 7 on 3,7 [1, 7]
...........Trying 2 on 2,1 [2, 4]
...........Trying 4 on 2,1 [2, 4]
...........Backtrack, path unsolvable... (on 2 1)
..........Trying 1 on 3,7 [1, 7]
..........Backtrack, path unsolvable... (on 3 7)
.........Backtrack, path unsolvable... (on 3 8)
........Backtrack, path unsolvable... (on 1 9)
.......Backtrack, path unsolvable... (on 7 9)
......Trying 2 on 8,9 [2, 6]
.......Trying 3 on 7,9 [3, 5]
........Trying 8 on 1,9 [5, 8]
.........Trying 3 on 3,8 [3, 7]
..........Trying 4 on 1,3 [1, 4]
...........Trying 9 on 1,1 [1, 9]
............Trying 1 on 3,1 [1, 2]
............Trying 2 on 3,1 [1, 2]
............Backtrack, path unsolvable... (on 3 1)
...........Trying 1 on 1,1 [1, 9]
...........Backtrack, path unsolvable... (on 1 1)
..........Trying 1 on 1,3 [1, 4]
...........Trying 9 on 1,1 [4, 9]
...........Trying 4 on 1,1 [4, 9]
...........Backtrack, path unsolvable... (on 1 1)
..........Backtrack, path unsolvable... (on 1 3)
.........Trying 7 on 3,8 [3, 7]
..........Trying 3 on 3,7 [1, 3]
..........Trying 1 on 3,7 [1, 3]
...........Trying 9 on 3,1 [2, 9]
...........Trying 2 on 3,1 [2, 9]
...........Backtrack, path unsolvable... (on 3 1)
..........Backtrack, path unsolvable... (on 3 7)
.........Backtrack, path unsolvable... (on 3 8)
........Trying 5 on 1,9 [5, 8]
........Backtrack, path unsolvable... (on 1 9)
.......Trying 5 on 7,9 [3, 5]
........Trying 5 on 1,8 [2, 5]
.........Trying 7 on 3,8 [2, 7]
..........Trying 4 on 1,3 [1, 4]
..........Trying 1 on 1,3 [1, 4]
..........Backtrack, path unsolvable... (on 1 3)
.........Trying 2 on 3,8 [2, 7]
..........Trying 9 on 3,1 [1, 9]
..........Trying 1 on 3,1 [1, 9]
..........Backtrack, path unsolvable... (on 3 1)
.........Backtrack, path unsolvable... (on 3 8)
........Trying 2 on 1,8 [2, 5]
.........Trying 7 on 3,8 [5, 7]
..........Trying 4 on 1,3 [1, 4]
...........Trying 9 on 1,1 [1, 9]
............Trying 1 on 3,1 [1, 2]
............Trying 2 on 3,1 [1, 2]
............Backtrack, path unsolvable... (on 3 1)
...........Trying 1 on 1,1 [1, 9]
...........Backtrack, path unsolvable... (on 1 1)
..........Trying 1 on 1,3 [1, 4]
...........Trying 9 on 1,1 [4, 9]
...........Trying 4 on 1,1 [4, 9]
...........Backtrack, path unsolvable... (on 1 1)
..........Backtrack, path unsolvable... (on 1 3)
.........Trying 5 on 3,8 [5, 7]
..........Trying 7 on 3,7 [1, 7]
...........Trying 2 on 2,1 [2, 4]
...........Trying 4 on 2,1 [2, 4]
...........Backtrack, path unsolvable... (on 2 1)
..........Trying 1 on 3,7 [1, 7]
..........Backtrack, path unsolvable... (on 3 7)
.........Backtrack, path unsolvable... (on 3 8)
........Backtrack, path unsolvable... (on 1 8)
.......Backtrack, path unsolvable... (on 7 9)
......Backtrack, path unsolvable... (on 8 9)
.....Trying 4 on 8,3 [3, 4]
......Trying 3 on 8,7 [2, 3]
.......Trying 6 on 8,9 [2, 6]
.......Trying 2 on 8,9 [2, 6]
.......Backtrack, path unsolvable... (on 8 9)
......Trying 2 on 8,7 [2, 3]
.......Trying 3 on 8,9 [3, 6]
.......Trying 6 on 8,9 [3, 6]
.......Backtrack, path unsolvable... (on 8 9)
......Backtrack, path unsolvable... (on 8 7)
.....Backtrack, path unsolvable... (on 8 3)
....Backtrack, path unsolvable... (on 8 1)
...Trying 3 on 9,8 [1, 3]
....Trying 4 on 8,1 [4, 5]
.....Trying 3 on 7,2 [3, 5]
.....Trying 5 on 7,2 [3, 5]
......Trying 6 on 7,9 [2, 6]
......Trying 2 on 7,9 [2, 6]
......Backtrack, path unsolvable... (on 7 9)
.....Backtrack, path unsolvable... (on 7 2)
....Trying 5 on 8,1 [4, 5]
.....Trying 6 on 8,9 [2, 6]
......Trying 8 on 1,9 [2, 8]
.......Trying 1 on 3,7 [1, 2]
.......Trying 2 on 3,7 [1, 2]
.......Backtrack, path unsolvable... (on 3 7)
......Trying 2 on 1,9 [2, 8]
.......Trying 7 on 3,8 [5, 7]
........Trying 5 on 3,7 [1, 5]
.........Trying 9 on 3,1 [1, 9]
.........Trying 1 on 3,1 [1, 9]
.........Backtrack, path unsolvable... (on 3 1)
........Trying 1 on 3,7 [1, 5]
.........Trying 9 on 3,1 [2, 9]
.........Trying 2 on 3,1 [2, 9]
.........Backtrack, path unsolvable... (on 3 1)
........Backtrack, path unsolvable... (on 3 7)
.......Trying 5 on 3,8 [5, 7]
........Trying 7 on 3,7 [1, 7]
.........Trying 9 on 3,1 [1, 9]
.........Trying 1 on 3,1 [1, 9]
.........Backtrack, path unsolvable... (on 3 1)
........Trying 1 on 3,7 [1, 7]
........Backtrack, path unsolvable... (on 3 7)
.......Backtrack, path unsolvable... (on 3 8)
......Backtrack, path unsolvable... (on 1 9)
.....Trying 2 on 8,9 [2, 6]
......Trying 5 on 1,8 [2, 5]
.......Trying 7 on 3,8 [2, 7]
........Trying 4 on 2,1 [1, 4]
........Trying 1 on 2,1 [1, 4]
........Backtrack, path unsolvable... (on 2 1)
.......Trying 2 on 3,8 [2, 7]
........Trying 9 on 3,1 [1, 9]
........Trying 1 on 3,1 [1, 9]
........Backtrack, path unsolvable... (on 3 1)
.......Backtrack, path unsolvable... (on 3 8)
......Trying 2 on 1,8 [2, 5]
.......Trying 7 on 3,8 [5, 7]
........Trying 1 on 3,7 [1, 5]
.........Trying 9 on 3,1 [2, 9]
.........Trying 2 on 3,1 [2, 9]
.........Backtrack, path unsolvable... (on 3 1)
........Trying 5 on 3,7 [1, 5]
.........Trying 9 on 3,1 [1, 9]
.........Trying 1 on 3,1 [1, 9]
.........Backtrack, path unsolvable... (on 3 1)
........Backtrack, path unsolvable... (on 3 7)
.......Trying 5 on 3,8 [5, 7]
........Trying 9 on 3,1 [1, 9]
........Trying 1 on 3,1 [1, 9]
........Backtrack, path unsolvable... (on 3 1)
.......Backtrack, path unsolvable... (on 3 8)
......Backtrack, path unsolvable... (on 1 8)
.....Backtrack, path unsolvable... (on 8 9)
....Backtrack, path unsolvable... (on 8 1)
...Backtrack, path unsolvable... (on 9 8)
..Trying 3 on 9,9 [3, 7]
...Trying 4 on 8,1 [4, 5]
....Trying 3 on 7,2 [3, 5]
....Trying 5 on 7,2 [3, 5]
.....Trying 6 on 7,9 [2, 6]
.....Trying 2 on 7,9 [2, 6]
.....Backtrack, path unsolvable... (on 7 9)
....Backtrack, path unsolvable... (on 7 2)
...Trying 5 on 8,1 [4, 5]
....Trying 6 on 8,9 [2, 6]
.....Trying 8 on 1,9 [2, 8]
......Trying 7 on 2,9 [2, 7]
.......Trying 1 on 3,7 [1, 2]
.......Trying 2 on 3,7 [1, 2]
.......Backtrack, path unsolvable... (on 3 7)
......Trying 2 on 2,9 [2, 7]
.......Trying 4 on 2,1 [1, 4]
.......Trying 1 on 2,1 [1, 4]
.......Backtrack, path unsolvable... (on 2 1)
......Backtrack, path unsolvable... (on 2 9)
.....Trying 2 on 1,9 [2, 8]
......Trying 3 on 3,8 [3, 5]
.......Trying 5 on 2,7 [1, 5]
........Trying 9 on 3,1 [2, 9]
........Trying 2 on 3,1 [2, 9]
........Backtrack, path unsolvable... (on 3 1)
.......Trying 1 on 2,7 [1, 5]
.......Backtrack, path unsolvable... (on 2 7)
......Trying 5 on 3,8 [3, 5]
.......Trying 3 on 3,7 [1, 3]
.......Trying 1 on 3,7 [1, 3]
.......Backtrack, path unsolvable... (on 3 7)
......Backtrack, path unsolvable... (on 3 8)
.....Backtrack, path unsolvable... (on 1 9)
....Trying 2 on 8,9 [2, 6]
.....Trying 5 on 1,8 [2, 5]
......Trying 3 on 3,8 [2, 3]
.......Trying 4 on 2,1 [1, 4]
.......Trying 1 on 2,1 [1, 4]
.......Backtrack, path unsolvable... (on 2 1)
......Trying 2 on 3,8 [2, 3]
.......Trying 9 on 3,1 [1, 9]
.......Trying 1 on 3,1 [1, 9]
.......Backtrack, path unsolvable... (on 3 1)
......Backtrack, path unsolvable... (on 3 8)
.....Trying 2 on 1,8 [2, 5]
......Trying 3 on 3,8 [3, 5]
.......Trying 4 on 1,3 [1, 4]
.......Trying 1 on 1,3 [1, 4]
.......Backtrack, path unsolvable... (on 1 3)
......Trying 5 on 3,8 [3, 5]
.......Trying 9 on 3,1 [1, 9]
.......Trying 1 on 3,1 [1, 9]
.......Backtrack, path unsolvable... (on 3 1)
......Backtrack, path unsolvable... (on 3 8)
.....Backtrack, path unsolvable... (on 1 8)
....Backtrack, path unsolvable... (on 8 9)
...Backtrack, path unsolvable... (on 8 1)
..Backtrack, path unsolvable... (on 9 9)
.Trying 3 on 9,2 [3, 6]
..Trying 7 on 9,9 [6, 7]
...Trying 1 on 9,8 [1, 6]
....Trying 4 on 8,1 [4, 5]
.....Trying 6 on 7,2 [5, 6]
......Trying 3 on 8,7 [2, 3]
.......Trying 6 on 8,9 [2, 6]
.......Trying 2 on 8,9 [2, 6]
.......Backtrack, path unsolvable... (on 8 9)
......Trying 2 on 8,7 [2, 3]
.......Trying 6 on 8,9 [3, 6]
.......Trying 3 on 8,9 [3, 6]
.......Backtrack, path unsolvable... (on 8 9)
......Backtrack, path unsolvable... (on 8 7)
.....Trying 5 on 7,2 [5, 6]
......Trying 4 on 1,2 [2, 4]
.......Trying 1 on 1,3 [1, 5]
........Trying 2 on 2,1 [2, 5]
........Trying 5 on 2,1 [2, 5]
........Backtrack, path unsolvable... (on 2 1)
.......Trying 5 on 1,3 [1, 5]
........Trying 1 on 2,1 [1, 2]
.........Trying 9 on 1,1 [2, 9]
..........Trying 8 on 1,9 [2, 8]
..........Trying 2 on 1,9 [2, 8]
..........Backtrack, path unsolvable... (on 1 9)
.........Trying 2 on 1,1 [2, 9]
.........Backtrack, path unsolvable... (on 1 1)
........Trying 2 on 2,1 [1, 2]
.........Trying 9 on 1,1 [1, 9]
..........Trying 8 on 1,9 [2, 8]
...........Trying 2 on 8,9 [2, 3]
...........Trying 3 on 8,9 [2, 3]
...........Backtrack, path unsolvable... (on 8 9)
..........Trying 2 on 1,9 [2, 8]
..........Backtrack, path unsolvable... (on 1 9)
.........Trying 1 on 1,1 [1, 9]
..........Trying 8 on 1,9 [2, 8]
...........Trying 2 on 8,9 [2, 3]
...........Trying 3 on 8,9 [2, 3]
...........Backtrack, path unsolvable... (on 8 9)
..........Trying 2 on 1,9 [2, 8]
..........Backtrack, path unsolvable... (on 1 9)
.........Backtrack, path unsolvable... (on 1 1)
........Backtrack, path unsolvable... (on 2 1)
.......Backtrack, path unsolvable... (on 1 3)
......Trying 2 on 1,2 [2, 4]
.......Trying 1 on 2,1 [1, 5]
........Trying 9 on 1,1 [5, 9]
.........Trying 8 on 1,9 [5, 8]
.........Trying 5 on 1,9 [5, 8]
.........Backtrack, path unsolvable... (on 1 9)
........Trying 5 on 1,1 [5, 9]
........Backtrack, path unsolvable... (on 1 1)
.......Trying 5 on 2,1 [1, 5]
........Trying 9 on 1,1 [1, 9]
.........Trying 8 on 1,9 [5, 8]
..........Trying 6 on 7,9 [3, 6]
..........Trying 3 on 7,9 [3, 6]
..........Backtrack, path unsolvable... (on 7 9)
.........Trying 5 on 1,9 [5, 8]
.........Backtrack, path unsolvable... (on 1 9)
........Trying 1 on 1,1 [1, 9]
.........Trying 8 on 1,9 [5, 8]
..........Trying 5 on 8,9 [3, 5]
..........Trying 3 on 8,9 [3, 5]
..........Backtrack, path unsolvable... (on 8 9)
.........Trying 5 on 1,9 [5, 8]
.........Backtrack, path unsolvable... (on 1 9)
........Backtrack, path unsolvable... (on 1 1)
.......Backtrack, path unsolvable... (on 2 1)
......Backtrack, path unsolvable... (on 1 2)
.....Backtrack, path unsolvable... (on 7 2)
....Trying 5 on 8,1 [4, 5]
.....Trying 6 on 8,3 [4, 6]
......Trying 3 on 8,9 [2, 3]
.......Trying 6 on 7,9 [5, 6]
........Trying 5 on 1,9 [2, 5]
.........Trying 3 on 3,8 [3, 7]
..........Trying 4 on 2,1 [1, 4]
..........Trying 1 on 2,1 [1, 4]
..........Backtrack, path unsolvable... (on 2 1)
.........Trying 7 on 3,8 [3, 7]
..........Trying 3 on 3,7 [1, 3]
..........Trying 1 on 3,7 [1, 3]
..........Backtrack, path unsolvable... (on 3 7)
.........Backtrack, path unsolvable... (on 3 8)
........Trying 2 on 1,9 [2, 5]
.........Trying 3 on 3,8 [3, 7]
..........Trying 7 on 2,7 [1, 7]
..........Trying 1 on 2,7 [1, 7]
...........Trying 4 on 2,1 [2, 4]
...........Trying 2 on 2,1 [2, 4]
...........Solved... (2 on 2,1)
..........Solved... (1 on 2,7)
.........Solved... (3 on 3,8)
........Solved... (2 on 1,9)
.......Solved... (6 on 7,9)
......Solved... (3 on 8,9)
.....Solved... (6 on 8,3)
....Solved... (5 on 8,1)
...Solved... (1 on 9,8)
..Solved... (7 on 9,9)
.Solved... (3 on 9,2)
Solved... (8 on 9,1)
---------------------------------------------
 9   5   4   1   3   7   6   8   2 
 2   7   3   6   8   4   1   9   5 
 1   6   8   2   9   5   7   3   4 
 4   9   5   7   2   8   3   6   1 
 6   8   1   4   5   3   2   7   9 
 3   2   7   9   6   1   5   4   8 
 7   4   9   3   1   2   8   5   6 
 5   1   6   8   7   9   4   2   3 
 8   3   2   5   4   6   9   1   7 

PicoLisp

<lang PicoLisp>(load "lib/simul.l")

      1. Fields/Board ###
  1. val lst

(setq

  *Board (grid 9 9)
  *Fields (apply append *Board) )
  1. Init values to zero (empty)

(for L *Board

  (for This L
     (=: val 0) ) )
  1. Build lookup lists

(for (X . L) *Board

  (for (Y . This) L
     (=: lst
        (make
           (let A (* 3 (/ (dec X) 3))
              (do 3
                 (inc 'A)
                 (let B (* 3 (/ (dec Y) 3))
                    (do 3
                       (inc 'B)
                       (unless (and (= A X) (= B Y))
                          (link
                             (prop (get *Board A B) 'val) ) ) ) ) ) )
           (for Dir '(`west `east `south `north)
              (for (This (Dir This)  This  (Dir This))
                 (unless (memq (:: val) (made))
                    (link (:: val)) ) ) ) ) ) ) )
  1. Cut connections (for display only)

(for (X . L) *Board

  (for (Y . This) L
     (when (member X (3 6))
        (con (car (val This))) )
     (when (member Y (4 7))
        (set (cdr (val This))) ) ) )
  1. Display board

(de display ()

  (disp *Board 0
     '((This)
        (if (=0 (: val))
           "   "
           (pack " " (: val) " ") ) ) ) )
  1. Initialize board

(de main (Lst)

  (for (Y . L) Lst
     (for (X . N) L
        (put *Board X (- 10 Y) 'val N) ) )
  (display) )
  1. Find solution

(de go ()

  (unless
     (recur (*Fields)
        (with (car *Fields)
           (if (=0 (: val))
              (loop
                 (NIL
                    (or
                       (assoc (inc (:: val)) (: lst))
                       (recurse (cdr *Fields)) ) )
                 (T (= 9 (: val)) (=: val 0)) )
              (recurse (cdr *Fields)) ) ) )
     (display) ) )

(main

  (quote
     (5 3 0 0 7 0 0 0 0)
     (6 0 0 1 9 5 0 0 0)
     (0 9 8 0 0 0 0 6 0)
     (8 0 0 0 6 0 0 0 3)
     (4 0 0 8 0 3 0 0 1)
     (7 0 0 0 2 0 0 0 6)
     (0 6 0 0 0 0 2 8 0)
     (0 0 0 4 1 9 0 0 5)
     (0 0 0 0 8 0 0 7 9) ) )</lang>
Output:
   +---+---+---+---+---+---+---+---+---+
 9 | 5   3     |     7     |           |
   +   +   +   +   +   +   +   +   +   +
 8 | 6         | 1   9   5 |           |
   +   +   +   +   +   +   +   +   +   +
 7 |     9   8 |           |     6     |
   +---+---+---+---+---+---+---+---+---+
 6 | 8         |     6     |         3 |
   +   +   +   +   +   +   +   +   +   +
 5 | 4         | 8       3 |         1 |
   +   +   +   +   +   +   +   +   +   +
 4 | 7         |     2     |         6 |
   +---+---+---+---+---+---+---+---+---+
 3 |     6     |           | 2   8     |
   +   +   +   +   +   +   +   +   +   +
 2 |           | 4   1   9 |         5 |
   +   +   +   +   +   +   +   +   +   +
 1 |           |     8     |     7   9 |
   +---+---+---+---+---+---+---+---+---+
     a   b   c   d   e   f   g   h   i

<lang PicoLisp>(go)</lang>

Output:
   +---+---+---+---+---+---+---+---+---+
 9 | 5   3   4 | 6   7   8 | 9   1   2 |
   +   +   +   +   +   +   +   +   +   +
 8 | 6   7   2 | 1   9   5 | 3   4   8 |
   +   +   +   +   +   +   +   +   +   +
 7 | 1   9   8 | 3   4   2 | 5   6   7 |
   +---+---+---+---+---+---+---+---+---+
 6 | 8   5   9 | 7   6   1 | 4   2   3 |
   +   +   +   +   +   +   +   +   +   +
 5 | 4   2   6 | 8   5   3 | 7   9   1 |
   +   +   +   +   +   +   +   +   +   +
 4 | 7   1   3 | 9   2   4 | 8   5   6 |
   +---+---+---+---+---+---+---+---+---+
 3 | 9   6   1 | 5   3   7 | 2   8   4 |
   +   +   +   +   +   +   +   +   +   +
 2 | 2   8   7 | 4   1   9 | 6   3   5 |
   +   +   +   +   +   +   +   +   +   +
 1 | 3   4   5 | 2   8   6 | 1   7   9 |
   +---+---+---+---+---+---+---+---+---+
     a   b   c   d   e   f   g   h   i

PL/I

Working PL/I version, derived from the Rosetta Fortran version. <lang pli>sudoku: procedure options (main); /* 27 July 2014 */

 declare grid (9,9) fixed (1) static initial (
     0, 0, 3, 0, 2, 0, 6, 0, 0,    
     9, 0, 0, 3, 0, 5, 0, 0, 1,    
     0, 0, 1, 8, 0, 6, 4, 0, 0,    
     0, 0, 8, 1, 0, 2, 9, 0, 0,    
     7, 0, 0, 0, 0, 0, 0, 0, 8,    
     0, 0, 6, 7, 0, 8, 2, 0, 0,    
     0, 0, 2, 6, 0, 9, 5, 0, 0,    
     8, 0, 0, 2, 0, 3, 0, 0, 9,    
     0, 0, 5, 0, 1, 0, 3, 0, 0 );
 declare grid_solved (9,9) fixed (1);
 call print_sudoku (grid);
 call solve (1, 1);
 put skip (2);
 call print_sudoku (grid_solved);

solve: procedure (i, j) recursive options (reorder);

   declare (i, j) fixed binary;
   declare (n, n_tmp) fixed binary;
   if i > 9 then
     grid_solved = grid;
   else
     do n = 1 to 9;
       if is_safe (i, j, n) then
         do;
            n_tmp = grid (i, j);
            grid (i, j) = n;
            if j = 9 then
              call solve (i + 1, 1);
            else
              call solve (i, j + 1);
            grid (i, j) = n_tmp;
         end;
     end;
 end solve;

is_safe: procedure (i, j, n) returns (bit(1) aligned) options (reorder);

   declare (i, j, n) fixed binary;
   declare (true value ('1'b), false value ('0'b) ) bit (1);
   declare (i_min, j_min, ii, jj) fixed binary;
   declare kk bit(1) aligned;
   if grid (i, j)  = n      then return (true);    
   if grid (i, j) ^= 0      then return (false);
   if any (grid (i, *) = n) then return (false);
   if any (grid (*, j) = n) then return (false);
   /* i_min and j_min are the co-ordinates of the top left-hand corner */
   /* of 3 x 3 grid in which element (i,j) exists.                     */
   i_min = 1 + 3 * trunc((i - 1) / 3);
   j_min = 1 + 3 * trunc((j - 1) / 3);
   begin;
      declare sub_grid(3,3) fixed (1) defined grid(1sub+i_min-1,2sub+j_min-1);
      kk = true;
      if any(sub_grid = n) then kk = false;
   end;
   return (kk);
 end is_safe;

print_sudoku: procedure (grid);

   declare grid (*,*) fixed (1);
   declare ( i, j, ii) fixed binary;
   declare bar character (19) initial ( '+-----+-----+-----+' );
   declare frame (9) character (1) initial (' ', ' ', '|', ' ', ' ', '|', ' ', ' ', '|' );
   put skip list (bar);
   do i = 1 to 7 by 3;
      do ii = i to i + 2;
         put skip edit ( '|', (grid (ii, j), frame(j) do j = 1 to 9) ) (a, f(1));
      end;
      put skip list (bar);
   end;
 end print_sudoku;

end sudoku; </lang>

Output:
+-----+-----+-----+ 
|0 0 3|0 2 0|6 0 0|
|9 0 0|3 0 5|0 0 1|
|0 0 1|8 0 6|4 0 0|
+-----+-----+-----+ 
|0 0 8|1 0 2|9 0 0|
|7 0 0|0 0 0|0 0 8|
|0 0 6|7 0 8|2 0 0|
+-----+-----+-----+ 
|0 0 2|6 0 9|5 0 0|
|8 0 0|2 0 3|0 0 9|
|0 0 5|0 1 0|3 0 0|
+-----+-----+-----+ 


+-----+-----+-----+ 
|4 8 3|9 2 1|6 5 7|
|9 6 7|3 4 5|8 2 1|
|2 5 1|8 7 6|4 9 3|
+-----+-----+-----+ 
|5 4 8|1 3 2|9 7 6|
|7 2 9|5 6 4|1 3 8|
|1 3 6|7 9 8|2 4 5|
+-----+-----+-----+ 
|3 7 2|6 8 9|5 1 4|
|8 1 4|2 5 3|7 6 9|
|6 9 5|4 1 7|3 8 2|
+-----+-----+-----+ 

Another PL/I version, reads sudoku from the text data file as 81 character record. <lang pli>

  • PROCESS MARGINS(1,120) LIBS(SINGLE,STATIC);
  • PROCESS OPTIMIZE(2) DFT(REORDER);


sudoku: proc(parms) options(main);
  dcl parms char (100) var;
  define alias bits bit (9) aligned;
  dcl total (81) type bits;
  dcl matrix (9, 9) type bits based(addr(total));
  dcl box (9, 3, 3) type bits defined (total(trunc((1sub-1) /3) * 27 + mod(1sub-1, 3) * 3 + (2sub-1) * 9 + 3sub));
  dcl posbit (0:9) type bits init('000000000'b, '100000000'b, '010000000'b, '001000000'b,
                                  '000100000'b, '000010000'b, '000001000'b, '000000100'b,
                                  '000000010'b, '000000001'b);
  dcl (i, j, k) fixed bin(31);
  dcl (start, finish) float(18);
  dcl result fixed dec(5,3);
  dcl buffer char(81);
  dcl in file;
  /* ON UNIT for the Sudoku data conversion */
  on conversion
    begin;
      put skip
        list('Sudoku data not valid.');
      stop;
    end;
  /* ON UNIT to display info about the usage */
  on undefinedfile(in)
    begin;
      put skip
        list('Usage: ' || procedurename() || ' /filename');
      stop;
    end;
  open file(in)
    title ('/'||parms||',type(fixed), recsize(81)') record input;
  /* Ignore the endfile condition */
  on endfile(in);
  /* Read the Sudoku data into buffer as one record */
  read file(in) into(buffer);
  close file(in);
  /* Convert numbers -> position bit presentation and assign into the Sudoku board */
  do k = 1 to 81;
    total(k) = posbit(substr(buffer, k, 1));
  end;
  /* Start solving the Sudoku */
  start = secs();
  if solve() then
    do;
      finish = secs();
      result = finish - start + 0.0005;
      put skip list('Sudoku solved! Time: ' || trim(result) || ' seconds');
      put skip(2);
  /* display the solved Sudoku if solution exist */
      do i = 1 to 9;
        do j = 1 to 9;
          put edit(trim(index(matrix(i, j), '1'b))) (a(3));
        end;
        put skip(2);
      end;
    end;
  else put skip list('Impossible!');


  /*************************************/
  /* Simple backtracking sudoku solver */
  /*************************************/
  solve: proc recursive returns(bit(1));
    dcl (i, j, k) fixed bin(31);
    dcl result type bits;
    /* find free cell */
    do i = 1 to 9;
      do j = 1 to 9;
        if matrix(i, j) = posbit(0) then goto skip;
      end;
    end;
    /* No more free cells. Check if the completed Sudoku is valid.      */
    /* Number in the cell is valid if the matching position bit is set. */
    do i = 1 to 9;
      do j = 1 to 9;
      k = index(matrix(i, j), '1'b);
      matrix(i, j) = posbit(0);
      result = ^(any(matrix(i, *)) | any(matrix(*, j)) | any(box(numbox(i, j), *, *)));
      if substr(result, k, 1) = '0'b then return('0'b);
      matrix(i, j) = posbit(k);
      end;
    end;
    return('1'b);
   skip:
    /* Go through and test possible values for the free cell untill the Sudoku is completed */
    result = ^(any(matrix(i, *)) | any(matrix(*, j)) | any(box(numbox(i, j), *, *)));
    k = 0;
    do forever;
      k = search(result, '1'b, k+1);
      if k = 0 then leave;
      matrix(i, j) = posbit(k);
      if solve() then return('1'b);
      else matrix(i, j) = posbit(0);
    end;
    return('0'b);
  end solve;


  /********************************************/
  /* Returns box number for the sudoku coords */
  /********************************************/
  numbox: proc(i, j) returns(fixed bin(31));
    dcl (i, j) fixed bin(31);
    dcl lookup (9, 9) fixed bin(31) static init( (3)1, (3)2, (3)3,
                                                 (3)1, (3)2, (3)3,
                                                 (3)1, (3)2, (3)3,
                                                 (3)4, (3)5, (3)6,
                                                 (3)4, (3)5, (3)6,
                                                 (3)4, (3)5, (3)6,
                                                 (3)7, (3)8, (3)9,
                                                 (3)7, (3)8, (3)9,
                                                 (3)7, (3)8, (3)9 );
    return(lookup(i, j));
  end numbox;
end sudoku;

</lang>

Prolog

<lang Prolog>:- use_module(library(clpfd)).

sudoku(Rows) :-

       length(Rows, 9), maplist(length_(9), Rows),
       append(Rows, Vs), Vs ins 1..9,
       maplist(all_distinct, Rows),
       transpose(Rows, Columns), maplist(all_distinct, Columns),
       Rows = [A,B,C,D,E,F,G,H,I],
       blocks(A, B, C), blocks(D, E, F), blocks(G, H, I).

length_(L, Ls) :- length(Ls, L).

blocks([], [], []). blocks([A,B,C|Bs1], [D,E,F|Bs2], [G,H,I|Bs3]) :-

       all_distinct([A,B,C,D,E,F,G,H,I]),
       blocks(Bs1, Bs2, Bs3).

problem(1, [[_,_,_,_,_,_,_,_,_],

           [_,_,_,_,_,3,_,8,5],
           [_,_,1,_,2,_,_,_,_],
           [_,_,_,5,_,7,_,_,_],
           [_,_,4,_,_,_,1,_,_],
           [_,9,_,_,_,_,_,_,_],
           [5,_,_,_,_,_,_,7,3],
           [_,_,2,_,1,_,_,_,_],
           [_,_,_,_,4,_,_,_,9]]).</lang>

GNU Prolog version

Works with: GNU Prolog version 1.4.4

<lang Prolog>:- initialization(main).


solve(Rows) :-

   maplist(domain_1_9, Rows)
 , different(Rows)
 , transpose(Rows,Cols), different(Cols)
 , blocks(Rows,Blocks) , different(Blocks)
 , maplist(fd_labeling, Rows)
 .

domain_1_9(Rows) :- fd_domain(Rows,1,9). different(Rows)  :- maplist(fd_all_different, Rows).

blocks(Rows,Blocks) :-

   maplist(split3,Rows,Xs), transpose(Xs,Ys)
 , concat(Ys,Zs), concat_map(split3,Zs,Blocks)
 . % where
   split3([X,Y,Z|L],[[X,Y,Z]|R]) :- split3(L,R).
   split3([],[]).


% utils/list concat_map(F,Xs,Ys) :- call(F,Xs,Zs), maplist(concat,Zs,Ys).

concat([],[]). concat([X|Xs],Ys) :- append(X,Zs,Ys), concat(Xs,Zs).

transpose([],[]). transpose([[X]|Col], Row) :- transpose(Col,[Row]). transpose(Row, [[X]|Col]) :- transpose([Row],Col). transpose([[X|Row]|Xs], [[X|Col]|Ys]) :-

   maplist(bind_head, Row, Ys, YX)
 , maplist(bind_head, Col, Xs, XY)
 , transpose(XY,YX)
 . % where
   bind_head(H,[H|T],T).
   bind_head([],[],[]).


% tests test([ [_,_,3,_,_,_,_,_,_]

    , [4,_,_,_,8,_,_,3,6]
    , [_,_,8,_,_,_,1,_,_]
    , [_,4,_,_,6,_,_,7,3]
    , [_,_,_,9,_,_,_,_,_]
    , [_,_,_,_,_,2,_,_,5]
    , [_,_,4,_,7,_,_,6,8]
    , [6,_,_,_,_,_,_,_,_]
    , [7,_,_,6,_,_,5,_,_]
    ]).

main :- test(T), solve(T), maplist(show,T), halt. show(X) :- write(X), nl.</lang>

Output:
[1,2,3,4,5,6,7,8,9]
[4,5,7,1,8,9,2,3,6]
[9,6,8,3,2,7,1,5,4]
[2,4,9,5,6,1,8,7,3]
[5,7,6,9,3,8,4,1,2]
[8,3,1,7,4,2,6,9,5]
[3,1,4,2,7,5,9,6,8]
[6,9,5,8,1,4,3,2,7]
[7,8,2,6,9,3,5,4,1]

Runs in: time: 0.02 memory: 68352 (adapted for gprolog 1.3.1)

PureBasic

A brute force method is used, it seemed the fastest as well as the simplest. <lang PureBasic>DataSection

 puzzle:
 Data.s "394002670"
 Data.s "000300400"
 Data.s "500690020"
 Data.s "045000900"
 Data.s "600000007"
 Data.s "007000580"
 Data.s "010067008"
 Data.s "009008000"
 Data.s "026400735"

EndDataSection

  1. IsPossible = 0
  2. IsNotPossible = 1
  3. Unknown = 0

Global Dim sudoku(8, 8)

-declarations

Declare readSudoku() Declare displaySudoku() Declare.s buildpossible(x, y, Array possible.b(1)) Declare solvePuzzle(x = 0, y = 0)

-procedures

Procedure readSudoku()

 Protected a$, row, column
 
 Restore puzzle
 For row = 0 To 8 
   Read.s a$  
   For column = 0 To 8
     sudoku(column, row) = Val(Mid(a$, column + 1, 1))
   Next
 Next

EndProcedure

Procedure displaySudoku()

 Protected row, column 
 Static border.s = "+-----+-----+-----+"
 For row = 0 To 8
   If row % 3 = 0: PrintN(border): EndIf
   For column = 0 To 8
     If column % 3 = 0: Print("|"): Else: Print(" "): EndIf
     If sudoku(column, row): Print(Str(sudoku(column, row))): Else: Print("."): EndIf
   Next
   PrintN("|")
 Next
 PrintN(border)

EndProcedure

Procedure.s buildpossible(x, y, Array possible.b(1))

 Protected index, column, row, boxColumn = (x / 3) * 3, boxRow = (y / 3) * 3
 Dim possible.b(9)
 For index = 0 To 8 
   possible(sudoku(index, y)) = #IsNotPossible ;record possibles in column
   possible(sudoku(x, index)) = #IsNotPossible ;record possibles in row
 Next
 
 ;record possibles in box
 For row = boxRow To boxRow + 2
   For column = boxColumn To boxColumn + 2 
     possible(sudoku(column, row)) = #IsNotPossible
   Next 
 Next

EndProcedure

Procedure solvePuzzle(x = 0, y = 0)

 Protected row, column, spot, digit
 Dim possible.b(9)
 
 For row = y To 8
   For column = x To 8
     If sudoku(column, row) = #Unknown
       buildpossible(column, row, possible())
       
       For digit =  1 To 9                                   
         If possible(digit) = #IsPossible
           sudoku(column, row) = digit
           spot = row * 9 + column + 1
           If solvePuzzle(spot % 9, spot / 9)
             Break 3
           EndIf   
         EndIf
       Next
       If digit = 10
         sudoku(column, row) = #Unknown
         ProcedureReturn #False
       EndIf 
     EndIf 
   Next 
   x = 0 ;reset column start point
 Next 
 ProcedureReturn #True

EndProcedure

If OpenConsole()

 readSudoku()
 displaySudoku()
 If solvePuzzle()
   PrintN("Solved.")
   displaySudoku()
 Else
   PrintN("Unable to solve puzzle") ;due to bad starting data
 EndIf 
 
 Print(#CRLF$ + #CRLF$ + "Press ENTER to exit")
 Input()
 CloseConsole()

EndIf</lang>

Output:
+-----+-----+-----+
|3 9 4|. . 2|6 7 .|
|. . .|3 . .|4 . .|
|5 . .|6 9 .|. 2 .|
+-----+-----+-----+
|. 4 5|. . .|9 . .|
|6 . .|. . .|. . 7|
|. . 7|. . .|5 8 .|
+-----+-----+-----+
|. 1 .|. 6 7|. . 8|
|. . 9|. . 8|. . .|
|. 2 6|4 . .|7 3 5|
+-----+-----+-----+
Solved.
+-----+-----+-----+
|3 9 4|8 5 2|6 7 1|
|2 6 8|3 7 1|4 5 9|
|5 7 1|6 9 4|8 2 3|
+-----+-----+-----+
|1 4 5|7 8 3|9 6 2|
|6 8 2|9 4 5|3 1 7|
|9 3 7|1 2 6|5 8 4|
+-----+-----+-----+
|4 1 3|5 6 7|2 9 8|
|7 5 9|2 3 8|1 4 6|
|8 2 6|4 1 9|7 3 5|
+-----+-----+-----+

Python

See Solving Sudoku puzzles with Python for GPL'd solvers of increasing complexity of algorithm.

A simple backtrack algorithm -- Quick but may take longer if the grid had been more than 9 x 9 <lang python> def initiate():

   box.append([0, 1, 2, 9, 10, 11, 18, 19, 20])
   box.append([3, 4, 5, 12, 13, 14, 21, 22, 23])
   box.append([6, 7, 8, 15, 16, 17, 24, 25, 26])
   box.append([27, 28, 29, 36, 37, 38, 45, 46, 47])
   box.append([30, 31, 32, 39, 40, 41, 48, 49, 50])
   box.append([33, 34, 35, 42, 43, 44, 51, 52, 53])
   box.append([54, 55, 56, 63, 64, 65, 72, 73, 74])
   box.append([57, 58, 59, 66, 67, 68, 75, 76, 77])
   box.append([60, 61, 62, 69, 70, 71, 78, 79, 80])
   for i in range(0, 81, 9):
       row.append(range(i, i+9))
   for i in range(9):
       column.append(range(i, 80+i, 9))

def valid(n, pos):

   current_row = pos/9
   current_col = pos%9
   current_box = (current_row/3)*3 + (current_col/3)
   for i in row[current_row]:
       if (grid[i] == n):
           return False
   for i in column[current_col]:
       if (grid[i] == n):
           return False
   for i in box[current_box]:
       if (grid[i] == n):
           return False
   return True

def solve():

   i = 0
   proceed = 1
   while(i < 81):
       if given[i]:
           if proceed:
                   i += 1
           else:
               i -= 1
       else:
           n = grid[i]
           prev = grid[i]
           while(n < 9):
             if (n < 9):
                 n += 1
             if valid(n, i):
                 grid[i] = n
                 proceed = 1
                 break
           if (grid[i] == prev):
              grid[i] = 0
              proceed = 0
           if proceed:
              i += 1
           else:
              i -=1

def inputs():

   nextt = 'T'
   number = 0
   pos = 0
   while(not(nextt == 'N' or nextt == 'n')):
       print "Enter the position:",
       pos = int(raw_input())
       given[pos - 1] = True
       print "Enter the numerical:",
       number = int(raw_input())
       grid[pos - 1] = number
       print "Do you want to enter another given?(Y, for yes: N, for no)"
       nextt = raw_input()


grid = [0]*81 given = [False]*81 box = [] row = [] column = [] initiate() inputs() solve() for i in range(9):

   print grid[i*9:i*9+9]

raw_input() </lang>

Racket

A Sudoku Solver in Racket.

Rascal

A sudoku is represented as a matrix, see Rascal solutions to matrix related problems for examples.

<lang Rascal>import Prelude; import vis::Figure; import vis::Render;

public rel[int,int,int] sudoku(rel[int x, int y, int v] sudoku){ annotated= annotateGrid(sudoku); solved = {<0,0,0,0,{0}>};

while(!isEmpty(solved)){ for (n <- [0 ..8]){ column = domainR(annotated, {n}); annotated -= column; annotated += reduceOptions(column);

row = {<x,y,v,g,p> | <x,y,v,g,p> <- annotated, y==n}; annotated -= row; annotated += reduceOptions(row);

grid1 = {<x,y,v,g,p> | <x,y,v,g,p> <- annotated, g==n}; annotated -= grid1; annotated += reduceOptions(grid1); }

solved = {<x,y,v,g,p> | <x,y,v,g,p> <- annotated, size(p)==1}; annotated -= solved; annotated += {<x,y,getOneFrom(p),g,{*[1 .. 9]}> | <x,y,v,g,p> <- solved}; }

result = {<x,y,v> | <x,y,v,g,p> <- annotated}; return result; }


//adds gridnumber and default set of options public rel[int,int,int,int,set[int]] annotateGrid(rel[int x, int y, int v] sudoku){ result = {}; for (<x, y, v> <- sudoku){ g = 0; if (x<3 && y<3) g = 0; if (2<x && x<6 && y<3) g = 1; if (x>5 && y<3) g = 2;

if (x<3 && 2<y && y<6) g = 3; if (2<x && x<6 && 2<y && y<6) g = 4; if (x>5 && 2<y && y<6) g = 5;

if (x<3 && y>5) g=6; if (2<x && x<6 && y>5) g=7; if (x>5 && y>5) g=8;

result += <x,y,v,g,{*[1 .. 9]}>; } return result; }

//reduces set of options public rel[int,int,int,int,set[int]] reduceOptions(rel[int x, int y, int v, int g, set[int] p] subSudoku){ solved = {<x,y,v,g,p> | <x,y,v,g,p> <- subSudoku, v!=0}; numbers = {*[1 .. 9]} - {v | <x,y,v,g,p> <- solved}; remaining = {<x,y,v,g,numbers&p> | <x,y,v,g,p> <- subSudoku-solved}; result = remaining + solved; return result; }

//a function to visualize the result public void displaySudoku(rel[int x, int y, int v] sudoku){ points = [box(text("<v>"), align(0.111111*(x+1),0.111111*(y+1)),shrink(0.1)) | <x,y,v> <- sudoku]; print(points); render(overlay([*points], aspectRatio(1.0))); }

//a sudoku public rel[int, int, int] sudokuA = { <0,0,3>, <1,0,9>, <2,0,4>, <3,0,0>, <4,0,0>, <5,0,2>, <6,0,6>, <7,0,7>, <8,0,0>, <0,1,0>, <1,1,0>, <2,1,0>, <3,1,3>, <4,1,0>, <5,1,0>, <6,1,4>, <7,1,0>, <8,1,0>, <0,2,5>, <1,2,0>, <2,2,0>, <3,2,6>, <4,2,9>, <5,2,0>, <6,2,0>, <7,2,2>, <8,2,0>, <0,3,0>, <1,3,4>, <2,3,5>, <3,3,0>, <4,3,0>, <5,3,0>, <6,3,9>, <7,3,0>, <8,3,0>, <0,4,6>, <1,4,0>, <2,4,0>, <3,4,0>, <4,4,0>, <5,4,0>, <6,4,0>, <7,4,0>, <8,4,7>, <0,5,0>, <1,5,0>, <2,5,7>, <3,5,0>, <4,5,0>, <5,5,0>, <6,5,5>, <7,5,8>, <8,5,0>, <0,6,0>, <1,6,1>, <2,6,0>, <3,6,0>, <4,6,6>, <5,6,7>, <6,6,0>, <7,6,0>, <8,6,8>, <0,7,0>, <1,7,0>, <2,7,9>, <3,7,0>, <4,7,0>, <5,7,8>, <6,7,0>, <7,7,0>, <8,7,0>, <0,8,0>, <1,8,2>, <2,8,6>, <3,8,4>, <4,8,0>, <5,8,0>, <6,8,7>, <7,8,3>, <8,8,5> };</lang>

Example

rascal>displaySudoku(sudoku(sudokuA))

See picture

REXX

The   SUDOKU   REXX programs (and output) are included here ──► Sudoku/REXX.

RPN (HP-15c)

This is a back-tracking solver written in RPN for the HP-15C calculator. It is highly optimized for size, rather than speed, as the target platform only has 448 bytes of memory for code and data combined.

Latest version and usage notes kept at: [Sudoku Solver for the HP 15-C]

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;       
; Register And Flag Usage        
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;       
;        0        General purpose variable used for miscelaneous purposes
;        1        Current index (0-80) in the pseudo-recursion 
;        2        Row (0-8) of current index
;        3        Column (0-8) of current index
;        4        Block # (0-8) of current index
;        5        Power of 10 of current column index
;        6        Value in the test solution at current index
;        7        Value of start clue at current index (0 if not set)
;        8 – 16   Starting row data
;        17 – 25  Current test solution
;        26 – 34  Flag matrix (bit set if digit used in a row/column/block)
;
;        Flag 2   Indicates that a digit has been used in cur row/column/block
;        Flag 3   Input to Subroutine B (whether to set or clear flags)
        
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;       
; setU(x)        
; Set/clear flag matrix values (show that x is used in a row/column/block)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;       
LBL D        
        GSB 5       ; calc bit value we need to set/clear in existing row
        RCL 2       ; Get the current row index into x
        GSB B       ; set flag matrix value and calc new bit value for the column
        RCL 3       ; Get the current column index into x
        GSB B       ; set flag matrix values and calc new bit value for the block
        RCL 4       ; Get the current block index into x
        
; MUST IMMEDIATELY FOLLOW PRECEEDING SUBROUTINE        
; utility subroutine for setting flag matrix values         

LBL B        
        GSB 1       ; get the current flag matrix row at index x
        
        RCL 0       ; get temp register (holds the bit value we will be setting)
        F? 3        ; flag 3 indicates if we are setting or clearing the flag
        CHS         ; if we are clearing, we will do a subtraction instead
        +           ; set/clear the flag
        
        X<>Y        ; bring the row index back into x
        2           ; 26 is the starting register for the flag matrix
        6        
        GSB 3       ; set I so that we are ready to store the new value
        STO (i)     ; store the new value into the flag matrix
        RDN         ; get rid of the new value to restore the stack
        9           ; the next bit value will be 9 bits to the left
        +           ; set the next bit index
        GTO 5       ; calculate the value with that bit set
                    ; we GTO instead of GSB and it will do the RTN
        
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;       
; putA(x)        
; Set the value x into the current row/column in the trial solution.         
; Does it by subtracting the previous value and adding the new one.        
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;       
LBL 7        
        X<>6        ; swap new value with register that holds current value
        STO 0       ; store the old value in the temp register
        RCL 2       ; Get the current row index into x
        1           ; 17 is the starting register for the current trial solution
        7        
        GSB 3       ; Set the indirect register
        RCL (i)     ; Get the current value for the entire row
        RCL 6       ; Get the new value
        RCL- 0      ; subtract the old value from the new value
        RCL* 5      ; shift the power of 10 to the appropriate column
        +           ; add to the old value
        STO (i)     ; store the new row value from where we got it
        RTN        
        
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;       
; change(x)        
; Increments or decrements the current position in the trial solution.        
; Updates the registers containing the current row, column and block index,
; and the one with the power of 10 factor for the current column and others
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;       
LBL 6        
        STO+ 1      ; x holds +1 or -1; Register 1 is the current index
        
        RCL 1       ; get the current index (0 to 80)
        RCL 1       ; get the current index (0 to 80)
        9           ; integer divide by 9 to get the row index (0 to 8)
        /           ; no integer divide on 15c so do a floating point divide
        INT         ; use the INT operator to finish of the integer divide
        STO 2       ; register 2 contains the current row index
        
        9        
        *        
        -           ; col = index - 9 * row
        STO 3       ; register 3 contains the current column index
        
        3           ; calculate the block index from the row & column indexes
        /           ; TODO: save a couple of bytes in this section of code
        RCL 2        
        3        
        /        
        INT          
        3        
        *        
        +        
        STO 4       ; register 4 holds the block index
        
        8           ; now calculate the power of 10 of the current column
        RCL- 3      ; Get the digit (from right) based on the column
        10^X        ; calculate the exponent
        STO 5       ; save in register 5 which is used throughout the code
        
        RCL 2       ; get the current row
        1           ; 17 is the start register of the current trial solution
        7        
        GSB 4       ; extract the value at the current column
        STO 6       ; reg 6: the current trial value at the current row/column
        
        RCL 2       ; get the current row
        8           ; 8 is the start register of the input data from the user
        GSB 4       ; extract the value at the current column
        STO 7       ; reg 7: starting value at the current row/column (0 if none)
        RTN        
        
; Extract value at the current column from the matrix indirectly specified by x&y
LBL 4        
        GSB 3       ; set the indirect register based on x & y
        RCL (i)     ; get the row from the matrix passed in
        RCL / 5     ; shift the row to the right
        INT         ; trim off the digits shifted to the right of the decimal
        1           ; we will do a modulus 10 to extract the last digit
        0        
        /           ; do the equivalent of a mod 10
        FRAC                
        1
        0
        *
        RTN
        
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;       
;  main()        
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;       
LBL A        
        CF 2        ; make sure flag 2 is unset - CLR REG does not do this
        CF 3        ; make sure flag 3 is unset - CLR REG does not do this
        1           ; start with a index in register 1 of -1 (0 to 80)
        CHS         ; that way we can start with an increment operation
        STO 1       ; and actually start at 0 where we want.
        
LBL 2               ; set the flags to show the input values are set
        1           ; go forward one position at a time
        GSB 6       ; go to the next position in the trial solution
        
        RCL 7       ; get the starting input value at this row/col 
        GSB 7       ; set the value in the trial solution
        RCL 7       ; get starting input value because the last call destroyed it
        TEST 1      ; if > 0 then the user input a value for this row/col
        GSB D       ; set the flags to indicate this value is set
        
        8           ; 80 is the upper bound of the indexes (9x9 = 80 = 0:80)
        0        
        RCL 1       ; get the current index
        TEST 6      ; if the current index hasn't reached 80
        GTO 2       ; do the next value
        1           ; reset the starting value
        CHS         ; to -1 as we did at the beginning of the program
        STO 1       ; register 1 holds the current index
        
LBL E               ; main solution loop
        8           ; when we reach the last index (80) we are done
        0        
        RCL 1       ; register 1 holds the current index
        TEST 5      ; see if we are at the end
        RTN         ;  finished        ; woohoo - we are done!
        1           ; Go forward one spot
        GSB 6       ; Do the position increment
        RCL 7       ; get the starting input value at this row/col 
        TEST 1      ; if it's > 0, the user specified a value here
        GTO E       ; go forward, since this value was specified by the user
        GSB 7       ; Set the value in the trial solution
        
LBL 8          
        9           ; check the possible digits in order 1-9.
        RCL 6       ; Get the current trial solution value
        TEST 5      ; Check to see if it is 9
        GTO C       ; If it is, backup one step
        1           ; We weren't at 9 yet, so increment the value by 1
        +        
        GSB 7       ; Set the value in the trial solution
        
        RCL 6       ; Get the current trial solution value
        GSB 5       ; Calc 2^x-1 to get the bit mask
        CF 2        ; Clear the flag thats used as a return value
        RCL 2       ; Get the current row index into x
        GSB 9       ; see if the current value has already been used in the row
        F? 2        ; If number has been used in the block, try the next value
        GTO 8        
        RCL 3       ; Get the current column index into x
        GSB 9       ; see if current value has already been used in the column
        F? 2        ; If number has been used in the block, try the next value
        GTO 8        
        RCL 4       ; Get the current block index into x
        GSB 9       ; see if the current value has already been used in the block
        F? 2        ; If number has been used in the block, try the next value
        GTO 8        
        RCL 6       ; Get the current trial solution value
        GSB D       ; set the flags to indicate this value is set
        GTO E       ; move on to the next position in the puzzle
        
LBL C               ; Come here to back up to the previous position
        1           ; We will go one spot backwards
        CHS        
        GSB 6       ; Set the new current position and all temp values
        TEST 1      ; previous call leaves the starting value in X
        GTO C       ; if value is > 0, it was set, backup one more spot
        RCL 6       ; Get the current trial solution value
        
        SF 3        ; flag 3: clear the flag matrix bits, instead of setting them
        GSB D       ; Set/Clear the flag matrix bits
        CF 3        ; unset the 3 flag
        GTO 8       ; check the next digit
        
LBL 9        
        GSB 1       ; get the appropriate row (x) from the flag matrix
        RCL /  0    ; divide by the temp register - right shifts value
        INT        
        2           ; if bit is set, fractional part will be non 0 when / 2
        /        
        FRAC        
        TEST 1      ; if bit is set, set flag 2 which is used as a return value
        SF 2        
        RDN         ; move the stack down to prepare the caller for the next call
        RDN         ; move the stack down to prepare the caller for the next call
        9           ; bit flags for row/col/block are << by 9 from each other
        +           ; calculates the appropriate bit offset for the next call
        GTO 5       ; calc 2^x-1 to get the bit mask
                    ; do a GTO instead of GSB and it will return for us

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;       
; setPow2(x)        
; Sets the utility temp register to 2^(x-1). Leaves x in place.        
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;       
LBL 5        
        STO 0       ; store the input X in the temp register
        1           ; we want to subtract 1 from the exponent
        -           ; calculate x-1
        2           ; set the base as 2
        X<>Y        ; the y^x function wants x and y reversed
        y^x         ; calculate the value
        X<>0        ; stuff result in temp register and restore the input x
        RTN        
        
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;       
; getPart(x)        
; Returns the integer representing the entire Xth row of the flag matrix        
; Row numbers start at 0.        
; returns value in x - input parameter x ends up in y        
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;       
LBL 1        
        ENTER        
        ENTER       ; duplicate the parameter so we can leave it for the caller
        2           ; 26 is the starting register for the flag matrix
        6        
        GSB 3       ; set the indirect register to the row specified by x
        RCL (i)     ; retrieve the entire row from the flag matrix
        RTN        
        
; Set the indirect register and remove the parameters from the stack
LBL 3        
        +           ; x+y is the memory offset we want
        STO I       ; put it in the indirect register
        RDN         ; get rid of the sum from the stack
        RTN        

Ruby

Example of a back-tracking solver, from wp:Algorithmics of sudoku

Works with: Ruby version 1.9.3+

<lang ruby>def read_matrix(data)

 lines = data.each_line.to_a                   # ver 2.0 later  data.lines
 9.times.collect { |i| 9.times.collect { |j| lines[i][j].to_i } }

end

def permissible(matrix, i, j)

 ok = [nil, *1..9]
 # Same as another in the column isn't permissible...
 9.times do |i2|
   ok[matrix[i2][j]] = nil if matrix[i2][j].nonzero?
 end
 # Same as another in the row isn't permissible...
 9.times do |j2|
   ok[matrix[i][j2]] = nil if matrix[i][j2].nonzero?
 end
 # Same as another in the 3x3 block isn't permissible...
 irange = (ig = (i / 3) * 3) .. ig + 2
 jrange = (jg = (j / 3) * 3) .. jg + 2
 irange.each do |i2|
   jrange.each do |j2|
     ok[matrix[i2][j2]] = nil if matrix[i2][j2].nonzero?
   end
 end
 # Gathering only permitted one
 ok.compact

end

def deep_copy_sudoku(matrix)

 matrix.collect { |row| row.dup }

end

def solve_sudoku(matrix)

 loop do
   options = []
   9.times do |i|
     9.times do |j|
       next if matrix[i][j].nonzero?
       p = permissible(matrix, i, j)
       # If nothing is permissible, there is no solution at this level.
       return if p.empty?              # return nil
       options << [i, j, p]
     end
   end
   # If the matrix is complete, we have a solution...
   return matrix if options.empty?
   
   i, j, permissible = options.min_by { |x| x.last.length }
   
   # If there is an option with only one solution, set it and re-check permissibility
   if permissible.length == 1
     matrix[i][j] = permissible[0]
     next
   end
   
   # We have two or more choices. We need to search both...
   permissible.each do |v|
     mtmp = deep_copy_sudoku(matrix)
     mtmp[i][j] = v
     ret = solve_sudoku(mtmp)
     return ret if ret
   end
   
   # We did an exhaustive search on this branch and nothing worked out.
   return
 end

end

def print_matrix(matrix)

 puts "Impossible" or return  unless matrix
 
 border = "+-----+-----+-----+"
 9.times do |i|
   puts border if i%3 == 0
   9.times do |j|
     print j%3 == 0 ? "|" : " "
     print matrix[i][j] == 0 ? "." : matrix[i][j]
   end
   puts "|"
 end
 puts border

end

data = <<EOS 394__267_ ___3__4__ 5__69__2_ _45___9__ 6_______7 __7___58_ _1__67__8 __9__8___ _264__735 EOS

matrix = read_matrix(data) print_matrix(matrix) puts print_matrix(solve_sudoku(matrix))</lang>

Output:
+-----+-----+-----+
|3 9 4|. . 2|6 7 .|
|. . .|3 . .|4 . .|
|5 . .|6 9 .|. 2 .|
+-----+-----+-----+
|. 4 5|. . .|9 . .|
|6 . .|. . .|. . 7|
|. . 7|. . .|5 8 .|
+-----+-----+-----+
|. 1 .|. 6 7|. . 8|
|. . 9|. . 8|. . .|
|. 2 6|4 . .|7 3 5|
+-----+-----+-----+

+-----+-----+-----+
|3 9 4|8 5 2|6 7 1|
|2 6 8|3 7 1|4 5 9|
|5 7 1|6 9 4|8 2 3|
+-----+-----+-----+
|1 4 5|7 8 3|9 6 2|
|6 8 2|9 4 5|3 1 7|
|9 3 7|1 2 6|5 8 4|
+-----+-----+-----+
|4 1 3|5 6 7|2 9 8|
|7 5 9|2 3 8|1 4 6|
|8 2 6|4 1 9|7 3 5|
+-----+-----+-----+

Scala

I use the following slightly modified code for creating new sudokus and it seems to me usable for solving given sudokus. It doesn't look like elegant and functional programming - so what! it works! This solver works with normally 9x9 sudokus as well as with sudokus of jigsaw type or sudokus with additional condition like diagonal constraint.

Works with: Scala version 2.9.1

<lang scala>object SudokuSolver extends App {

 class Solver {
   var solution = new Array[Int](81)   //listOfFields toArray
   val fp2m: Int => Tuple2[Int,Int] = pos => Pair(pos/9+1,pos%9+1) //get row, col from array position
   val setAll = (1 to 9) toSet //all possibilities
   val arrayGroups = new Array[List[List[Int]]](81)
   val sv: Int => Int = (row: Int) => (row-1)*9 //start value group row
   val ev: Int => Int = (row: Int) => sv(row)+8 //end value group row
   val fgc: (Int,Int) => Int = (i,col) => i*9+col-1 //get group col
   val fgs: Int => (Int,Int) = p => Pair(p, p/(27)*3+p%9/3) //get group square box
   for (pos <- 0 to 80) {
     val (row,col) = fp2m(pos)
     val gRow = (sv(row) to ev(row)).toList
     val gCol = ((0 to 8) toList) map (fgc(_,col))
     val gSquare = (0 to 80 toList) map fgs filter (_._2==(fgs(pos))._2) map (_._1)
     arrayGroups(pos) = List(gRow,gCol,gSquare)
   }
   val listGroups = arrayGroups toList 
   
   val fpv4s: (Int) => List[Int] = pos => {   //get possible values for solving
     val setRow = (listGroups(pos)(0) map (solution(_))).toSet
     val setCol = listGroups(pos)(1).map(solution(_)).toSet
     val setSquare = listGroups(pos)(2).map(solution(_)).toSet
     val setG = setRow++setCol++setSquare--Set(0)
     val setPossible = setAll--setG
     setPossible.toList.sortWith(_<_)
   }
   
   
   //solve the riddle: Nil ==> solution does not exist
   def solve(listOfFields: List[Int]): List[Int] = {
     solution = listOfFields toArray
     def checkSol(uncheckedSol: List[Int]): List[Int] = {
       if (uncheckedSol == Nil) return Nil
       solution = uncheckedSol toArray
       val check = (0 to 80).map(fpv4s(_)).filter(_.size>0)
       if (check == Nil) return uncheckedSol
       return Nil
     }
   
     val f1: Int => Pair[Int,Int] = p => Pair(p,listOfFields(p))
     val numFields = (0 to 80 toList) map f1 filter (_._2==0)
     val iter = numFields map ((_: (Int,Int))._1)
     var p_iter = 0
     val first: () => Int = () => {
       val ret = numFields match {
         case Nil => -1
         case _   => numFields(0)._1
       }
       ret
     }
 
     val last: () => Int = () => {
       val ret = numFields match {
         case Nil => -1
         case _   => numFields(numFields.size-1)._1
       }
       ret
     }
 
     val hasPrev: () => Boolean = () => p_iter > 0
     val prev: () => Int = () => {p_iter -= 1; iter(p_iter)}
     val hasNext: () => Boolean = () => p_iter < iter.size-1
     val next: () => Int = () => {p_iter += 1; iter(p_iter)}
     val fixed: Int => Boolean = pos => listOfFields(pos) != 0  
     val possiArray = new Array[List[Int]](numFields.size)
     val firstUF = first() //first unfixed
     if (firstUF < 0) return checkSol(solution.toList) //that is it!
     var pif = iter(p_iter) //pos in fields
     val lastUF = last() //last unfixed
     val (row,col) = fp2m(pif)
     possiArray(p_iter) = fpv4s(pif).toList.sortWith(_<_)
     while(pif <= lastUF) {
       val (row,col) = fp2m(pif)
       if (possiArray(p_iter) == null) possiArray(p_iter) = fpv4s(pif).toList.sortWith(_<_)
       val possis = possiArray(p_iter)
       if (possis.isEmpty) {
         if (hasPrev()) {
           possiArray(p_iter) = null
           solution(pif) = 0
           pif = prev()
         } else {
           return Nil
         }
       } else {
         solution(pif) = possis(0)
         possiArray(p_iter) = (possis.toSet - possis(0)).toList.sortWith(_<_)
         if (hasNext()) {
           pif = next()
         } else {
           return checkSol(solution.toList)
         }
       }
     }
     checkSol(solution.toList)
   }
 }  
 val f2Str: List[Int] => String = fields => {
   val sepLine = "+---+---+---+"
   val sepPoints = Set(2,5,8)
   val fs: (Int, Int) => String = (i, v) => v.toString.replace("0"," ")+(if (sepPoints.contains(i%9)) "|" else "")
   sepLine+"\n"+(0 to fields.size-1).map(i => (if (i%9==0) "|" else "")+fs(i,fields(i))+(if (i%9==8) if (sepPoints.contains(i/9)) "\n"+sepLine+"\n" else "\n" else "")).foldRight("")(_+_)
 }
 
 val solver = new Solver()
 val riddle = List(3,9,4,0,0,2,6,7,0,
                   0,0,0,3,0,0,4,0,0,
                   5,0,0,6,9,0,0,2,0,
                   0,4,5,0,0,0,9,0,0,
                   6,0,0,0,0,0,0,0,7,
                   0,0,7,0,0,0,5,8,0,
                   0,1,0,0,6,7,0,0,8,
                   0,0,9,0,0,8,0,0,0,
                   0,2,6,4,0,0,7,3,5)
 println("riddle:")
 println(f2Str(riddle))
 var solution = solver.solve(riddle)
 println("solution:")
 println(solution match {case Nil => "no solution!!!" case _ => f2Str(solution)})

}</lang>

Output:
riddle:
+---+---+---+
|394|  2|67 |
|   |3  |4  |
|5  |69 | 2 |
+---+---+---+
| 45|   |9  |
|6  |   |  7|
|  7|   |58 |
+---+---+---+
| 1 | 67|  8|
|  9|  8|   |
| 26|4  |735|
+---+---+---+

solution:
+---+---+---+
|394|852|671|
|268|371|459|
|571|694|823|
+---+---+---+
|145|783|962|
|682|945|317|
|937|126|584|
+---+---+---+
|413|567|298|
|759|238|146|
|826|419|735|
+---+---+---+

The implementation above doesn't work so effective for sudokus like Bracmat version, therefore I implemented a second version inspired by Java section:

Works with: Scala version 2.9.1

<lang scala>object SudokuSolver extends App {

 object Solver {
   var solution = new Array[Int](81)
   val fap: (Int, Int) => Int = (row, col) => (row)*9+col //function array position
   def solve(listOfFields: List[Int]): List[Int] = {
     solution = listOfFields toArray
     
     val mRowSubset = new Array[Boolean](81)
     val mColSubset = new Array[Boolean](81)
     val mBoxSubset = new Array[Boolean](81)
     def initSubsets: Unit = {
       for (row <- 0 to 8) {
         for (col <- 0 to 8) {
           val value = solution(fap(row, col))
           if (value != 0)
             setSubsetValue(row, col, value, true)
         }
       }
     }
     
     def setSubsetValue(r: Int, c: Int, value: Int, present: Boolean): Unit = {
       mRowSubset(fap(r, value - 1)) = present
       mColSubset(fap(c, value - 1)) = present
       mBoxSubset(fap(computeBoxNo(r, c), value - 1)) = present
     }
     def computeBoxNo(r: Int, c: Int): Int = {
       val boxRow = r / 3
       val boxCol = c / 3
       return boxRow * 3 + boxCol 
     }
     def isValid(r: Int, c: Int, value: Int): Boolean = {
       val vVal = value - 1
       val isPresent = mRowSubset(fap(r, vVal)) || mColSubset(fap(c, vVal)) || mBoxSubset(fap(computeBoxNo(r, c), vVal))
       return !isPresent
     }
     def solve(row: Int, col: Int): Boolean = {
       var r = row
       var c = col
       if (r == 9) {
         r = 0
         c += 1
         if (c == 9)
           return true
       }
       
       if(solution(fap(r,c)) != 0)
         return solve(r+1,c)
       for(value <- 1 to 9) 
         if(isValid(r, c, value)) {
           solution(fap(r,c)) = value
           setSubsetValue(r, c, value, true)
           if(solve(r+1,c))
             return true
           setSubsetValue(r, c, value, false)
         }
       solution(fap(r,c)) = 0
       return false
     }

     def checkSol: Boolean = {
       initSubsets
       if ((mRowSubset.exists(_==false)) || (mColSubset.exists(_==false)) || (mBoxSubset.exists(_==false))) return false
       true
     }
     initSubsets
     val ret = solve(0,0)
     if (ret) 
       if (checkSol) return solution.toList else Nil
     else
       return Nil
   }
 }
 
 val f2Str: List[Int] => String = fields => {
   val f2Stri: List[Int] => String = fields => {
     val sepLine = "+---+---+---+"
     val sepPoints = Set(2,5,8)
     val fs: (Int, Int) => String = (i, v) => v.toString.replace("0"," ")+(if (sepPoints.contains(i%9)) "|" else "")
     val s = sepLine+"\n"+(0 to fields.size-1).map(i => (if (i%9==0) "|" else "")+fs(i,fields(i))+(if (i%9==8) if (sepPoints.contains(i/9)) "\n"+sepLine+"\n" else "\n" else "")).foldRight("")(_+_)
     s
   }
   val s = fields match {case Nil => "no solution!!!" case _ => f2Stri(fields)}
   s
 }
 val elapsedtime: (=> Unit) => Long = f => {val s = System.currentTimeMillis; f; (System.currentTimeMillis - s)/1000}
 var sol = List[Int]()
 
 val sudokus = List(
     ("riddle used in Ada section:",
      "394..267....3..4..5..69..2..45...9..6.......7..7...58..1..67..8..9..8....264..735"),
     ("riddle used in Bracmat section:",
      "..............3.85..1.2.......5.7.....4...1...9.......5......73..2.1........4...9"),
     ("riddle from Groovy section: 4th exceptionally difficult example in Wikipedia: ~80 seconds",
      "..3......4...8..36..8...1...4..6..73...9..........2..5..4.7..686........7..6..5.."),
     ("riddle used in Ada section with incorrect modifactions - it should fail:",
      "3943.267....3..4..5..69..2..45...9..6.......7..7...58..1..67..8..9..8....264..735"),       
     ("riddle constructed with mess - it should fail too:",
      "123456789456789123789123456.45..89..6.......72.7...58.31..67..8..9..8....264..735"))
 for (sudoku <- sudokus) {
   val desc = sudoku._1
   val riddle = sudoku._2.replace(".","0").toList.map(_.toString.toInt)
   println(desc+"\n"+f2Str(riddle)+"\n"
     +"elapsed time: "+elapsedtime(sol = Solver.solve(riddle))+" sec"+"\n"+"solution:"+"\n"+f2Str(sol)
     +("\n"*2))
 }

}</lang>

Output:
riddle used in Ada section:
+---+---+---+
|394|  2|67 |
|   |3  |4  |
|5  |69 | 2 |
+---+---+---+
| 45|   |9  |
|6  |   |  7|
|  7|   |58 |
+---+---+---+
| 1 | 67|  8|
|  9|  8|   |
| 26|4  |735|
+---+---+---+
elapsed time: 0 sec
solution:
+---+---+---+
|394|852|671|
|268|371|459|
|571|694|823|
+---+---+---+
|145|783|962|
|682|945|317|
|937|126|584|
+---+---+---+
|413|567|298|
|759|238|146|
|826|419|735|
+---+---+---+

riddle used in Bracmat section:
+---+---+---+
|   |   |   |
|   |  3| 85|
|  1| 2 |   |
+---+---+---+
|   |5 7|   |
|  4|   |1  |
| 9 |   |   |
+---+---+---+
|5  |   | 73|
|  2| 1 |   |
|   | 4 |  9|
+---+---+---+
elapsed time: 43 sec
solution:
+---+---+---+
|987|654|321|
|246|173|985|
|351|928|746|
+---+---+---+
|128|537|694|
|634|892|157|
|795|461|832|
+---+---+---+
|519|286|473|
|472|319|568|
|863|745|219|
+---+---+---+

riddle from Groovy section: 4th exceptionally difficult example in Wikipedia: ~80 seconds
+---+---+---+
|  3|   |   |
|4  | 8 | 36|
|  8|   |1  |
+---+---+---+
| 4 | 6 | 73|
|   |9  |   |
|   |  2|  5|
+---+---+---+
|  4| 7 | 68|
|6  |   |   |
|7  |6  |5  |
+---+---+---+
elapsed time: 3 sec
solution:
+---+---+---+
|123|456|789|
|457|189|236|
|968|327|154|
+---+---+---+
|249|561|873|
|576|938|412|
|831|742|695|
+---+---+---+
|314|275|968|
|695|814|327|
|782|693|541|
+---+---+---+

riddle used in Ada section with incorrect modifactions - it should fail:
+---+---+---+
|394|3 2|67 |
|   |3  |4  |
|5  |69 | 2 |
+---+---+---+
| 45|   |9  |
|6  |   |  7|
|  7|   |58 |
+---+---+---+
| 1 | 67|  8|
|  9|  8|   |
| 26|4  |735|
+---+---+---+
elapsed time: 0 sec
solution:
no solution!!!

riddle constructed with mess - it should fail too:
+---+---+---+
|123|456|789|
|456|789|123|
|789|123|456|
+---+---+---+
| 45|  8|9  |
|6  |   |  7|
|2 7|   |58 |
+---+---+---+
|31 | 67|  8|
|  9|  8|   |
| 26|4  |735|
+---+---+---+
elapsed time: 0 sec
solution:
no solution!!!

Sidef

Translation of: Perl 6

<lang ruby>__USE_INTNUM__

func solve(board) {

   board.range.each { |i|
       !board[i] || next;
       var t = board[
               board.range.grep {|j|
                   (j.div(9)  == i.div(9)) ||
                   (j.mod(9)  == i.mod(9)) ||
                   (j.div(27) == i.div(27) &&
                   (j.mod(9).div(3) == i.mod(9).div(3)))
               }
           ];
       1..9 grep {!(.~~t)}
            each {|k| board[i] = k; solve(board)};
       board[i] = 0;
       return;
   };
   board.range.each { |i|
       print "#{board[i]} ";
       {print " "}  if (i+1 %% 3);
       {print "\n"} if (i+1 %% 9);
       {print "\n"} if (i+1 %% 27);
   };

}

var board = %w(

   5 3 0  0 2 4  7 0 0
   0 0 2  0 0 0  8 0 0
   1 0 0  7 0 3  9 0 2
   0 0 8  0 7 2  0 4 9
   0 2 0  9 8 0  0 7 0
   7 9 0  0 0 0  0 8 0
   0 0 0  0 3 0  5 0 6
   9 6 0  0 1 0  3 0 0
   0 5 0  6 9 0  0 1 0

).map{.to_i};

solve(board);</lang>

Output:
5 3 9  8 2 4  7 6 1  
6 7 2  1 5 9  8 3 4  
1 8 4  7 6 3  9 5 2  

3 1 8  5 7 2  6 4 9  
4 2 5  9 8 6  1 7 3  
7 9 6  3 4 1  2 8 5  

8 4 1  2 3 7  5 9 6  
9 6 7  4 1 5  3 2 8  
2 5 3  6 9 8  4 1 7  

Swift

Translation of: Java

<lang Swift>import Foundation

typealias SodukuPuzzle = Int

class Soduku {

   let mBoardSize:Int!
   let mBoxSize:Int!
   var mBoard:SodukuPuzzle!
   var mRowSubset:Bool!
   var mColSubset:Bool!
   var mBoxSubset:Bool!
   
   init(board:SodukuPuzzle) {
       mBoard = board
       mBoardSize = board.count
       mBoxSize = Int(sqrt(Double(mBoardSize)))
       mRowSubset = Bool(count: mBoardSize, repeatedValue: [Bool](count: mBoardSize, repeatedValue: false))
       mColSubset = Bool(count: mBoardSize, repeatedValue: [Bool](count: mBoardSize, repeatedValue: false))
       mBoxSubset = Bool(count: mBoardSize, repeatedValue: [Bool](count: mBoardSize, repeatedValue: false))
       initSubsets()
   }
   
   func computeBoxNo(i:Int, _ j:Int) -> Int {
       let boxRow = i / mBoxSize
       let boxCol = j / mBoxSize
       
       return boxRow * mBoxSize + boxCol
   }
   
   func initSubsets() {
       for i in 0..<mBoard.count {
           for j in 0..<mBoard.count {
               let value = mBoard[i][j]
               
               if value != 0 {
                   setSubsetValue(i, j, value, true);
               }
           }
       }
   }
   
   func isValid(i:Int, _ j:Int, var _ val:Int) -> Bool {
       val--
       let isPresent = mRowSubset[i][val] || mColSubset[j][val] || mBoxSubset[computeBoxNo(i, j)][val]
       return !isPresent
   }
   
   func printBoard() {
       for i in 0..<mBoardSize {
           if i % mBoxSize == 0 {
               println(" -----------------------")
           }
           
           for j in 0..<mBoardSize {
               if j % mBoxSize == 0 {
                   print("| ")
               }
               
               print(mBoard[i][j] != 0 ? String(mBoard[i][j]) : " ")
               print(" ")
           }
           
           println("|")
       }
       
       println(" -----------------------")
   }
   
   func setSubsetValue(i:Int, _ j:Int, _ value:Int, _ present:Bool) {
       mRowSubset[i][value - 1] = present
       mColSubset[j][value - 1] = present
       mBoxSubset[computeBoxNo(i, j)][value - 1] = present
   }
   
   func solve() {
       solve(0, 0)
   }
   
   func solve(var i:Int, var _ j:Int) -> Bool {
       if i == mBoardSize {
           i = 0
           j++
           if j == mBoardSize {
               return true
           }
       }
       
       if mBoard[i][j] != 0 {
           return solve(i + 1, j)
       }
       
       for value in 1...mBoardSize {
           if isValid(i, j, value) {
               mBoard[i][j] = value
               setSubsetValue(i, j, value, true)
               
               if solve(i + 1, j) {
                   return true
               }
               
               setSubsetValue(i, j, value, false)
           }
       }
       
       mBoard[i][j] = 0
       return false
   }

}

let board = [

   [4, 0, 0, 0, 0, 0, 0, 6, 0],
   [5, 0, 0, 0, 8, 0, 9, 0, 0],
   [3, 0, 0, 0, 0, 1, 0, 0, 0],
   
   [0, 2, 0, 7, 0, 0, 0, 0, 1],
   [0, 9, 0, 0, 0, 0, 0, 4, 0],
   [8, 0, 0, 0, 0, 3, 0, 5, 0],
   [0, 0, 0, 2, 0, 0, 0, 0, 7],
   [0, 0, 6, 0, 5, 0, 0, 0, 8],
   [0, 1, 0, 0, 0, 0, 0, 0, 6]

]

let puzzle = Soduku(board: board) puzzle.solve() puzzle.printBoard()</lang>

Output:
 -----------------------
| 4 8 2 | 9 7 5 | 1 6 3 |
| 5 6 1 | 3 8 2 | 9 7 4 |
| 3 7 9 | 6 4 1 | 8 2 5 |
 -----------------------
| 6 2 5 | 7 9 4 | 3 8 1 |
| 1 9 3 | 5 6 8 | 7 4 2 |
| 8 4 7 | 1 2 3 | 6 5 9 |
 -----------------------
| 9 5 8 | 2 1 6 | 4 3 7 |
| 7 3 6 | 4 5 9 | 2 1 8 |
| 2 1 4 | 8 3 7 | 5 9 6 |
 -----------------------

Tcl

Adapted from a page on the Tcler's Wiki to use a standard object system.

Note that you can implement more rules if you want. Just make another subclass of Rule and the solver will pick it up and use it automatically.

Works with: Tcl version 8.6

or

Library: TclOO

<lang tcl>package require Tcl 8.6 oo::class create Sudoku {

   variable idata
   method clear {} {

for {set y 0} {$y < 9} {incr y} { for {set x 0} {$x < 9} {incr x} { my set $x $y {} } }

   }
   method load {data} {

set error "data must be a 9-element list, each element also being a\ list of 9 numbers from 1 to 9 or blank or an @ symbol." if {[llength $data] != 9} { error $error } for {set y 0} {$y<9} {incr y} { set row [lindex $data $y] if {[llength $row] != 9} { error $error } for {set x 0} {$x<9} {incr x} { set d [lindex $row $x] if {![regexp {^[@1-9]?$} $d]} { error $d-$error } if {$d eq "@"} {set d ""} my set $x $y $d } }

   }
   method dump {} {

set rows {} for {set y 0} {$y < 9} {incr y} { lappend rows [my getRow 0 $y] } return $rows

   }
   method Log msg {

# Chance to print message

   }
   method set {x y value} {

if {[catch {set value [format %d $value]}]} {set value 0} if {$value<1 || $value>9} { set idata(sq$x$y) {} } else { set idata(sq$x$y) $value }

   }
   method get {x y} {

if {![info exists idata(sq$x$y)]} { return {} } return $idata(sq$x$y)

   }
   method getRow {x y} {

set row {} for {set x 0} {$x<9} {incr x} { lappend row [my get $x $y] } return $row

   }
   method getCol {x y} {

set col {} for {set y 0} {$y<9} {incr y} { lappend col [my get $x $y] } return $col

   }
   method getRegion {x y} {

set xR [expr {($x/3)*3}] set yR [expr {($y/3)*3}] set regn {} for {set x $xR} {$x < $xR+3} {incr x} { for {set y $yR} {$y < $yR+3} {incr y} { lappend regn [my get $x $y] } } return $regn

   }

}

  1. SudokuSolver inherits from Sudoku, and adds the ability to filter
  2. possibilities for a square by looking at all the squares in the row, column,
  3. and region that the square is a part of. The method 'solve' contains a list
  4. of rule-objects to use, and iterates over each square on the board, applying
  5. each rule sequentially until the square is allocated.

oo::class create SudokuSolver {

   superclass Sudoku
   method validchoices {x y} {

if {[my get $x $y] ne {}} { return [my get $x $y] }

set row [my getRow $x $y] set col [my getCol $x $y] set regn [my getRegion $x $y] set eliminate [list {*}$row {*}$col {*}$regn] set eliminate [lsearch -all -inline -not $eliminate {}] set eliminate [lsort -unique $eliminate]

set choices {} for {set c 1} {$c < 10} {incr c} { if {$c ni $eliminate} { lappend choices $c } } if {[llength $choices]==0} { error "No choices left for square $x,$y" } return $choices

   }
   method completion {} {

return [expr { 81-[llength [lsearch -all -inline [join [my dump]] {}]] }]

   }
   method solve {} {

foreach ruleClass [info class subclass Rule] { lappend rules [$ruleClass new] }

while {1} { set begin [my completion] for {set y 0} {$y < 9} {incr y} { for {set x 0} {$x < 9} {incr x} { if {[my get $x $y] eq ""} { foreach rule $rules { set c [$rule solve [self] $x $y] if {$c} { my set $x $y $c my Log "[info object class $rule] solved [self] at $x,$y for $c" break } } } } } set end [my completion] if {$end==81} { my Log "Finished solving!" break } elseif {$begin==$end} { my Log "A round finished without solving any squares, giving up." break } } foreach rule $rules { $rule destroy }

   }

}

  1. Rule is the template for the rules used in Solver. The other rule-objects
  2. apply their logic to the values passed in and return either '0' or a number
  3. to allocate to the requested square.

oo::class create Rule {

   method solve {hSudoku x y} {

if {![info object isa typeof $hSudoku SudokuSolver]} { error "hSudoku must be an instance of class SudokuSolver." }

tailcall my Solve $hSudoku $x $y [$hSudoku validchoices $x $y]

   }

}

  1. Get all the allocated numbers for each square in the the row, column, and
  2. region containing $x,$y. If there is only one unallocated number among all
  3. three groups, it must be allocated at $x,$y

oo::class create RuleOnlyChoice {

   superclass Rule
   method Solve {hSudoku x y choices} {

if {[llength $choices]==1} { return $choices } else { return 0 }

   }

}

  1. Test each column to determine if $choice is an invalid choice for all other
  2. columns in row $X. If it is, it must only go in square $x,$y.

oo::class create RuleColumnChoice {

   superclass Rule
   method Solve {hSudoku x y choices} {

foreach choice $choices { set failed 0 for {set x2 0} {$x2<9} {incr x2} { if {$x2 != $x && $choice in [$hSudoku validchoices $x2 $y]} { set failed 1 break } } if {!$failed} {return $choice} } return 0

   }

}

  1. Test each row to determine if $choice is an invalid choice for all other
  2. rows in column $y. If it is, it must only go in square $x,$y.

oo::class create RuleRowChoice {

   superclass Rule
   method Solve {hSudoku x y choices} {

foreach choice $choices { set failed 0 for {set y2 0} {$y2<9} {incr y2} { if {$y2 != $y && $choice in [$hSudoku validchoices $x $y2]} { set failed 1 break } } if {!$failed} {return $choice} } return 0

   }

}

  1. Test each square in the region occupied by $x,$y to determine if $choice is
  2. an invalid choice for all other squares in that region. If it is, it must
  3. only go in square $x,$y.

oo::class create RuleRegionChoice {

   superclass Rule
   method Solve {hSudoku x y choices} {

foreach choice $choices { set failed 0 set regnX [expr {($x/3)*3}] set regnY [expr {($y/3)*3}] for {set y2 $regnY} {$y2 < $regnY+3} {incr y2} { for {set x2 $regnX} {$x2 < $regnX+3} {incr x2} { if { ($x2!=$x || $y2!=$y) && $choice in [$hSudoku validchoices $x2 $y2] } then { set failed 1 break } } } if {!$failed} {return $choice} } return 0

   }

}</lang> Demonstration code: <lang tcl>SudokuSolver create sudoku sudoku load {

   {3 9 4    @ @ 2    6 7 @}
   {@ @ @    3 @ @    4 @ @}
   {5 @ @    6 9 @    @ 2 @}
   {@ 4 5    @ @ @    9 @ @}
   {6 @ @    @ @ @    @ @ 7}
   {@ @ 7    @ @ @    5 8 @}
   {@ 1 @    @ 6 7    @ @ 8}
   {@ @ 9    @ @ 8    @ @ @}
   {@ 2 6    4 @ @    7 3 5}

} sudoku solve

  1. Simple pretty-printer for completed sudokus

puts +-----+-----+-----+ foreach line [sudoku dump] postline {0 0 1 0 0 1 0 0 1} {

   puts |[lrange $line 0 2]|[lrange $line 3 5]|[lrange $line 6 8]|
   if {$postline} {

puts +-----+-----+-----+

   }

} sudoku destroy</lang>

Output:
+-----+-----+-----+
|3 9 4|8 5 2|6 7 1|
|2 6 8|3 7 1|4 5 9|
|5 7 1|6 9 4|8 2 3|
+-----+-----+-----+
|1 4 5|7 8 3|9 6 2|
|6 8 2|9 4 5|3 1 7|
|9 3 7|1 2 6|5 8 4|
+-----+-----+-----+
|4 1 3|5 6 7|2 9 8|
|7 5 9|2 3 8|1 4 6|
|8 2 6|4 1 9|7 3 5|
+-----+-----+-----+

If we'd added a logger method (after creating the sudoku object but before running the solver) like this: <lang tcl>oo::objdefine sudoku method Log msg {puts $msg}</lang> Then this additional logging output would have been produced prior to the result being printed:

::RuleOnlyChoice solved ::sudoku at 8,0 for 1
::RuleColumnChoice solved ::sudoku at 1,1 for 6
::RuleRegionChoice solved ::sudoku at 4,1 for 7
::RuleRowChoice solved ::sudoku at 7,1 for 5
::RuleOnlyChoice solved ::sudoku at 8,1 for 9
::RuleColumnChoice solved ::sudoku at 1,2 for 7
::RuleColumnChoice solved ::sudoku at 5,2 for 4
::RuleRowChoice solved ::sudoku at 6,2 for 8
::RuleOnlyChoice solved ::sudoku at 8,2 for 3
::RuleColumnChoice solved ::sudoku at 3,3 for 7
::RuleRowChoice solved ::sudoku at 1,4 for 8
::RuleRowChoice solved ::sudoku at 5,4 for 5
::RuleRowChoice solved ::sudoku at 6,4 for 3
::RuleRowChoice solved ::sudoku at 0,5 for 9
::RuleOnlyChoice solved ::sudoku at 1,5 for 3
::RuleOnlyChoice solved ::sudoku at 0,6 for 4
::RuleOnlyChoice solved ::sudoku at 2,6 for 3
::RuleColumnChoice solved ::sudoku at 3,6 for 5
::RuleOnlyChoice solved ::sudoku at 6,6 for 2
::RuleOnlyChoice solved ::sudoku at 7,6 for 9
::RuleOnlyChoice solved ::sudoku at 0,7 for 7
::RuleOnlyChoice solved ::sudoku at 1,7 for 5
::RuleColumnChoice solved ::sudoku at 4,7 for 3
::RuleOnlyChoice solved ::sudoku at 6,7 for 1
::RuleOnlyChoice solved ::sudoku at 0,8 for 8
::RuleOnlyChoice solved ::sudoku at 4,8 for 1
::RuleOnlyChoice solved ::sudoku at 5,8 for 9
::RuleOnlyChoice solved ::sudoku at 3,0 for 8
::RuleOnlyChoice solved ::sudoku at 4,0 for 5
::RuleColumnChoice solved ::sudoku at 2,1 for 8
::RuleOnlyChoice solved ::sudoku at 5,1 for 1
::RuleOnlyChoice solved ::sudoku at 2,2 for 1
::RuleRowChoice solved ::sudoku at 0,3 for 1
::RuleColumnChoice solved ::sudoku at 4,3 for 8
::RuleColumnChoice solved ::sudoku at 5,3 for 3
::RuleOnlyChoice solved ::sudoku at 7,3 for 6
::RuleOnlyChoice solved ::sudoku at 8,3 for 2
::RuleOnlyChoice solved ::sudoku at 2,4 for 2
::RuleColumnChoice solved ::sudoku at 3,4 for 9
::RuleOnlyChoice solved ::sudoku at 4,4 for 4
::RuleOnlyChoice solved ::sudoku at 7,4 for 1
::RuleColumnChoice solved ::sudoku at 3,5 for 1
::RuleOnlyChoice solved ::sudoku at 4,5 for 2
::RuleOnlyChoice solved ::sudoku at 5,5 for 6
::RuleOnlyChoice solved ::sudoku at 8,5 for 4
::RuleOnlyChoice solved ::sudoku at 3,7 for 2
::RuleOnlyChoice solved ::sudoku at 7,7 for 4
::RuleOnlyChoice solved ::sudoku at 8,7 for 6
::RuleOnlyChoice solved ::sudoku at 0,1 for 2
Finished solving!

Ursala

<lang Ursala>#import std

  1. import nat

sudoku =

@FL mat0+ block3+ mat` *+ block3*+ block9+ -+

  ~&rSL+ (psort (nleq+)* <~&blrl,~&blrr>)+ ~&arg^& -+
     ~&al?\~&ar ~&aa^&~&afahPRPfafatPJPRY+ ~&farlthlriNCSPDPDrlCS2DlrTS2J,
     ^|J/~& ~&rt!=+ ^= ~&s+ ~&H(
        -+.|=&lrr;,|=&lrl;,|=≪+-,
        ~&rgg&& ~&irtPFXlrjrXPS; ~&lrK2tkZ2g&& ~&llrSL2rDrlPrrPljXSPTSL)+-,
  //~&p ^|DlrDSLlrlPXrrPDSL(~&,num*+ rep2 block3)*= num block27 ~&iiK0 iota9,
  * `0?=\~&iNC ! ~&t digits+-</lang>

test program: <lang Ursala>#show+

example =

sudoku

-[ 394002670 000300400 500690020 045000900 600000007 007000580 010067008 009008000 026400735]-</lang>

Output:
394 852 671
268 371 459
571 694 823

145 783 962
682 945 317
937 126 584

413 567 298
759 238 146
826 419 735

VBA

Translation of: Fortran

<lang VB>Dim grid(9, 9) Dim gridSolved(9, 9)

Public Sub Solve(i, j)

 If i > 9 Then
   'exit with gridSolved = Grid
   For r = 1 To 9
     For c = 1 To 9
       gridSolved(r, c) = grid(r, c)
     Next c
   Next r
   Exit Sub
 End If
 For n = 1 To 9
   If isSafe(i, j, n) Then
     nTmp = grid(i, j)
     grid(i, j) = n
     If j = 9 Then
       Solve i + 1, 1
     Else
       Solve i, j + 1
     End If
     grid(i, j) = nTmp
   End If
 Next n

End Sub

Public Function isSafe(i, j, n) As Boolean Dim iMin As Integer Dim jMin As Integer

If grid(i, j) <> 0 Then

 isSafe = (grid(i, j) = n)
 Exit Function

End If

'grid(i,j) is an empty cell. Check if n is OK 'first check the row i For c = 1 To 9

 If grid(i, c) = n Then
   isSafe = False
   Exit Function
 End If

Next c

'now check the column j For r = 1 To 9

If grid(r, j) = n Then
  isSafe = False
  Exit Function
End If

Next r

'finally, check the 3x3 subsquare containing grid(i,j) iMin = 1 + 3 * Int((i - 1) / 3) jMin = 1 + 3 * Int((j - 1) / 3) For r = iMin To iMin + 2

 For c = jMin To jMin + 2
   If grid(r, c) = n Then
     isSafe = False
     Exit Function
   End If
 Next c

Next r

'all tests were OK isSafe = True End Function

Public Sub Sudoku()

 'main routine
 'to use, fill in the grid and
 'type "Sudoku" in the Immediate panel of the Visual Basic for Applications window
 Dim s(9) As String
 'initialise grid using 9 strings,one per row
 s(1) = "001005070"
 s(2) = "920600000"
 s(3) = "008000600"
 s(4) = "090020401"
 s(5) = "000000000"
 s(6) = "304080090"
 s(7) = "007000300"
 s(8) = "000007069"
 s(9) = "010800700"
 For i = 1 To 9
   For j = 1 To 9
     grid(i, j) = Int(Val(Mid$(s(i), j, 1)))
   Next j
 Next i
 'solve it!
 Solve 1, 1
 'print solution
 Debug.Print "Solution:"
 For i = 1 To 9
   For j = 1 To 9
     Debug.Print Format$(gridSolved(i, j)); " ";
   Next j
   Debug.Print
 Next i

End Sub</lang>

Output:
Sudoku
Solution:
6 3 1 2 4 5 9 7 8 
9 2 5 6 7 8 1 4 3 
4 7 8 3 1 9 6 5 2 
7 9 6 5 2 3 4 8 1 
1 8 2 9 6 4 5 3 7 
3 5 4 7 8 1 2 9 6 
8 6 7 4 9 2 3 1 5 
2 4 3 1 5 7 8 6 9 
5 1 9 8 3 6 7 2 4 

VBScript

Translation of: VBA

To run in console mode with cscript. <lang vb>Dim grid(9, 9) Dim gridSolved(9, 9)

Public Sub Solve(i, j)

   If i > 9 Then
       'exit with gridSolved = Grid
       For r = 1 To 9

For c = 1 To 9 gridSolved(r, c) = grid(r, c) Next 'c

       Next 'r
       Exit Sub
   End If
   For n = 1 To 9
       If isSafe(i, j, n) Then
         nTmp = grid(i, j)
         grid(i, j) = n
         If j = 9 Then
               Solve i + 1, 1
         Else
               Solve i, j + 1
         End If
         grid(i, j) = nTmp
       End If
   Next 'n

End Sub 'Solve

Public Function isSafe(i, j, n)

   If grid(i, j) <> 0 Then
       isSafe = (grid(i, j) = n)
       Exit Function
   End If
   'grid(i,j) is an empty cell. Check if n is OK
   'first check the row i
   For c = 1 To 9
       If grid(i, c) = n Then
           isSafe = False
           Exit Function
       End If
   Next 'c
   'now check the column j
   For r = 1 To 9
       If grid(r, j) = n Then
           isSafe = False
           Exit Function
       End If
   Next 'r
   'finally, check the 3x3 subsquare containing grid(i,j)
   iMin = 1 + 3 * Int((i - 1) / 3)
   jMin = 1 + 3 * Int((j - 1) / 3)
   For r = iMin To iMin + 2
       For c = jMin To jMin + 2
           If grid(r, c) = n Then
               isSafe = False
               Exit Function
           End If
       Next 'c
   Next 'r
   'all tests were OK
   isSafe = True

End Function 'isSafe

Public Sub Sudoku()

   'main routine
  Dim s(9) 
   s(1) = "001005070"
   s(2) = "920600000"
   s(3) = "008000600"
   s(4) = "090020401"
   s(5) = "000000000"
   s(6) = "304080090"
   s(7) = "007000300"
   s(8) = "000007069"
   s(9) = "010800700"
   For i = 1 To 9
       For j = 1 To 9
           grid(i, j) = Int(Mid(s(i), j, 1))
       Next 'j
   Next 'j
   'print problem
   Wscript.echo "Problem:"
   For i = 1 To 9

c=""

       For j = 1 To 9
           c=c & grid(i, j) & " "
       Next 'j

Wscript.echo c

   Next 'i
   'solve it!
   Solve 1, 1
   'print solution
   Wscript.echo "Solution:"
   For i = 1 To 9

c=""

       For j = 1 To 9
           c=c & gridSolved(i, j) & " "
       Next 'j

Wscript.echo c

   Next 'i

End Sub 'Sudoku

Call sudoku</lang>

Output:
Problem:
0 0 1 0 0 5 0 7 0
9 2 0 6 0 0 0 0 0
0 0 8 0 0 0 6 0 0
0 9 0 0 2 0 4 0 1
0 0 0 0 0 0 0 0 0
3 0 4 0 8 0 0 9 0
0 0 7 0 0 0 3 0 0
0 0 0 0 0 7 0 6 9
0 1 0 8 0 0 7 0 0
Solution:
6 3 1 2 4 5 9 7 8
9 2 5 6 7 8 1 4 3
4 7 8 3 1 9 6 5 2
7 9 6 5 2 3 4 8 1
1 8 2 9 6 4 5 3 7
3 5 4 7 8 1 2 9 6
8 6 7 4 9 2 3 1 5
2 4 3 1 5 7 8 6 9
5 1 9 8 3 6 7 2 4

XPL0

This is a translation of the C example, but with a solution that can be verified by several other examples.

Translation of: C

<lang XPL0>code ChOut=8, CrLf=9, IntOut=11, Text=12;

proc Show(X); char X; int I, J; [for I:= 0 to 8 do

       [if rem(I/3) = 0 then CrLf(0);
       for J:= 0 to 8 do
               [if rem(J/3) = 0 then ChOut(0, ^ );
               ChOut(0, ^ );  IntOut(0, X(0));
               X:= X+1;
               ];
       CrLf(0);
       ];

];

func TryCell(X, Pos); char X; int Pos; int Row, Col, I, J, Used; [Row:= Pos/9; Col:= rem(0); Used:= 0;

if Pos = 81 then return true; if X(Pos) then return TryCell(X, Pos+1);

for I:= 0 to 8 do Used:= Used ! 1 << (X(I*9+Col)-1); for J:= 0 to 8 do Used:= Used ! 1 << (X(Row*9+J)-1);

Row:= Row/3*3; Col:= Col/3*3; for I:= Row to Row+2 do

       for J:= Col to Col+2 do
               Used:= Used ! 1 << (X(I*9+J)-1);

for I:= 1 to 9 do

       [X(Pos):= I;
       if (Used&1)=0 & TryCell(X, Pos+1) then return true;
       Used:= Used>>1;
       ];

X(Pos):= 0; return false; ];

proc Solve(S); char S; int I, J, C; char X(81); [J:= 0; for I:= 0 to 80 do

       [repeat C:= S(J);
               J:= J+1;
       until   C>=^1 & C<=^9 ! C=^.;
       X(I):= if C=^. then 0 else C-^0;
       ];

if TryCell(X, 0) then Show(X) else Text(0, "No solution"); ];

[Solve("394 ..2 67.

       ... 3.. 4..
       5.. 69. .2.
       .45 ... 9..
       6.. ... ..7
       ..7 ... 58.
       .1. .67 ..8
       ..9 ..8 ...
       .26 4.. 735 ");

]</lang>

Output:
  3 9 4  8 5 2  6 7 1
  2 6 8  3 7 1  4 5 9
  5 7 1  6 9 4  8 2 3

  1 4 5  7 8 3  9 6 2
  6 8 2  9 4 5  3 1 7
  9 3 7  1 2 6  5 8 4

  4 1 3  5 6 7  2 9 8
  7 5 9  2 3 8  1 4 6
  8 2 6  4 1 9  7 3 5