I'm working on modernizing Rosetta Code's infrastructure. Starting with communications. Please accept this time-limited open invite to RC's Slack.. --Michael Mol (talk) 20:59, 30 May 2020 (UTC)

# Pseudo-random numbers/Splitmix64

Pseudo-random numbers/Splitmix64
You are encouraged to solve this task according to the task description, using any language you may know.

Splitmix64 is the default pseudo-random number generator algorithm in Java and is included / available in many other languages. It uses a fairly simple algorithm that, though it is considered to be poor for cryptographic purposes, is very fast to calculate, and is "good enough" for many random number needs. It passes several fairly rigorous PRNG "fitness" tests that some more complex algorithms fail.

Splitmix64 is not recommended for demanding random number requirements, but is often used to calculate initial states for other more complex pseudo-random number generators.

The "standard" splitmix64 maintains one 64 bit state variable and returns 64 bits of random data with each call.

Basic pseudocode algorithm:

```    uint64 state                                  /* The state can be seeded with any (upto) 64 bit integer value. */

next_int() {
state += 0x9e3779b97f4a7c15               /* increment the state variable */
uint64 z = state                          /* copy the state to a working variable */
z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9  /* xor the variable with the variable right bit shifted 30 then multiply by a constant */
z = (z ^ (z >> 27)) * 0x94d049bb133111eb  /* xor the variable with the variable right bit shifted 27 then multiply by a constant */
return z ^ (z >> 31)                      /* return the variable xored with itself right bit shifted 31 */
}

next_float() {
return next_int() / (1 << 64)             /* divide by 2^64 to return a value between 0 and 1 */
}```

The returned value should hold 64 bits of numeric data. If your language does not support unsigned 64 bit integers directly you may need to apply appropriate bitmasks during bitwise operations.

In keeping with the general layout of several recent pseudo-random number tasks:

• Write a class or set of functions that generates pseudo-random numbers using splitmix64.
• Show the first five integers generated using the seed 1234567.
```    6457827717110365317
3203168211198807973
9817491932198370423
4593380528125082431
16408922859458223821

```
• Show that for an initial seed of 987654321, the counts of 100_000 repetitions of `floor next_float() * 5` is as follows:
```   0: 20027, 1: 19892, 2: 20073, 3: 19978, 4: 20030
```

## 11l

Translation of: Python
`T Splitmix64   UInt64 state    F seed(seed_state)      .state = seed_state    F next_int()      .state += 9E37'79B9'7F4A'7C15      V z = .state      z = (z (+) (z >> 30)) * BF58'476D'1CE4'E5B9      z = (z (+) (z >> 27)) * 94D0'49BB'1331'11EB      R z (+) (z >> 31)    F next_float()      R Float(.next_int()) / 2.0^64 V random_gen = Splitmix64()random_gen.seed(1234567)L 5   print(random_gen.next_int()) random_gen.seed(987654321)V hist = Dict(0.<5, i -> (i, 0))L 100'000   hist[Int(random_gen.next_float() * 5)]++print(hist)`
Output:
```6457827717110365317
3203168211198807973
9817491932198370423
4593380528125082431
16408922859458223821
[0 = 20027, 1 = 19892, 2 = 20073, 3 = 19978, 4 = 20030]
```

The random number functions are written in a stand-alone package. The package is split into a package specification defining the interfaces to the public subprograms and a body containing the implementation of the random number generator.

package specification:

`with Interfaces; use Interfaces; package Random_Splitmix64 is    function next_Int return Unsigned_64;   function next_float return Float;   procedure Set_State (Seed : in Unsigned_64);end Random_Splitmix64;`

package body:

`package body Random_Splitmix64 is   Internal : Unsigned_64 := 1234567;    --------------   -- next_Int --   --------------    function next_Int return Unsigned_64 is      Z : Unsigned_64;   begin      Internal := Internal + 16#9e3779b97f4a7c15#;      Z := Internal;      Z := (Z xor Shift_Right(Z, 30)) * 16#bf58476d1ce4e5b9#;      Z := (Z xor Shift_Right(Z, 27)) * 16#94d049bb133111eb#;      return Z xor Shift_Right(Z, 31);   end next_Int;    ----------------   -- next_float --   ----------------    function next_float return Float is   begin      return float(next_int) / (2.0 ** 64);   end next_float;    ---------------   -- Set_State --   ---------------    procedure Set_State (Seed : in Unsigned_64) is   begin      Internal := Seed;   end Set_State; end Random_Splitmix64;`

Main procedure:

`with Interfaces;        use Interfaces;with Random_Splitmix64; use Random_Splitmix64;with Ada.Text_IO;       use Ada.Text_IO; procedure Main is   subtype idx is Integer range 0 .. 4;   type answer_arr is array (idx) of Natural;   Vec : answer_arr := (others => 0);   J   : Integer;   fj  : Float;begin   Set_State (1_234_567);   for I in 1 .. 5 loop      Put (Unsigned_64'Image (next_Int));      New_Line;   end loop;    Set_State (987_654_321);    for I in 1 .. 100_000 loop      fj      := Float'Truncation (next_float * 5.0);      J       := Integer (fj);      Vec (J) := Vec (J) + 1;   end loop;    for I in Vec'Range loop      Put_Line (I'Image & ":" & Integer'Image (Vec (I)));   end loop; end Main; `
Output:
``` 6457827717110365317
3203168211198807973
9817491932198370423
4593380528125082431
16408922859458223821
0: 20027
1: 19892
2: 20073
3: 19978
4: 20030
```

## ALGOL 68

Works with: ALGOL 68G version Any Tested with release 2.8.3.win32
`BEGIN # generate some pseudo random numbers using Splitmix64 #    # note that although LONG INT is 64 bits in Algol 68G, LONG BITS is longer than 64 bits #    LONG BITS mask 64    = LONG 16rffffffffffffffff;    LONG BITS state     := 16r1234567;    LONG INT  one shl 64 = ABS ( LONG 16r1 SHL 64 );    # sets the state to the specified seed value #    PROC seed = ( LONG INT num )VOID: state := BIN num;    # XOR and assign convenience operator #    PRIO XORAB = 1;    OP   XORAB = ( REF LONG BITS x, LONG BITS v )REF LONG BITS:         x := ( x XOR v ) AND mask 64;    # add a LONG BITS value to a LONG BITS #    OP   +:= = ( REF LONG BITS r, LONG BITS v )REF LONG BITS:         r := SHORTEN ( BIN ( LENG ABS r + LENG ABS v ) AND mask 64 );    # multiplies a LONG BITS value by a LONG BITS value #    OP   *:= = ( REF LONG BITS r, LONG BITS v )REF LONG BITS:         r := SHORTEN ( BIN ( ABS LENG r * LENG ABS v ) AND mask 64 );    # gets the next pseudo random integer #    PROC next int = LONG INT:         BEGIN            state +:= LONG 16r9e3779b97f4a7c15;            LONG BITS z := state;            z XORAB ( z SHR 30 );            z *:= LONG 16rbf58476d1ce4e5b9;            z XORAB ( z SHR 27 );            z *:= LONG 16r94d049bb133111eb;            z XORAB ( z SHR 31 );            ABS z         END # next int # ;    # gets the next pseudo random real #    PROC next float = LONG REAL: next int / one shl 64;    BEGIN # task test cases #        seed( 1234567 );        print( ( whole( next int, 0 ), newline ) ); #  6457827717110365317 #        print( ( whole( next int, 0 ), newline ) ); #  3203168211198807973 #        print( ( whole( next int, 0 ), newline ) ); #  9817491932198370423 #        print( ( whole( next int, 0 ), newline ) ); #  4593380528125082431 #        print( ( whole( next int, 0 ), newline ) ); # 16408922859458223821 #        # count the number of occurances of 0..4 in a sequence of pseudo random reals scaled to be in [0..5) #        seed( 987654321 );        [ 0 : 4 ]INT counts; FOR i FROM LWB counts TO UPB counts DO counts[ i ] := 0 OD;        TO 100 000 DO counts[ SHORTEN ENTIER ( next float * 5 ) ] +:= 1 OD;        FOR i FROM LWB counts TO UPB counts DO            print( ( whole( i, -2 ), ": ", whole( counts[ i ], -6 ) ) )        OD;        print( ( newline ) )    ENDEND`
Output:
```6457827717110365317
3203168211198807973
9817491932198370423
4593380528125082431
16408922859458223821
0:  20027 1:  19892 2:  20073 3:  19978 4:  20030
```

## C

Code copied from the reference C implementation used by Java, and using GNU GCC v7.1.1.

`/*  Written in 2015 by Sebastiano Vigna ([email protected]) To the extent possible under law, the author has dedicated all copyrightand related and neighboring rights to this software to the public domainworldwide. This software is distributed without any warranty. See <http://creativecommons.org/publicdomain/zero/1.0/>. */ #include <stdint.h>#include <stdio.h>#include <math.h> /* This is a fixed-increment version of Java 8's SplittableRandom generator   See http://dx.doi.org/10.1145/2714064.2660195 and    http://docs.oracle.com/javase/8/docs/api/java/util/SplittableRandom.html    It is a very fast generator passing BigCrush, and it can be useful if   for some reason you absolutely want 64 bits of state. */ static uint64_t x; /* The state can be seeded with any value. */ uint64_t next() {	uint64_t z = (x += 0x9e3779b97f4a7c15);	z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9;	z = (z ^ (z >> 27)) * 0x94d049bb133111eb;	return z ^ (z >> 31);} double next_float() {    return next() / pow(2.0, 64);} int main() {    int i, j;    x = 1234567;    for(i = 0; i < 5; ++i)        printf("%llu\n", next()); /* needed to use %lu verb for GCC 7.5.0-3 */    x = 987654321;    int vec5[5] = {0, 0, 0, 0, 0};    for(i = 0; i < 100000; ++i) {        j = next_float() * 5.0;        vec5[j] += 1;    }    for(i = 0; i < 5; ++i)        printf("%d: %d  ", i, vec5[i]);} `
Output:
```6457827717110365317
3203168211198807973
9817491932198370423
4593380528125082431
16408922859458223821
0: 20027  1: 19892  2: 20073  3: 19978  4: 20030
```

## Factor

`USING: io kernel math math.bitwise math.functionsmath.statistics namespaces prettyprint sequences ; SYMBOL: state : seed ( n -- ) 64 bits state set ; : next-int ( -- n )    0x9e3779b97f4a7c15 state [ + 64 bits ] change    state get -30 0xbf58476d1ce4e5b9 -27 0x94d049bb133111eb -31 1    [ [ dupd shift bitxor ] dip * 64 bits ] [email protected] ; : next-float ( -- x ) next-int 64 2^ /f ; ! Test next-int"Seed: 1234567; first five integer values" print1234567 seed 5 [ next-int . ] times nl ! Test next-float"Seed: 987654321; first 100,000 float values histogram" print987654321 seed 100,000 [ next-float 5 * >integer ] replicatehistogram .`
Output:
```Seed: 1234567; first five integer values
6457827717110365317
3203168211198807973
9817491932198370423
4593380528125082431
16408922859458223821

Seed: 987654321; first 100,000 float values histogram
H{ { 0 20027 } { 1 19892 } { 2 20073 } { 3 19978 } { 4 20030 } }
```

## Forth

Works with: gforth version 0.7.3
`variable rnd-state : rnd-base-op ( z factor shift -- u ) 2 pick swap rshift rot xor * ; : rnd-next ( -- u )  \$9e3779b97f4a7c15 rnd-state +!  rnd-state @  \$bf58476d1ce4e5b9 #30 rnd-base-op  \$94d049bb133111eb #27 rnd-base-op  #1 #31 rnd-base-op; #1234567 rnd-state !crrnd-next u. crrnd-next u. crrnd-next u. crrnd-next u. crrnd-next u. cr  : rnd-next-float ( -- f )  rnd-next 0 d>f 0 1 d>f f/; create counts 0 , 0 , 0 , 0 , 0 ,: counts-fill  #987654321 rnd-state !  100000 0 do    rnd-next-float 5.0e0 f* f>d drop cells counts + dup @ 1+ swap !  loop;: counts-disp  5 0 do    cr i . ': emit bl emit    counts i cells + @ .  loop cr; counts-fill counts-disp`
Output:
```6457827717110365317
3203168211198807973
9817491932198370423
4593380528125082431
16408922859458223821

0 : 20027
1 : 19892
2 : 20073
3 : 19978
4 : 20030
ok```

## F#

`// Pure F# Implementation of SplitMix64let a: uint64 = 0x9e3779b97f4a7c15UL let nextInt (state: uint64) =    let newstate = state + (0x9e3779b97f4a7c15UL)    let rand = newstate    let rand = (rand ^^^ (rand >>> 30)) * 0xbf58476d1ce4e5b9UL    let rand = (rand ^^^ (rand >>> 27)) * 0x94d049bb133111ebUL    let rand = rand ^^^ (rand >>> 31)    (rand, newstate) let nextFloat (state: uint64) =    let (rand, newState) = nextInt state    let randf = (rand / (1UL <<< 64)) |> float    (randf, newState) [<EntryPoint>]let main argv =    let state = 1234567UL    let (first, state) = nextInt state    let (second, state) = nextInt state    let (third, state) = nextInt state    let (fourth, state) = nextInt state    let (fifth, state) = nextInt state    printfn "%i" first    printfn "%i" second    printfn "%i" third    printfn "%i" fourth    printfn "%i" fifth    0`
Output:
```6457827717110365317
3203168211198807973
9817491932198370423
4593380528125082431
16408922859458223821
```

## Go

`package main import (    "fmt"    "math") type Splitmix64 struct{ state uint64 } func Splitmix64New(state uint64) *Splitmix64 { return &Splitmix64{state} } func (sm64 *Splitmix64) nextInt() uint64 {    sm64.state += 0x9e3779b97f4a7c15    z := sm64.state    z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9    z = (z ^ (z >> 27)) * 0x94d049bb133111eb    return z ^ (z >> 31)} func (sm64 *Splitmix64) nextFloat() float64 {    return float64(sm64.nextInt()) / (1 << 64)} func main() {    randomGen := Splitmix64New(1234567)    for i := 0; i < 5; i++ {        fmt.Println(randomGen.nextInt())    }     var counts [5]int    randomGen = Splitmix64New(987654321)    for i := 0; i < 1e5; i++ {        j := int(math.Floor(randomGen.nextFloat() * 5))        counts[j]++    }    fmt.Println("\nThe counts for 100,000 repetitions are:")    for i := 0; i < 5; i++ {        fmt.Printf("  %d : %d\n", i, counts[i])    }}`
Output:
```6457827717110365317
3203168211198807973
9817491932198370423
4593380528125082431
16408922859458223821

The counts for 100,000 repetitions are:
0 : 20027
1 : 19892
2 : 20073
3 : 19978
4 : 20030
```

`import Data.Bitsimport Data.Wordimport Data.List next :: Word64 -> (Word64, Word64)next state = f4 \$ state + 0x9e3779b97f4a7c15  where    f1 z = (z `xor` (z `shiftR` 30)) * 0xbf58476d1ce4e5b9    f2 z = (z `xor` (z `shiftR` 27)) * 0x94d049bb133111eb    f3 z = z `xor` (z `shiftR` 31)    f4 s = ((f3 . f2 . f1) s, s) randoms = unfoldr (pure . next)  toFloat n = fromIntegral n / (2^64 - 1)`
```λ> mapM_ print \$ take 5 \$ randoms 1234567
6457827717110365317
3203168211198807973
9817491932198370423
4593380528125082431
16408922859458223821

λ> let hist = map length . group . sort
λ> hist . take 100000 \$ (floor . (*5) . toFloat) <\$> (randoms 987654321)
[20027,19892,20073,19978,20030]```

## Julia

Translation of: Python
`const C1 = 0x9e3779b97f4a7c15const C2 = 0xbf58476d1ce4e5b9const C3 = 0x94d049bb133111eb mutable struct Splitmix64    state::UIntend """ return random int between 0 and 2**64 """function next_int(smx::Splitmix64)    z = smx.state = smx.state + C1    z = (z ⊻ (z >> 30)) * C2    z = (z ⊻ (z >> 27)) * C3    return z ⊻ (z >> 31)end """ return random float between 0 and 1 """next_float(smx::Splitmix64) = next_int(smx) / one(Int128) << 64 function testSplitmix64()    random_gen = Splitmix64(1234567)    for i in 1:5        println(next_int(random_gen))    end     random_gen = Splitmix64(987654321)    hist = fill(0, 5)    for _ in 1:100_000        hist[Int(floor(next_float(random_gen) * 5)) + 1] += 1    end    foreach(n -> print(n - 1, ": ", hist[n], "  "), 1:5)end testSplitmix64() `
Output:
```6457827717110365317
3203168211198807973
9817491932198370423
4593380528125082431
16408922859458223821
0: 20027  1: 19892  2: 20073  3: 19978  4: 20030
```

## Mathematica/Wolfram Language

`ClearAll[BitShiftLevelUint, MultiplyUint, GenerateRandomNumbers]BitShiftLevelUint[z_, n_] := BitShiftRight[z, n]MultiplyUint[z_, n_] := Mod[z n, 2^64]GenerateRandomNumbers[st_, n_] := Module[{state = st},  Table[   state += 16^^9e3779b97f4a7c15;   state = Mod[state, 2^64];   z = state;   z = MultiplyUint[BitXor[z, BitShiftLevelUint[z, 30]], 16^^bf58476d1ce4e5b9];   z = MultiplyUint[BitXor[z, BitShiftLevelUint[z, 27]], 16^^94d049bb133111eb];   Mod[BitXor[z, BitShiftLevelUint[z, 31]], 2^64]   ,   {n}   ]  ]GenerateRandomNumbers[1234567, 5]nums = GenerateRandomNumbers[987654321, 10^5];KeySort[Counts[Floor[5 nums/N[2^64]]]]`
Output:
```{6457827717110365317, 3203168211198807973, 9817491932198370423, 4593380528125082431, 16408922859458223821}
<|0->20027, 1->19892, 2->20073, 3->19978, 4->20030|>```

## Nim

`import math, sequtils, strutils const Two64 = 2.0^64 type Splitmix64 = object  state: uint64 func initSplitmix64(seed: uint64): Splitmix64 =  ## Initialize a Splitmiax64 PRNG.  Splitmix64(state: seed) func nextInt(r: var Splitmix64): uint64 =  ## Return the next pseudorandom integer (actually a uint64 value).  r.state += 0x9e3779b97f4a7c15u  var z = r.state  z = (z xor z shr 30) * 0xbf58476d1ce4e5b9u  z = (z xor z shr 27) * 0x94d049bb133111ebu  result = z xor z shr 31 func nextFloat(r: var Splitmix64): float =  ## Retunr the next pseudorandom float (between 0.0 and 1.0 excluded).  r.nextInt().float / Two64  when isMainModule:   echo "Seed = 1234567:"  var prng = initSplitmix64(1234567)  for i in 1..5:    echo i, ": ", (\$prng.nextInt).align(20)   echo "\nSeed = 987654321:"  var counts: array[0..4, int]  prng = initSplitmix64(987654321)  for _ in 1..100_000:    inc counts[int(prng.nextFloat * 5)]  echo toSeq(counts.pairs).mapIt((\$it[0]) & ": " & (\$it[1])).join(", "`
Output:
```Seed = 1234567:
1:  6457827717110365317
2:  3203168211198807973
3:  9817491932198370423
4:  4593380528125082431
5: 16408922859458223821

Seed = 987654321:
0: 20027, 1: 19892, 2: 20073, 3: 19978, 4: 20030```

## Perl

`use strict;use warnings;no warnings 'portable';use feature 'say';use Math::AnyNum qw(:overload); package splitmix64 {     sub new {        my (\$class, %opt) = @_;        bless {state => \$opt{seed}}, \$class;    }     sub next_int {        my (\$self) = @_;        my \$next = \$self->{state} = (\$self->{state} + 0x9e3779b97f4a7c15) & (2**64 - 1);        \$next = (\$next ^ (\$next >> 30)) * 0xbf58476d1ce4e5b9 & (2**64 - 1);        \$next = (\$next ^ (\$next >> 27)) * 0x94d049bb133111eb & (2**64 - 1);        (\$next ^ (\$next >> 31)) & (2**64 - 1);    }     sub next_float {        my (\$self) = @_;        \$self->next_int / 2**64;    }} say 'Seed: 1234567, first 5 values:';my \$rng = splitmix64->new(seed => 1234567);say \$rng->next_int for 1 .. 5; my %h;say "\nSeed: 987654321, values histogram:";\$rng = splitmix64->new(seed => 987654321);\$h{int 5 * \$rng->next_float}++ for 1 .. 100_000;say "\$_ \$h{\$_}" for sort keys %h;`
Output:
```Seed: 1234567, first 5 values:
6457827717110365317
3203168211198807973
9817491932198370423
4593380528125082431
16408922859458223821

Seed: 987654321, values histogram:
0 20027
1 19892
2 20073
3 19978
4 20030```

## Phix

As per Pseudo-random_numbers/PCG32#Phix, resorting to mpfr/gmp

```with javascript_semantics
include mpfr.e
mpz state = mpz_init(),
shift = mpz_init("0x9e3779b97f4a7c15"),
mult1 = mpz_init("0xbf58476d1ce4e5b9"),
mult2 = mpz_init("0x94d049bb133111eb"),
b64 = mpz_init("0x10000000000000000"),  -- (truncate to 64 bits)
tmp = mpz_init(),
z = mpz_init()

procedure seed(integer num)
mpz_set_si(state,num)
end procedure

procedure next_int()
mpz_add(state, state, shift)    -- state += shift
mpz_fdiv_r(state, state, b64)   -- state := remainder(z,b64)
mpz_set(z, state)               -- z := state
mpz_tdiv_q_2exp(tmp, z, 30)     -- tmp := trunc(z/2^30)
mpz_xor(z, z, tmp)              -- z := xor_bits(z,tmp)
mpz_mul(z, z, mult1)            -- z *= mult1
mpz_fdiv_r(z, z, b64)           -- z := remainder(z,b64)
mpz_tdiv_q_2exp(tmp, z, 27)     -- tmp := trunc(z/2^27)
mpz_xor(z, z, tmp)              -- z := xor_bits(z,tmp)
mpz_mul(z, z, mult2)            -- z *= mult2
mpz_fdiv_r(z, z, b64)           -- z := remainder(z,b64)
mpz_tdiv_q_2exp(tmp, z, 31)     -- tmp := trunc(z/2^31)
mpz_xor(z, z, tmp)              -- z := xor_bits(z,tmp)
-- (result left in z)
end procedure

function next_float()
next_int()
mpfr f = mpfr_init_set_z(z)
mpfr_div_z(f, f, b64)
return mpfr_get_d(f)
end function

seed(1234567)
for i=1 to 5 do
next_int()
printf(1,"%s\n",mpz_get_str(z))
end for
seed(987654321)
sequence r = repeat(0,5)
for i=1 to 100000 do
integer rdx = floor(next_float()*5)+1
r[rdx] += 1
end for
?r
```
Output:
```6457827717110365317
3203168211198807973
9817491932198370423
4593380528125082431
16408922859458223821
{20027,19892,20073,19978,20030}
```

## Object Pascal

` program splitmix64; {\$IF Defined(FPC)}{\$MODE Delphi}{\$ENDIF}{\$INLINE ON}{\$Q-}{\$R-} {  Written in 2015 by Sebastiano Vigna ([email protected])  http://prng.di.unimi.it/splitmix64.c   Onject Pascal port written in 2020 by I. Kakoulidis   To the extent possible under law, the author has dedicated all copyright  and related and neighboring rights to this software to the public domain  worldwide. This software is distributed without any warranty.   See <http://creativecommons.org/publicdomain/zero/1.0/>. } {  This is a fixed-increment version of Java 8's SplittableRandom generator  See http://dx.doi.org/10.1145/2714064.2660195 and  http://docs.oracle.com/javase/8/docs/api/java/util/SplittableRandom.html   It is a very fast generator passing BigCrush, and it can be useful if  for some reason you absolutely want 64 bits of state.}uses Math; type  TSplitMix64 = record    state: UInt64;    procedure Init(seed: UInt64); inline;    function Next(): UInt64; inline;    function NextFloat(): double; inline;  end; procedure TSplitMix64.Init(seed: UInt64);begin  state := seed;end; function TSplitMix64.Next(): UInt64;begin  state := state + UInt64(\$9e3779b97f4a7c15);  Result := state;  Result := (Result xor (Result shr 30)) * UInt64(\$bf58476d1ce4e5b9);  Result := (Result xor (Result shr 27)) * UInt64(\$94d049bb133111eb);  Result := Result xor (Result shr 31);end; function TSplitMix64.NextFloat(): Double;begin  Result := Next() / 18446744073709551616.0;end; var  r: TSplitMix64;  i, j: Integer;  vec: array[0..4] of Integer; begin  j := 0;  r.Init(1234567);  for i := 0 to 4 do    WriteLn(r.Next());   r.Init(987654321);   for i := 0 to 99999 do  begin    j := Trunc(r.NextFloat() * 5.0);    Inc(vec[j]);  end;   for i := 0 to 4 do    Write(i, ': ', vec[i], '  ');end. `
Output:
```6457827717110365317
3203168211198807973
9817491932198370423
4593380528125082431
16408922859458223821
0: 20027  1: 19892  2: 20073  3: 19978  4: 20030
```

## PicoLisp

`(zero *Split)     # global state (de mod64 (N)   (& N `(hex "FFFFFFFFFFFFFFFF")) )(de mod64+ (A B)   (mod64 (+ A B)) )(de mod64* (A B)   (mod64 (* A B)) )(de roundf (N)    # rounds down   (/ N (** 10 *Scl)) )(de nextSplit ()   (setq *Split (mod64+ *Split `(hex "9e3779b97f4a7c15")))   (let Z *Split      (setq         Z (mod64* `(hex "bf58476d1ce4e5b9") (x| Z (>> 30 Z)))         Z (mod64* `(hex "94d049bb133111eb") (x| Z (>> 27 Z))) )      (x| Z (>> 31 Z)) ) ) (prinl "First 5 numbers:")(setq *Split 1234567)(do 5   (println (nextSplit)) ) (prinl "The counts for 100,000 repetitions are:")(scl 12)(off R)(setq *Split 987654321)(do 100000   (accu      'R      (roundf (* 5 (*/ (nextSplit) 1.0 18446744073709551616)))      1 ) )(mapc println (sort R))`
Output:
```First 5 numbers:
6457827717110365317
3203168211198807973
9817491932198370423
4593380528125082431
16408922859458223821
The counts for 100,000 repetitions are:
(0 . 20027)
(1 . 19892)
(2 . 20073)
(3 . 19978)
(4 . 20030)
```

## Python

`MASK64 = (1 << 64) - 1C1 = 0x9e3779b97f4a7c15C2 = 0xbf58476d1ce4e5b9C3 = 0x94d049bb133111eb   class Splitmix64():     def __init__(self, seed=0):        self.state = seed & MASK64     def seed(self, num):        self.state =  num & MASK64     def next_int(self):        "return random int between 0 and 2**64"        z = self.state = (self.state + C1) & MASK64        z = ((z ^ (z >> 30)) * C2) & MASK64        z = ((z ^ (z >> 27)) * C3) & MASK64        answer = (z ^ (z >> 31)) & MASK64         return answer     def  next_float(self):        "return random float between 0 and 1"        return self.next_int() / (1 << 64)  if __name__ == '__main__':    random_gen = Splitmix64()    random_gen.seed(1234567)    for i in range(5):        print(random_gen.next_int())     random_gen.seed(987654321)    hist = {i:0 for i in range(5)}    for i in range(100_000):        hist[int(random_gen.next_float() *5)] += 1    print(hist)`
Output:
```6457827717110365317
3203168211198807973
9817491932198370423
4593380528125082431
16408922859458223821
{0: 20027, 1: 19892, 2: 20073, 3: 19978, 4: 20030}```

## Raku

Works with: Rakudo version 2020.07
`class splitmix64 {    has \$!state;     submethod BUILD ( Int :\$seed where * >= 0 = 1 ) { \$!state = \$seed }     method next-int {        my \$next = \$!state = (\$!state + 0x9e3779b97f4a7c15) +& (2⁶⁴ - 1);        \$next = (\$next +^ (\$next +> 30)) * 0xbf58476d1ce4e5b9 +& (2⁶⁴ - 1);        \$next = (\$next +^ (\$next +> 27)) * 0x94d049bb133111eb +& (2⁶⁴ - 1);        (\$next +^ (\$next +> 31)) +& (2⁶⁴ - 1);    }     method next-rat { self.next-int / 2⁶⁴ }} # Test next-intsay 'Seed: 1234567; first five Int values';my \$rng = splitmix64.new( :seed(1234567) );.say for \$rng.next-int xx 5;  # Test next-rat (since these are rational numbers by default)say "\nSeed: 987654321; first 1e5 Rat values histogram";\$rng = splitmix64.new( :seed(987654321) );say ( (\$rng.next-rat * 5).floor xx 100_000 ).Bag;`
Output:
```Seed: 1234567; first five Int values
6457827717110365317
3203168211198807973
9817491932198370423
4593380528125082431
16408922859458223821

Seed: 987654321; first 1e5 Rat values histogram
Bag(0(20027) 1(19892) 2(20073) 3(19978) 4(20030))```

## REXX

`/*REXX program  generates   pseudo─random numbers   using the  split mix 64 bit  method.*/numeric digits 200                               /*ensure enough decimal digs for mult. */parse arg n reps pick seed1 seed2 .              /*obtain optional arguments from the CL*/if     n=='' |     n==","  then    n=          5 /*Not specified?  Then use the default.*/if  reps=='' |  reps==","  then reps=     100000 /* "      "         "   "   "     "    */if  pick=='' |  pick==","  then pick=          5 /* "      "         "   "   "     "    */if seed1=='' | seed1==","  then seed1=   1234567 /* "      "         "   "   "     "    */if seed2=='' | seed2==","  then seed2= 987654321 /* "      "         "   "   "     "    */const.1= x2d( 9e3779b97f4a7c15 )                 /*initialize 1st constant to be used.  */const.2= x2d('bf58476d1ce4e5b9')                 /*    "      2nd     "     "  "   "    */const.3= x2d( 94d049bb133111eb )                 /*    "      3rd     "     "  "   "    */o.30= copies(0, 30)                              /*construct  30  bits of zeros.        */o.27= copies(0, 27)                              /*     "     27    "   "   "           */o.31= copies(0, 31)                              /*     "     31    "   "   "           */w= max(3, length(n) )                            /*for aligning the left side of output.*/state= seed1                                     /*     "     the   state  to seed #1.  */             do j=1  for n             if j==1  then do;   say center('n', w)     "     pseudo─random number   "                                 say copies('═', w)     " ════════════════════════════"                           end             say right(j':', w)" "  right(commas(next()), 27)  /*display a random number*/             end   /*j*/sayif reps==0  then exit 0                          /*stick a fork in it,  we're all done. */say center('#', w)   "   count of pseudo─random #"say copies('═', w)   " ════════════════════════════"state= seed2                                     /*     "     the   state  to seed #2.  */@.= 0;                         div= pick / 2**64 /*convert division to inverse multiply.*/             do k=1  for reps             parse value next()*div  with  _ '.' /*get random #, floor of a "division". */             @._= @._ + 1                        /*bump the counter for this random num.*/             end   /*k*/              do #=0  for pick             say right(#':', w)" "  right(commas(@.#), 15) /*show count of a random num.*/             end   /*#*/exit 0                                           /*stick a fork in it,  we're all done. *//*──────────────────────────────────────────────────────────────────────────────────────*/commas: parse arg _;   do ?=length(_)-3  to 1  by -3; _= insert(',', _, ?); end;  return _b2d:    parse arg ?; return        x2d( b2x(?) )             /*convert bin──►decimal.   */d2b:    parse arg ?; return right( x2b( d2x(?) ),  64, 0)    /*convert dec──►64 bit bin.*//*──────────────────────────────────────────────────────────────────────────────────────*/next: procedure expose state const. o.      state= state + const.1        ; z= d2b(state)          /*add const1──►STATE; conv.*/      z= xor(z, left(o.30 || z, 64)); z= d2b(b2d(z)*const.2) /*shiftR 30 bits & XOR;  " */      z= xor(z, left(o.27 || z, 64)); z= d2b(b2d(z)*const.3) /*   "   27  "   "  "    " */      z= xor(z, left(o.31 || z, 64));        return b2d(z)   /*   "   31  "   "  "    " *//*──────────────────────────────────────────────────────────────────────────────────────*/xor:  parse arg a, b;                    \$=                  /*perform a bit─wise  XOR. */                do !=1  for length(a);   \$= \$  ||  (substr(a,!,1)  &&  substr(b,!,1) )                end   /*!*/;      return \$`
output   when using the default inputs:
``` n       pseudo─random number
═══  ════════════════════════════
1:    6,457,827,717,110,365,317
2:    3,203,168,211,198,807,973
3:    9,817,491,932,198,370,423
4:    4,593,380,528,125,082,431
5:   16,408,922,859,458,223,821

#     count of pseudo─random #
═══  ════════════════════════════
0:           20,027
1:           19,892
2:           20,073
3:           19,978
4:           20,030
```

## Ruby

`class Splitmix64  MASK64 = (1 << 64) - 1  C1, C2, C3 = 0x9e3779b97f4a7c15, 0xbf58476d1ce4e5b9, 0x94d049bb133111eb   def initialize(seed = 0) =  @state = seed & MASK64   def rand_i    z = @state = (@state + C1) & MASK64    z = ((z ^ (z >> 30)) * C2) & MASK64    z = ((z ^ (z >> 27)) * C3) & MASK64    (z ^ (z >> 31)) & MASK64  end   def rand_f = rand_i.fdiv(1<<64) end rand_gen = Splitmix64.new(1234567)5.times{ puts rand_gen.rand_i } rand_gen = Splitmix64.new(987654321)p 100_000.times.lazy.map{(rand_gen.rand_f * 5).floor}.tally.sort.to_h `
Output:
```6457827717110365317
3203168211198807973
9817491932198370423
4593380528125082431
16408922859458223821
{0=>20027, 1=>19892, 2=>20073, 3=>19978, 4=>20030}
```

## Sidef

Translation of: Perl
`class Splitmix64(state) {     define (        mask64 = (2**64 - 1)    )     method next_int {        var n = (state = ((state + 0x9e3779b97f4a7c15) & mask64))        n = ((n ^ (n >> 30)) * 0xbf58476d1ce4e5b9 & mask64)        n = ((n ^ (n >> 27)) * 0x94d049bb133111eb & mask64)        (n ^ (n >> 31)) & mask64    }     method next_float {        self.next_int / (mask64+1)    }} say 'Seed: 1234567, first 5 values:'var rng = Splitmix64(1234567)5.of { rng.next_int.say } say "\nSeed: 987654321, values histogram:"var rng = Splitmix64(987654321)var histogram = Bag(1e5.of { floor(5*rng.next_float) }...)histogram.pairs.sort.each { .join(": ").say }`
Output:
```Seed: 1234567, first 5 values:
6457827717110365317
3203168211198807973
9817491932198370423
4593380528125082431
16408922859458223821

Seed: 987654321, values histogram:
0: 20027
1: 19892
2: 20073
3: 19978
4: 20030
```

## Wren

Library: Wren-big

No 64 bit integers so we use BigInt with a mask.

`import "/big" for BigInt var Const1 = BigInt.fromBaseString("9e3779b97f4a7c15", 16) var Const2 = BigInt.fromBaseString("bf58476d1ce4e5b9", 16) var Const3 = BigInt.fromBaseString("94d049bb133111eb", 16)var Mask64 = (BigInt.one << 64) - BigInt.one class Splitmix64 {    construct new(state) {        _state  = state    }     nextInt {        _state = (_state + Const1) & Mask64        var z = _state        z = ((z ^ (z >> 30)) * Const2) & Mask64        z = ((z ^ (z >> 27)) * Const3) & Mask64        return (z ^ (z >> 31)) & Mask64    }     nextFloat { nextInt.toNum / 2.pow(64) }} var randomGen = Splitmix64.new(BigInt.new(1234567))for (i in 0..4) System.print(randomGen.nextInt) var counts = List.filled(5, 0)randomGen = Splitmix64.new(BigInt.new(987654321))for (i in 1..1e5) {    var i = (randomGen.nextFloat * 5).floor    counts[i] = counts[i] + 1}System.print("\nThe counts for 100,000 repetitions are:")for (i in 0..4) System.print("  %(i) : %(counts[i])")`
Output:
```6457827717110365317
3203168211198807973
9817491932198370423
4593380528125082431
16408922859458223821

The counts for 100,000 repetitions are:
0 : 20027
1 : 19892
2 : 20073
3 : 19978
4 : 20030
```