Perceptron

From Rosetta Code
Revision as of 15:23, 18 April 2022 by rosettacode>VincentArm (add task to arm assembly 32 bits raspberry pi)
Perceptron is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.

A perceptron is an algorithm used in machine-learning. It's the simplest of all neural networks, consisting of only one neuron, and is typically used for pattern recognition.

A perceptron attempts to separate input into a positive and a negative class with the aid of a linear function. The inputs are each multiplied by weights, random weights at first, and then summed. Based on the sign of the sum a decision is made.

In order for the perceptron to make the right decision, it needs to train with input for which the correct outcome is known, so that the weights can slowly be adjusted until they start producing the desired results.


Task

The website The Nature of Code demonstrates a perceptron by making it perform a very simple task : determine if a randomly chosen point (x, y) is above or below a line:

 y = mx + b

Implement this perceptron and display an image (or some other visualization) of the result.


See also



11l

Translation of: Python

<lang 11l>V TRAINING_LENGTH = 2000

T Perceptron

  c = .01
  [Float] weights
  F (n)
     .weights = (0 .< n).map(_ -> random:(-1.0 .. 1.0))
  F feed_forward(inputs)
     [Float] vars
     L(i) 0 .< inputs.len
        vars.append(inputs[i] * .weights[i])
     R .activate(sum(vars))
  F activate(value)
     R I value > 0 {1} E -1
  F train(inputs, desired)
     V guess = .feed_forward(inputs)
     V error = desired - guess
     L(i) 0 .< inputs.len
        .weights[i] += .c * error * inputs[i]

T Trainer

  [Float] inputs
  Int answer
  F (x, y, a)
     .inputs = [x, y, 1.0]
     .answer = a

F f(x)

  R 2 * x + 1

V ptron = Perceptron(3) [Trainer] training L(i) 0 .< TRAINING_LENGTH

  V x = random:(-10.0 .. 10.0)
  V y = random:(-10.0 .. 10.0)
  V answer = 1
  I y < f(x)
     answer = -1
  training.append(Trainer(x, y, answer))

Char result L(y) -10 .< 10

  [Char] temp
  L(x) -10 .< 10
     I ptron.feed_forward([x, y, 1]) == 1
        temp.append(Char(‘^’))
     E
        temp.append(Char(‘.’))
  result.append(temp)

print(‘Untrained’) L(row) result

  print(row.join(‘’))

L(t) training

  ptron.train(t.inputs, t.answer)

result.clear() L(y) -10 .< 10

  [Char] temp
  L(x) -10 .< 10
     I ptron.feed_forward([x, y, 1]) == 1
        temp.append(Char(‘^’))
     E
        temp.append(Char(‘.’))
  result.append(temp)

print(‘Trained’) L(row) result

  print(row.join(‘’))</lang>
Output:
Untrained
^^^^^^^^^^^^^^^^^^^^
^^^^^^^^^^^^^^^^^^^.
^^^^^^^^^^^^^^^^^^..
^^^^^^^^^^^^^^^^^^..
^^^^^^^^^^^^^^^^^...
^^^^^^^^^^^^^^^^....
^^^^^^^^^^^^^^^.....
^^^^^^^^^^^^^^......
^^^^^^^^^^^^^.......
^^^^^^^^^^^^^.......
^^^^^^^^^^^^........
^^^^^^^^^^^.........
^^^^^^^^^^..........
^^^^^^^^^...........
^^^^^^^^............
^^^^^^^^............
^^^^^^^.............
^^^^^^..............
^^^^^...............
^^^^................
Trained
^^^.................
^^^^................
^^^^^...............
^^^^^...............
^^^^^^..............
^^^^^^^.............
^^^^^^^.............
^^^^^^^^............
^^^^^^^^^...........
^^^^^^^^^...........
^^^^^^^^^^..........
^^^^^^^^^^^.........
^^^^^^^^^^^.........
^^^^^^^^^^^^........
^^^^^^^^^^^^^.......
^^^^^^^^^^^^^^......
^^^^^^^^^^^^^^......
^^^^^^^^^^^^^^^.....
^^^^^^^^^^^^^^^^....
^^^^^^^^^^^^^^^^....

ARM Assembly

Works with: as version Raspberry Pi
or android 32 bits with application Termux

<lang ARM Assembly> /* ARM assembly Raspberry PI or andoid with termux */ /* program perceptron3.s */

/* compile with as */ /* link with gcc and options -lX11 -L/usr/lpp/X11/lib */ /* REMARK 1 : this program run on android smarphone 32 bits with termux

  and X11 x Server. The memory addresses are relocatable and 
  can be simplified for raspberry pi. */
/* REMARK 2 : this program use routines in a include file 
  see task Include a file language arm assembly 
  for the routine affichageMess conversion10 
  see at end of this program the instruction include */

/* for constantes see task include a file in arm assembly */ /************************************/ /* Constantes */ /************************************/ .include "../constantes.inc"

/********************************************/ /*Constantes */ /********************************************/ .equ STDOUT, 1 @ Linux output console .equ EXIT, 1 @ Linux syscall .equ WRITE, 4 @ Linux syscall /* constantes X11 */ .equ KeyPressed, 2 .equ ButtonPress, 4 .equ MotionNotify, 6 .equ EnterNotify, 7 .equ LeaveNotify, 8 .equ Expose, 12 .equ ClientMessage, 33 .equ KeyPressMask, 1 .equ ButtonPressMask, 4 .equ ButtonReleaseMask, 8 .equ ExposureMask, 1<<15 .equ StructureNotifyMask, 1<<17 .equ EnterWindowMask, 1<<4 .equ LeaveWindowMask, 1<<5 .equ ConfigureNotify, 22

.equ GCForeground, 1<<2

/* constantes perceptron */ .equ WINDOWWIDTH, 600 @ windows size .equ WINDOWHEIGHT, 600 .equ NBENTREES, 2 @ entry number .equ NBENTRAI, 4000 @ training number .equ NBPOINTS, 500 @ display points number /************************************/ /* Structures */ /************************************/ /* training datas */

   .struct  0

entrai_entrees:

   .struct  entrai_entrees + 4 * NBENTREES

entrai_entrees_biais:

   .struct  entrai_entrees_biais + 4

entrai_reponse:

    .struct entrai_reponse +4

entrai_fin:

/*******************************************/ /* DONNEES INITIALISEES */ /*******************************************/ .data szWindowName: .asciz "Windows Raspberry" szRetourligne: .asciz "\n" szMessDebutPgm: .asciz "Program start. \n" szMessErreur: .asciz "Server X not found.\n" szMessErrfen: .asciz "Can not create window.\n" szMessErreurX11: .asciz "Error call function X11. \n" szMessErrGc: .asciz "Can not create graphics context.\n" szTitreFenRed: .asciz "Pi"

szLibDW: .asciz "WM_DELETE_WINDOW" @ special label for correct close error


.align 4 tbfEntrees: .float 10.0,0.0,1.0 @ entries for tests

                  .float 10.0,20.0,1.0
                  .float 10.0,40.0,1.0
                  .float 10.0,60.0,1.0
                  .float 10.0,80.0,1.0
                  .float 20.0,50.0,1.0
                  .float 40.0,50.0,1.0
                  .float 60.0,50.0,1.0
                  .float 80.0,50.0,1.0
                  .float 100.0,50.0,1.0
                  .float 10.0,50.0,1.0
                  .equ NBPOINTDIS, (. - tbfEntrees) / 12

stXGCValues: .int 0,0,0x00FF0000,0,0,0,0,0,0,0,0,0 @ for foreground color red stXGCValues1: .int 0,0,0x00FFFFFF,0,0,0,0,0,0,0,0,0 @ for foreground color white stXGCValues2: .int 0,0,0x0000FF00,0,0,0,0,0,0,0,0,0 @ for foreground color green iGraine: .int 1234567 /*******************************************/ /* DONNEES NON INITIALISEES */ /*******************************************/ .bss .align 4 ptDisplay: .skip 4 @ pointer display ptEcranDef: .skip 4 @ pointer screen default ptFenetre: .skip 4 @ pointer window ptGC: .skip 4 @ pointer graphic context ptGC1: .skip 4 @ pointer graphic context key: .skip 4 @ key code wmDeleteMessage: .skip 8 @ ident close message event: .skip 400 @ TODO: event size ?? PrpNomFenetre: .skip 100 @ window name proprety buffer: .skip 500 iWhite: .skip 4 @ rgb code for white pixel iBlack: .skip 4 @ rgb code for black pixel stEnt: .skip entrai_fin * NBENTRAI tbfPoids: .skip 4 * (NBENTREES + 1) /**********************************************/ /* -- Code section */ /**********************************************/ .text .global main iOfWhite: .int iWhite - . iOfBlack: .int iBlack - . iOfszMessDebutPgm: .int szMessDebutPgm - . main: @ entry of program

   adr r0,iOfszMessDebutPgm    @ Start message
   ldr r1,[r0]
   add r0,r1
   bl affichageMess
   /* attention r6  pointer display*/
   /* attention r8  pointer graphic context   */
   /* attention r9 ident window  */
   /*****************************/
   /*    OPEN SERVER X11        */
   /*****************************/
   mov r0,#0
   bl XOpenDisplay             @ open X server
   cmp r0,#0                   @ error ?
   beq erreurServeur
   adr r2,iOfptDisplay
   ldr r1,[r2]
   add r1,r2
   str r0,[r1]                  @ store display address 
   mov r6,r0                   @ and in register r6
   ldr r2,[r0,#+132]           @ load default_screen
   adr r1,iOfptEcranDef
   ldr r3,[r1]
   add r1,r3
   str r2,[r1]                 @ store default_screen
   mov r2,r0
   ldr r0,[r2,#+140]           @ load pointer screen list
   ldr r5,[r0,#+52]            @ load value white pixel
   adr r4,iOfWhite            @ and store in memory
   ldr r3,[r4]
   add r4,r3
   str r5,[r4]
   ldr r3,[r0,#+56]            @ load value black pixel
   adr r4,iOfBlack             @ and store in memory
   ldr r5,[r4]
   add r4,r5
   str r3,[r4]
   ldr r4,[r0,#+28]            @ load bits par pixel
   ldr r1,[r0,#+8]             @ load root windows
   /**************************/
   /* CREATE WINDOW          */
   /**************************/
   mov r0,r6                   @ address display
   mov r2,#0                   @ window position X
   mov r3,#0                   @ window position Y
   mov r8,#0                   @ for stack alignement
   push {r8}
   push {r3}                   @  background  = black pixel
   push {r5}                   @  border = white pixel
   mov r8,#2                   @  border size
   push {r8}
   mov r8,#WINDOWHEIGHT        @ height
   push {r8}
   mov r8,#WINDOWWIDTH         @ width
   push {r8}   
   bl XCreateSimpleWindow
   add sp,#24                  @ stack alignement  6 push (4 bytes * 6)
   cmp r0,#0                   @ error ?
   beq erreurF
   adr r1,iOfptFenetre
   ldr r3,[r1]
   add r1,r3
   str r0,[r1]                 @ store window address in memory
   mov r9,r0                   @ and in register r9
   
   /*****************************/
   /* add window property       */
   /*****************************/
   mov r0,r6                   @ display address
   mov r1,r9                   @ window address
   adr r2,iOfszWindowName     @ window name
   ldr r5,[r2]
   add r2,r5
   adr r3,iOfszTitreFenRed    @ window name reduced
   ldr r5,[r3]
   add r3,r5
   mov r4,#0
   push {r4}                   @ parameters not use
   push {r4}
   push {r4}
   push {r4}
   bl XSetStandardProperties
   add sp,sp,#16               @ stack alignement for 4 push
   /**************************************/
   /* for correction window close error  */
   /**************************************/
   mov r0,r6                   @ display address
   adr r1,iOfszLibDW           @ atom address
   ldr r5,[r1]
   add r1,r5
   mov r2,#1                   @ False  créate atom if not exists
   bl XInternAtom
   cmp r0,#0                   @ error X11 ?
   blt erreurX11               @ Modif avril 22 pour android (ble pour raspberry)
   adr r1,iOfwmDeleteMessage   @ recept address
   ldr r5,[r1]
   add r1,r5
   str r0,[r1]
   mov r2,r1                   @ return address
   mov r0,r6                   @ display address
   mov r1,r9                   @ window address
   mov r3,#1                   @ number of protocols
   bl XSetWMProtocols
   cmp r0,#0                   @ error X11 ?
   ble erreurX11
   /**********************************/
   /*  create graphic context        */
   /**********************************/
   mov r0,r6                   @ display address
   mov r1,r9                   @ window address
   mov r2,#GCForeground        @ 
   adr r3,iOfstXGCValues2      @ green color in foreground
   ldr r5,[r3]
   add r3,r5
   bl XCreateGC
   cmp r0,#0                   @ error ?
   beq erreurGC
   adr r1,iOfptGC
   ldr r5,[r1]
   add r1,r5
   str r0,[r1]                 @ store address graphic context
   mov r8,r0                   @ and in r8
   /**********************************/
   /*  create 2 graphic context        */
   /**********************************/
   mov r0,r6                   @ display address
   mov r1,r9                   @ window address
   mov r2,#GCForeground        @ red color in Foreground
   adr r3,iOfstXGCValues
   ldr r5,[r3]
   add r3,r5
   bl XCreateGC
   cmp r0,#0                   @ error ?
   beq erreurGC
   adr r1,iOfptGC1
   ldr r5,[r1]
   add r1,r5
   str r0,[r1]                 @ store address graphic context
   mov r10,r0                  @ and in r10
   /**********************************/
   /*  create 2 graphic context        */
   /**********************************/
   mov r0,r6                   @ display address
   mov r1,r9                   @ window address
   mov r2,#GCForeground        @ white color in Foreground
   adr r3,iOfstXGCValues1
   ldr r5,[r3]
   add r3,r5
   bl XCreateGC
   cmp r0,#0                   @ error ?
   beq erreurGC
   mov r11,r0                  @ address GC2 in r11
   /****************************/
   /* modif window background  */
   /****************************/
   mov r0,r6                   @ display address
   mov r1,r9                   @ window address
   ldr r2,iGris1               @ background color
   bl XSetWindowBackground   
   cmp r0,#0                   @ error ?
   ble erreurX11
   
   /***************************/
   /* OUF!! window display    */
   /***************************/
   mov r0,r6                   @ display address
   mov r1,r9                   @ window address
   bl XMapWindow
   /* init perceptron */
   bl initPerceptron
   
   /* draw line */
   mov r0,r6                   @ display
   mov r1,r9                   @ windows
   mov r2,r11                  @ graphic context 
   bl draw_line_Function
   
   mov r5,#0

0: @ loop to write point

   mov r0,r6                   @ display
   mov r1,r9                   @ windows
   mov r2,r8                   @ GC0
   mov r3,r10                  @ GC1
   bl writePoint
   add r5,#1
   cmp r5,#NBPOINTS            @ maxi ?
   blt 0b                      @ no -> loop
   /****************************/
   /* Autorisations            */
   /****************************/
   mov r0,r6                   @ display address
   mov r1,r9                   @ window address
   ldr r2,iFenetreMask         @ autorisation mask
   bl XSelectInput
   cmp r0,#0                   @ error ?
   ble erreurX11
   
   /****************************/
   /* Events loop              */
   /****************************/

1:

   mov r0,r6                   @ display address
   adr r1,iOfevent             @ events address
   ldr r5,[r1]
   add r1,r5
   bl XNextEvent               @ event ?
   adr r0,iOfevent
   ldr r5,[r0]
   add r0,r5
   ldr r0,[r0]                 @ code event
   cmp r0,#KeyPressed          @ key ?
   bne 2f
   adr r0,iOfevent            @ yes read key in buffer
   ldr r5,[r0]
   add r0,r5
   adr r1,iOfbuffer
   ldr r5,[r1]
   add r1,r5
   mov r2,#255
   adr r3,iOfkey
   ldr r5,[r3]
   add r3,r5
   mov r4,#0
   push {r4}                   @ stack alignement
   push {r4}
   bl XLookupString 
   add sp,#8                   @ stack alignement 2 push
   cmp r0,#1                   @ is character key ?
   bne 2f
   adr r0,iOfbuffer           @ yes -> load first buffer character
   ldr r5,[r0]
   add r0,r5
   ldrb r0,[r0]
   cmp r0,#0x71                @ character q for quit
   beq 5f                      @ yes -> end
   b 4f

2:

   /************************************/
   /* for example  clic mouse button   */
   /************************************/
   cmp r0,#ButtonPress         @ clic mouse buton
   bne 3f
   adr r0,iOfevent
   ldr r5,[r0]
   add r0,r5
   ldr r1,[r0,#+32]            @ position X mouse clic
   ldr r2,[r0,#+36]            @ position Y
   @ etc for eventuel use
   b 4f

3:

   cmp r0,#ClientMessage       @ code for close window within error
   bne 4f
   adr r0,iOfevent
   ldr r5,[r0]
   add r0,r5
   ldr r1,[r0,#+28]            @ code message address 
   adr r2,iOfwmDeleteMessage  @ equal code window créate ???
   ldr r5,[r2]
   add r2,r5
   ldr r2,[r2]
   cmp r1,r2
   beq 5f                      @ yes -> end window 

4: @ loop for other event

   b 1b
   /***********************************/
   /* Close window -> free ressources */
   /***********************************/

5:

   mov r0,r6                  @ display address
   adr r1,iOfptGC
   ldr r5,[r1]
   add r1,r5
   ldr r1,[r1]                @ load context graphic address 
   bl XFreeGC
   mov r0,r6                  @ display address
   adr r1,iOfptGC1
   ldr r5,[r1]
   add r1,r5
   ldr r1,[r1]                @ load context graphic address 
   bl XFreeGC
   cmp r0,#0
   blt erreurX11
   mov r0,r6                  @ display address 
   mov r1,r9                  @ window address
   bl XDestroyWindow
   cmp r0,#0
   blt erreurX11
   mov r0,r6                  @ display address
   bl XCloseDisplay
   cmp r0,#0
   blt erreurX11
   mov r0,#0                  @ return code OK
   b 100f

iOfptDisplay: .int ptDisplay - . iOfptEcranDef: .int ptEcranDef - . erreurF: @ create error window but possible not necessary. Display error by server

   adr r1,iOfszMessErrfen
   ldr r5,[r1]
   add r1,r5
   bl   displayError
   mov r0,#1                  @ return error code
   b 100f

erreurGC: @ error create graphic context

   adr r1,iOfszMessErrGc
   ldr r5,[r1]
   add r1,r5
   bl   displayError
   mov r0,#1
   b 100f

erreurX11: @ erreur X11

   adr r1,iOfszMessErreurX11
   ldr r5,[r1]
   add r1,r5
   bl   displayError
   mov r0,#1
   b 100f

erreurServeur: @ error no found X11 server see doc putty and Xming

   adr r1,iOfszMessErreur
   ldr r5,[r1]
   add r1,r5
   bl   displayError
   mov r0,#1
   b 100f

100: @ standard end of the program

   mov r7, #EXIT
   svc 0 

iOfptFenetre: .int ptFenetre - . iOfptGC: .int ptGC - . iOfptGC1: .int ptGC1 - . iOfevent: .int event - . iOfbuffer: .int buffer - . iOfkey: .int key - . iOfszLibDW: .int szLibDW - . iOfszMessErreurX11: .int szMessErreurX11 - . iOfszMessErrGc: .int szMessErrGc - . iOfszMessErreur: .int szMessErreur - . iOfszMessErrfen: .int szMessErrfen - . iOfszWindowName: .int szWindowName - . iOfszTitreFenRed: .int szTitreFenRed - . iOfPrpNomFenetre: .int PrpNomFenetre - . iOfwmDeleteMessage: .int wmDeleteMessage - . iOfstXGCValues: .int stXGCValues - . iOfstXGCValues1: .int stXGCValues1 - . iOfstXGCValues2: .int stXGCValues2 - . iFenetreMask: .int KeyPressMask|ButtonPressMask|StructureNotifyMask iGris1: .int 0xFFA0A0A0 /******************************************************************/ /* initialisation perceptron */ /******************************************************************/ /* */ initPerceptron: @ INFO: initPerceptron

   push {r1-r6,lr}
   mov r1,#0
   adr r2,iOftbfPoids
   ldr r5,[r2]
   add r2,r5

1: @ création alea weight

   mov r0,#10000
   bl genereraleasFloat
   lsl r3,r1,#2              @ compute offset
   add r3,r2                 @ compute weight address
   vstr s0,[r3]              @ and store first alea weight
   add r1,#1
   cmp r1,#NBENTREES + 1     @ + biais entry
   blt 1b
   
   mov r1,#0                 @ training indice
   mov r6,#entrai_fin        @ size one element training
   adr r2,iOfstEnt           @ address trainning
   ldr r5,[r2]
   add r2,r5
   ldr r4,fUn                @ biais value = 1.0
   vldr s5,fConst3           @ 
   vldr s6,fConst4

2: @ loop training value

   mla r3,r1,r6,r2
   mov r0,#WINDOWWIDTH
   bl genereraleasFloat      @ value x
   vmul.f32 s0,s0,s6
   vstr s0,[r3]
   vmov s2,s0                @ save x
   mov r0,#WINDOWHEIGHT
   bl genereraleasFloat      @ value y
   vmul.f32 s0,s0,s5
   vstr s0,[r3,#4]          @ save y
   str r4,[r3,#entrai_entrees_biais] @ store biais
   vldr s3,fConst1
   vmul.f32 s4,s3,s2           @ x * 0.7
   vldr s3,fConst2
   vadd.f32 s4,s3              @ + 40
   vcmp.f32 s0,s4              @ compare y and résult
   vmrs APSR_nzcv,FPSCR        @ move float flags in standard flags
   movlt r0,#-1                @ -1 if smaller
   movge r0,#1                 @ +1 else
   str r0,[r3,#entrai_reponse] @ store in reply
   add r1,#1
   cmp r1,#NBENTRAI            @ other training ?
   blt 2b
   bl entrainerPerceptron
   

100:

   pop {r1-r6,pc}

iOftbfPoids: .int tbfPoids - . iOfstEnt: .int stEnt - . fUn: .float 1.0 fConst3: .float 1000.0 fConst4: .float 1000.0 /***************************************************/ /* training percepton */ /***************************************************/ /* */ entrainerPerceptron: @ INFO: entrainerPerceptron

   push {r1-r8,lr}
   mov r4,#0                  @ training indice
   adr r5,iOfstEnt           @ entry address
   ldr r6,[r5]
   add r5,r6
   adr r6,iOftbfPoids        @ weight address
   ldr r7,[r6]
   add r6,r7
   mov r7,#entrai_fin         @ size one entry

1:

   mul r0,r7,r4
   add r0,r5                  @ training element address
   ldr r1,[r0,#entrai_reponse] @ desired reply 
   mov r8,r0
   bl feedforward             @ compute reply
   sub r0,r1,r0               @ error
   vmov s3,r0
   vcvt.f32.s32  s3,s3        @ float conversion
   mov r2,#0                  @ indice weight

2:

   add r3,r6,r2,lsl #2        @ compute weight address
   vldr s5,[r3]               @ load weight
   add r1,r8,r2,lsl #2        @ compute entry address
   vldr s1,[r1]               @ load input[n]
   vldr s2,fConstC            @ constante C 
   vmul.f32 s4,s2,s3          @ compute new weight = C * error
   vmul.f32 s4,s4,s1          @ * input[n]
   vadd.f32 s5,s5,s4          @ + weight precedent
   vstr s5,[r3]               @ store new weight
   add r2,#1
   cmp r2,#NBENTREES + 1
   blt 2b
   add r4,#1
   cmp r4,#NBENTRAI
   blt 1b

100:

   pop {r1-r8,pc}

fConstC: .float 0.01 @ à adapter suivant problème fConst1: .float 0.7 @ coefficient fConst2: .float 40.0 /***************************************************/ /* compute perceptron reply */ /***************************************************/ /* r0 entry address */ /* r0 return résult */ feedforward: @ INFO: feedforward:

   push {r1-r5,lr}
   mov r4,r0             @ entry address
   mov r0,#0
   vmov s2,r0
   vcvt.f32.u32  s2,s2   @ convert zéro in float
   vmov s3,s2            @ and save
   mov r1,#0             @ indice weight
   adr r2,iOftbfPoids    @ weight address
   ldr r5,[r2]
   add r2,r5

1:

   lsl r3,r1,#2
   add r5,r3,r2          @ compute weight address
   vldr s0,[r5]          @ load weight
   add r5,r3,r4          @ compute entry address
   vldr s1,[r5]          @ load entry
   vmul.f32 s0,s1,s0     @ multiply entry by weight
   vadd.f32 s2,s0        @ and add to sum
   add r1,#1
   cmp r1,#NBENTREES + 1
   blt 1b
   vcmp.f32 s2,s3        @ compare sum to zéro
   vmrs APSR_nzcv,FPSCR  @ move float flags to standard flags
   movlt r0,#-1          @ -1 if smaller
   movge r0,#1           @ +1 else

100:

   pop {r1-r5,pc}

/***************************************************/ /* Génération nombre aleatoire format float */ /***************************************************/ /* r0 */ /* s0 retourne (alea r0)/range */ genereraleasFloat: @ INFO: genereraleasFloat

   push {r1-r5,lr}         @ save  registres
   mov r4,r0               @ save plage
   adr r0,iOfiGraine1      @ load seed
   ldr r5,[r0]
   add r0,r5
   ldr r0,[r0]
   ldr r1,iNombre1
   mul r0,r1
   add r0,#1
   adr r1,iOfiGraine1
   ldr r5,[r1]
   add r1,r5
   str r0,[r1]             @ store new seed
   ldr r1,m                @ divisor for 32 bits register
   bl division
   mov r0,r3               @ remainder
   ldr r1,m1               @ divisor  10000
   bl division
   mul r0,r2,r4            @ multiply quotient for range
   ldr r1,m1               @ 
   bl division             @ 
   mov r0,r2               @ quotient alea integer
   vmov s0,r4
   vcvt.f32.u32  s0,s0     @ conversion range en float
   vmov s1,r0
   vcvt.f32.u32  s1,s1     @ conversion aléa entier en float
   vdiv.f32 s0,s1,s0       @ division 
 

100:

   pop {r1-r5,pc}          @ restaur registres 

iOfiGraine1: .int iGraine - . iNombre1: .int 31415821 m1: .int 10000 m: .int 100000000 /******************************************************************/ /* dessin points */ /******************************************************************/ /* r0 contains display */ /* r1 contains windows */ /* r2 contains context graphic (color point) */ /* r3 contains context graphic 1 */ writePoint: @ INFO: draw_line_function

   push {r1-r11,lr}          @ save  registres
   mov r6,r0                 @ save display
   adr r4,iOftbfEntrees
   ldr r5,[r4]
   add r4,r5
   mov r0,#WINDOWWIDTH       @ 
   bl genereraleasFloat      @ alea float X
   mov r0,#WINDOWWIDTH
   vmov s1,r0
   vcvt.f32.u32  s1,s1     @ conversion en float
   vmul.f32 s0,s1            @ cadrage X
   vstr s0,[r4]
   mov r0,#WINDOWHEIGHT
   bl genereraleasFloat      @ alea float Y
   mov r0,#WINDOWHEIGHT
   vmov s1,r0
   vcvt.f32.u32  s1,s1       @ conversion en float
   vmul.f32 s0,s1            @ cadrage Y
   vstr s0,[r4,#4]
   mov r0,r4
   bl feedforward            @ request perceptron
   cmp r0,#0
   movgt r2,r10              @ if low use graphic context 1
   mov r8,r2
   mov r7,r1
   mov r0,r6
   vldr s0,[r4]              @ load X
   vcvt.s32.f32  s0,s0       @ conversion  entier
   vmov r3,s0                @ position x
   mov r9,r3
   sub sp,sp,#4              @ stack alignement
   vldr s1,[r4,#4]           @ Load Y
   vcvt.s32.f32  s1,s1       @ conversion  entier
   vmov r4,s1                @ position y
   rsb r4,r4,#WINDOWHEIGHT
   sub r4,r4,#50             @ correction system bar
   push {r4}                 @ on the stack
   bl XDrawPoint
   add sp,sp,#8              @ stack alignement 1 push and 1 stack alignement
   mov r0,r6
   mov r1,r7
   mov r2,r8
   add r9,#1
   mov r3,r9
   sub sp,sp,#4              @ stack alignement
   push {r4}                 @ on the stack
   bl XDrawPoint
   add sp,sp,#8              @ stack alignement 1 push and 1 stack alignement
   mov r0,r6
   mov r1,r7
   mov r2,r8
   sub r9,#2
   mov r3,r9
   sub sp,sp,#4              @ stack alignement
   push {r4}                 @ on the stack
   bl XDrawPoint
   add sp,sp,#8              @ stack alignement 1 push and 1 stack alignement
   mov r0,r6 
   mov r1,r7
   mov r2,r8
   add r9,#1
   mov r3,r9
   sub sp,sp,#4              @ stack alignement
   add r4,#1
   push {r4}                 @ on the stack
   bl XDrawPoint
   add sp,sp,#8              @ stack alignement 1 push and 1 stack alignement

100:

   pop {r1-r11,pc}           @ restaur registers

iOftbfEntrees: .int tbfEntrees - . /******************************************************************/ /* draw points */ /******************************************************************/ /* r0 contains display */ /* r1 contains windows */ /* r2 contains context graphic (color line) */ /* r3 contains X position */ /* r4 contains Y position */ draw_points: @ INFO: draw_points

   push {r0-r12,lr}         @ save  registres
   sub sp,sp,#4                @ stack alignement
   push {r4}                 @ on the stack
   bl XDrawPoint
   add sp,sp,#8              @ stack alignement 1 push and 1 stack alignement

100:

   pop {r0-r12,pc}                         @ restaur registers

/******************************************************************/ /* draw line function; */ /******************************************************************/ /* r0 contains display */ /* r1 contains windows */ /* r2 contains context graphic (color line) */

draw_line_Function: @ INFO: draw_line_function

   push {r1-r6,lr}         @ save  registres
                           @ compute begin y for x = 0
   vldr s1,fConst2
   vcvt.s32.f32  s1,s1     @ conversion integer 
   vmov r3,s1
   rsb r4,r3,#WINDOWHEIGHT @ = y = windows size - 40
   
                           @ calcul y fin pour x = WINDOWWIDTH
   mov r5,#WINDOWWIDTH     @ window width = x1
   vmov s2,r5
   vcvt.f32.s32  s2,s2     @ conversion  float
   vldr s1,fConst1
   vmul.f32 s0,s2,s1       @ * O,7
   vldr s2,fConst2
   vadd.f32 s0,s2          @ add contante (40)
   vcvt.s32.f32  s0,s0     @ conversion  entier
   vmov r3,s0
   rsb r6,r3,#WINDOWHEIGHT @ = y1
   mov r3,#0               @ position x
   sub sp,sp,#4            @ stack alignement
   push {r6}               @ position y1  
   push {r5}               @ position x1
   push {r4}               @ position y 
   bl XDrawLine
   add sp,sp,#16           @ for 4 push

100:

   pop {r1-r6,pc}                         @ restaur registers

/***************************************************/ /* ROUTINES INCLUDE */ /***************************************************/ .include "../affichage.inc" </lang>

Delphi

Library: Vcl.Forms
Translation of: Java

<lang Delphi> unit main;

interface

uses

 System.SysUtils, System.Classes, Vcl.Graphics, Vcl.Forms, Vcl.ExtCtrls,
 System.UITypes;

type

 TTrainer = class
   inputs: TArray<Double>;
   answer: Integer;
   constructor Create(x, y: Double; a: Integer);
 end;
 TForm1 = class(TForm)
   tmr1: TTimer;
   procedure FormCreate(Sender: TObject);
   procedure FormPaint(Sender: TObject);
   procedure tmr1Timer(Sender: TObject);
 private
   procedure Perceptron(n: Integer);
   function FeedForward(inputs: Tarray<double>): integer;
   procedure Train(inputs: Tarray<double>; desired: integer);
 end;

var

 Form1: TForm1;
 Training: TArray<TTrainer>;
 weights: TArray<Double>;
 c: double = 0.00001;
 count: Integer = 0;

implementation

{$R *.dfm}

{ TTrainer }

constructor TTrainer.Create(x, y: Double; a: Integer); begin

 inputs := [x, y, 1];
 answer := a;

end;

function f(x: double): double; begin

 Result := x * 0.7 + 40;

end;

function activateFn(s: double): integer; begin

 if (s > 0) then
   Result := 1
 else
   Result := -1;

end;

procedure TForm1.FormPaint(Sender: TObject); const

 DotColor: array[Boolean] of TColor = (clRed, clBlue);

var

 i, x, y, guess: Integer;

begin

 with Canvas do
 begin
   Brush.Color := Tcolors.Whitesmoke;
   FillRect(ClipRect);
   x := ClientWidth;
   y := Trunc(f(x));
   Pen.Width := 3;
   pen.Color := TColors.Orange;
   Pen.Style := TPenStyle.psSolid;
   MoveTo(0, Trunc(f(0)));
   LineTo(x, y);
   Train(training[count].inputs, training[count].answer);
   count := (count + 1) mod length(training);
   Pen.Width := 1;
   pen.Color := TColors.Black;
   for i := 0 to count do
   begin
     guess := FeedForward(training[i].inputs);
     x := trunc(training[i].inputs[0] - 4);
     y := trunc(training[i].inputs[1] - 4);
     Brush.Style := TBrushStyle.bsSolid;
     Pen.Style := TPenStyle.psClear;
     Brush.Color := DotColor[guess > 0];
     Ellipse(rect(x, y, x + 8, y + 8));
   end;
 end;

end;

procedure TForm1.Perceptron(n: Integer); const

 answers: array[Boolean] of integer = (-1, 1);

var

 i, x, y, answer: Integer;

begin

 SetLength(weights, n);
 for i := 0 to high(weights) do
   weights[i] := Random * 2 - 1;
 for i := 0 to High(Training) do
 begin
   x := Trunc(Random() * ClientWidth);
   y := Trunc(Random() * ClientHeight);
   answer := answers[y < f(x)];
   training[i] := TTrainer.Create(x, y, answer);
 end;
 tmr1.Enabled := true;

end;

procedure TForm1.tmr1Timer(Sender: TObject); begin

 Invalidate;

end;

function TForm1.FeedForward(inputs: Tarray<double>): integer; var

 sum: double;
 i: Integer;

begin

 Assert(length(inputs) = length(weights), 'weights and input length mismatch');
 sum := 0;
 for i := 0 to high(weights) do
   sum := sum + inputs[i] * weights[i];
 result := activateFn(sum);

end;

procedure TForm1.Train(inputs: Tarray<double>; desired: integer); var

 guess: Integer;
 error: Double;
 i: Integer;

begin

 guess := FeedForward(inputs);
 error := desired - guess;
 for i := 0 to length(weights) - 1 do
   weights[i] := weights[i] + c * error * inputs[i];

end;

procedure TForm1.FormCreate(Sender: TObject); begin

 SetLength(Training, 2000);
 Perceptron(3);

end;

end.</lang> Form settings (main.dfm) <lang Delphi> object Form1: TForm1

 ClientHeight = 360
 ClientWidth = 640
 DoubleBuffered = True
 OnCreate = FormCreate
 OnPaint = FormPaint
 object tmr1: TTimer
   Enabled = False
   Interval = 10
   OnTimer = tmr1Timer
 end

end </lang>

Output:

[[1]]

Forth

Works with: GNU Forth

Where it says [email protected] it should say f@. <lang Forth>require random.fs here seed !

warnings off

( THE PERCEPTRON )

randomWeight 2000 random 1000 - s>f 1000e f/ ;
createPerceptron create dup , 0 ?DO randomWeight f, LOOP ;

variable arity variable ^weights variable ^inputs

perceptron! dup @ arity ! cell+ ^weights ! ;
inputs! ^inputs ! ;

0.0001e fconstant learningConstant

activate 0e f> IF 1e ELSE -1e THEN ;
feedForward
   ^weights @  ^inputs @  0e
   arity @  0  ?DO
       dup f@  float + swap
       dup f@  float + swap
       f* f+
   LOOP 2drop activate ;
train
   feedForward f- learningConstant f*
   ^weights @  ^inputs @
   arity @  0  ?DO
       fdup  dup f@ f*  float + swap
       dup f@ f+  dup f!  float + swap
   LOOP 2drop fdrop ;

( THE TRAINER )

create point 0e f, 0e f, 1e f, \ x y bias

x point ;
y point float + ;
randomX 640 random s>f ;
randomY 360 random s>f ;

\ y = Ax + B 2e fconstant A 1e fconstant B

randomizePoint
   randomY fdup y f!
   randomX fdup x f!
   A f* B f+ f<  IF -1e ELSE 1e THEN ;

3 createPerceptron myPerceptron variable trainings 10000 constant #rounds

setup 0 ; \ success counter
calculate s>f #rounds s>f f/ 100e f* ;
report ." After " trainings @ . ." trainings: "
               calculate f. ." % accurate" cr ;
check learningConstant f~ IF 1+ THEN ;
evaluate randomizePoint feedForward check ;
evaluate setup #rounds 0 ?DO evaluate LOOP report ;
tally 1 trainings +! ;
timesTrain 0 ?DO randomizePoint train tally LOOP ;
initialize
   myPerceptron perceptron!
   point inputs!
   0 trainings ! ;
go
       initialize evaluate
     1 timesTrain evaluate
     1 timesTrain evaluate
     1 timesTrain evaluate
     1 timesTrain evaluate
     1 timesTrain evaluate
     5 timesTrain evaluate
    10 timesTrain evaluate
    30 timesTrain evaluate
    50 timesTrain evaluate
   100 timesTrain evaluate
   300 timesTrain evaluate
   500 timesTrain evaluate ;

go bye</lang> Example output:

After 0 trainings: 10.16 % accurate
After 1 trainings: 7.43 % accurate
After 2 trainings: 7.71 % accurate
After 3 trainings: 4.93 % accurate
After 4 trainings: 3.11 % accurate
After 5 trainings: 0.6 % accurate
After 10 trainings: 48.72 % accurate
After 20 trainings: 85.55 % accurate
After 50 trainings: 86.36 % accurate
After 100 trainings: 98.59 % accurate
After 200 trainings: 98.84 % accurate
After 500 trainings: 95.86 % accurate
After 1000 trainings: 99.8 % accurate


FreeBASIC

El código es de D.J.Peters (https://freebasic.net/forum/viewtopic.php?t=24778)
The code is from D.J.Peters

Yo solo lo transcribo.
I just transcribe it. <lang freebasic> Function rnd2 As Single

   Return Rnd()-Rnd()

End Function

Type Perceptron

   Declare Constructor(Byval n As Integer)
   Declare Function feedforward(Byval in As Single Ptr) As Integer
   Declare Function activate(Byval sum As Single) As Integer
   Declare Sub      train(Byval in As Single Ptr, Byval uit As Integer)
   As Integer    lastItem
   As Single Ptr weights
   As Single c = 0.01

End Type

Constructor Perceptron(Byval n As Integer)

   lastItem = n-1
   weights = New Single[n]
   For i As Integer = 0 To lastItem
       weights[i] = rnd2()
   Next i

End Constructor

Function Perceptron.feedforward(Byval in As Single Ptr) As Integer

   Dim As Single sum
   For i As Integer = 0 To lastItem
       sum += in[i] * weights[i]
   Next
   Return activate(sum)

End Function

Function Perceptron.activate(Byval sum As Single) As Integer

   Return Iif(sum>0, 1, -1)

End Function

Sub Perceptron.train(Byval in As Single Ptr, Byval uit As Integer)

   Dim As Integer gues = feedforward(in)
   Dim As Single error_ = uit - gues
   For i As Integer = 0  To lastitem
       weights[i] += c * error_ * in[i]
   Next

End Sub

Type Trainer

   Declare Constructor (Byval x As Single, Byval y As Single, Byval a As Integer)
   As Single inputs(2)
   As Integer answer

End Type

Constructor Trainer(Byval x As Single, Byval y As Single, Byval a As Integer)

   inputs(0) = x
   inputs(1) = y
   inputs(2) = 1.0
   answer = a

End Constructor

Function f(Byval x As Single) As Single

   Return 2 * x + 1

End Function

Const As Integer NTRAINERS = 2000 Const As Integer NWIDTH = 640 Const As Integer NHEIGHT = 360 Dim Shared As Perceptron Ptr ptron Dim Shared As Trainer Ptr training(NTRAINERS-1) Dim Shared As Integer count

Sub setup()

   count = 0
   Screenres NWIDTH, NHEIGHT
   ptron = New Perceptron(3)
   For i As Integer = 0  To NTRAINERS-1
       Dim As Single x = rnd2() * NWIDTH /2
       Dim As Single y = rnd2() * NHEIGHT/2
       Dim As Integer answer = 1
       If (y < f(x)) Then answer = -1
       training(i) = New Trainer(x , y , answer)
   Next i

End Sub

Sub drawit()

   ptron -> train(@training(count)->inputs(0), training(count)->answer)
   count = (count + 1) Mod NTRAINERS
   For i As Integer = 0 To count
       Dim As Integer gues = ptron->feedforward(@training(i)->inputs(0))
       If (gues  > 0) Then
           Circle(NWIDTH/2+training(i)->inputs(0),NHEIGHT/2+training(i)->inputs(1)),8,8
       Else
           Circle(NWIDTH/2+training(i)->inputs(0),NHEIGHT/2+training(i)->inputs(1)),8,8,,,,f
       End If
   Next i

End Sub

setup() While Inkey() = ""

   drawit()
   Sleep 100

Wend </lang>

Go

Library: Go Graphics


This is based on the Java entry but just outputs the final image (as a .png file) rather than displaying its gradual build up. It also uses a different color scheme - blue and red circles with a black dividing line. <lang go>package main

import (

   "github.com/fogleman/gg"
   "math/rand"
   "time"

)

const c = 0.00001

func linear(x float64) float64 {

   return x*0.7 + 40

}

type trainer struct {

   inputs []float64
   answer int

}

func newTrainer(x, y float64, a int) *trainer {

   return &trainer{[]float64{x, y, 1}, a}

}

type perceptron struct {

   weights  []float64
   training []*trainer

}

func newPerceptron(n, w, h int) *perceptron {

   weights := make([]float64, n)
   for i := 0; i < n; i++ {
       weights[i] = rand.Float64()*2 - 1
   }
   training := make([]*trainer, 2000)
   for i := 0; i < 2000; i++ {
       x := rand.Float64() * float64(w)
       y := rand.Float64() * float64(h)
       answer := 1
       if y < linear(x) {
           answer = -1
       }
       training[i] = newTrainer(x, y, answer)
   }
   return &perceptron{weights, training}

}

func (p *perceptron) feedForward(inputs []float64) int {

   if len(inputs) != len(p.weights) {
       panic("weights and input length mismatch, program terminated")
   }
   sum := 0.0
   for i, w := range p.weights {
       sum += inputs[i] * w
   }
   if sum > 0 {
       return 1
   }
   return -1

}

func (p *perceptron) train(inputs []float64, desired int) {

   guess := p.feedForward(inputs)
   err := float64(desired - guess)
   for i := range p.weights {
       p.weights[i] += c * err * inputs[i]
   }

}

func (p *perceptron) draw(dc *gg.Context, iterations int) {

   le := len(p.training)
   for i, count := 0, 0; i < iterations; i, count = i+1, (count+1)%le {
       p.train(p.training[count].inputs, p.training[count].answer)
   }
   x := float64(dc.Width())
   y := linear(x)
   dc.SetLineWidth(2)
   dc.SetRGB255(0, 0, 0) // black line
   dc.DrawLine(0, linear(0), x, y)
   dc.Stroke()
   dc.SetLineWidth(1)
   for i := 0; i < le; i++ {
       guess := p.feedForward(p.training[i].inputs)
       x := p.training[i].inputs[0] - 4
       y := p.training[i].inputs[1] - 4
       if guess > 0 {
           dc.SetRGB(0, 0, 1) // blue circle
       } else {
           dc.SetRGB(1, 0, 0) // red circle
       }
       dc.DrawCircle(x, y, 8)
       dc.Stroke()
   }

}

func main() {

   rand.Seed(time.Now().UnixNano())
   w, h := 640, 360
   perc := newPerceptron(3, w, h)
   dc := gg.NewContext(w, h)
   dc.SetRGB(1, 1, 1) // white background
   dc.Clear()
   perc.draw(dc, 2000)
   dc.SavePNG("perceptron.png")

}</lang>

Java

Works with: Java version 8

<lang java>import java.awt.*; import java.awt.event.ActionEvent; import java.util.*; import javax.swing.*; import javax.swing.Timer;

public class Perceptron extends JPanel {

   class Trainer {
       double[] inputs;
       int answer;
       Trainer(double x, double y, int a) {
           inputs = new double[]{x, y, 1};
           answer = a;
       }
   }
   Trainer[] training = new Trainer[2000];
   double[] weights;
   double c = 0.00001;
   int count;
   public Perceptron(int n) {
       Random r = new Random();
       Dimension dim = new Dimension(640, 360);
       setPreferredSize(dim);
       setBackground(Color.white);
       weights = new double[n];
       for (int i = 0; i < weights.length; i++) {
           weights[i] = r.nextDouble() * 2 - 1;
       }
       for (int i = 0; i < training.length; i++) {
           double x = r.nextDouble() * dim.width;
           double y = r.nextDouble() * dim.height;
           int answer = y < f(x) ? -1 : 1;
           training[i] = new Trainer(x, y, answer);
       }
       new Timer(10, (ActionEvent e) -> {
           repaint();
       }).start();
   }
   private double f(double x) {
       return x * 0.7 + 40;
   }
   int feedForward(double[] inputs) {
       assert inputs.length == weights.length : "weights and input length mismatch";
       double sum = 0;
       for (int i = 0; i < weights.length; i++) {
           sum += inputs[i] * weights[i];
       }
       return activate(sum);
   }
   int activate(double s) {
       return s > 0 ? 1 : -1;
   }
   void train(double[] inputs, int desired) {
       int guess = feedForward(inputs);
       double error = desired - guess;
       for (int i = 0; i < weights.length; i++) {
           weights[i] += c * error * inputs[i];
       }
   }
   @Override
   public void paintComponent(Graphics gg) {
       super.paintComponent(gg);
       Graphics2D g = (Graphics2D) gg;
       g.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
               RenderingHints.VALUE_ANTIALIAS_ON);
       // we're drawing upside down
       int x = getWidth();
       int y = (int) f(x);
       g.setStroke(new BasicStroke(2));
       g.setColor(Color.orange);
       g.drawLine(0, (int) f(0), x, y);
       train(training[count].inputs, training[count].answer);
       count = (count + 1) % training.length;
       g.setStroke(new BasicStroke(1));
       g.setColor(Color.black);
       for (int i = 0; i < count; i++) {
           int guess = feedForward(training[i].inputs);
           x = (int) training[i].inputs[0] - 4;
           y = (int) training[i].inputs[1] - 4;
           if (guess > 0)
               g.drawOval(x, y, 8, 8);
           else
               g.fillOval(x, y, 8, 8);
       }
   }
   public static void main(String[] args) {
       SwingUtilities.invokeLater(() -> {
           JFrame f = new JFrame();
           f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
           f.setTitle("Perceptron");
           f.setResizable(false);
           f.add(new Perceptron(3), BorderLayout.CENTER);
           f.pack();
           f.setLocationRelativeTo(null);
           f.setVisible(true);
       });
   }

}</lang>

JavaScript

Uses P5 lib. <lang javascript> const EPOCH = 1500, TRAINING = 1, TRANSITION = 2, SHOW = 3;

var perceptron; var counter = 0; var learnRate = 0.02; var state = TRAINING;

function setup() {

   createCanvas( 800, 600 );
   clearBack();
   perceptron = new Perceptron( 2 );

}

function draw() {

   switch( state ) {
       case TRAINING: training(); break;
       case TRANSITION: transition(); break;
       case SHOW: show(); break;
   }

}

function clearBack() {

   background( 0 );
   stroke( 255 );
   strokeWeight( 4 );
   var x = width;
   line( 0, 0, x, lineDef( x ) );

}

function transition() {

   clearBack();
   state = SHOW;

}

function lineDef( x ) {

   return .75 * x;

}

function training() {

   var a = random( width ),
       b = random( height );
   lDef = lineDef( a ) > b ? -1 : 1;
   perceptron.setInput( [a, b] );
   perceptron.feedForward();
   var pRes = perceptron.getOutput();
   var match = (pRes == lDef);
   var clr;
   if( !match ) {
       var err = ( pRes - lDef ) * learnRate;
       perceptron.adjustWeights( err );
       clr = color( 255, 0, 0 );
   } else {
       clr = color( 0, 255, 0 );
   }
   noStroke();
   fill( clr );
   ellipse( a, b, 4, 4 );
   if( ++counter == EPOCH ) state = TRANSITION;

}

function show() {

   var a = random( width ),
       b = random( height ),
       clr;
   perceptron.setInput( [a, b] );
   perceptron.feedForward();
   var pRes = perceptron.getOutput();
   if( pRes < 0 )
       clr = color( 255, 0, 0 );
   else 
       clr = color( 0, 255, 0 );
   noStroke();
   fill( clr );
   ellipse( a, b, 4, 4 );

}

function Perceptron( inNumber ) {

   this.inputs = [];
   this.weights = [];
   this.output;
   this.bias = 1;
   
   // one more weight for bias
   for( var i = 0; i < inNumber + 1; i++ ) {
       this.weights.push( Math.random() );
   };
   this.activation = function( a ) {
       return( Math.tanh( a ) < .5 ? 1 : -1 );
   }
   this.feedForward = function() {
       var sum = 0;
       for( var i = 0; i < this.inputs.length; i++ ) {
           sum += this.inputs[i] * this.weights[i];
       }
       sum += this.bias * this.weights[this.weights.length - 1];
       this.output = this.activation( sum );
   }
   this.getOutput = function() {
       return this.output;
   }
   this.setInput= function( inputs ) {
       this.inputs = [];
       for( var i = 0; i < inputs.length; i++ ) {
           this.inputs.push( inputs[i] );
       }
   }
   this.adjustWeights = function( err ) {
       for( var i = 0; i < this.weights.length - 1; i++ ) {
           this.weights[i] += err * this.inputs[i];
       }
   }

} </lang> File:PerceptronJS.png

Well, it seems I cannot upload an image :(

Julia

<lang julia># file module.jl

module SimplePerceptrons

  1. default activation function

step(x) = x > 0 ? 1 : -1

mutable struct Perceptron{T, F}

   weights::Vector{T}
   lr::T
   activate::F

end

Perceptron{T}(n::Integer, lr = 0.01, f::Function = step) where T =

   Perceptron{T, typeof(f)}(2 .* rand(n + 1) .- 1, lr, f)

Perceptron(args...) = Perceptron{Float64}(args...)

@views predict(p::Perceptron, x::AbstractVector) = p.activate(p.weights[1] + x' * p.weights[2:end]) @views predict(p::Perceptron, X::AbstractMatrix) = p.activate.(p.weights[1] .+ X * p.weights[2:end])

function train!(p::Perceptron, X::AbstractMatrix, y::AbstractVector; epochs::Integer = 100)

   for _ in Base.OneTo(epochs)
       yhat = predict(p, X)
       err = y .- yhat
       ΔX = p.lr .* err .* X
       for ind in axes(ΔX, 1)
           p.weights[1] += err[ind]
           p.weights[2:end] .+= ΔX[ind, :]
       end
   end
   return p

end

accuracy(p, X::AbstractMatrix, y::AbstractVector) = count(y .== predict(p, X)) / length(y)

end # module SimplePerceptrons </lang>

<lang julia># file _.jl

const SP = include("module.jl")

p = SP.Perceptron(2, 0.1)

a, b = 0.5, 1 X = rand(1000, 2) y = map(x -> x[2] > a + b * x[1] ? 1 : -1, eachrow(X))

  1. Accuracy

@show SP.accuracy(p, X, y)

  1. Train

SP.train!(p, X, y, epochs = 1000)

ahat, bhat = p.weights[1] / p.weights[2], -p.weights[3] / p.weights[2]

using Plots

scatter(X[:, 1], X[:, 2], markercolor = map(x -> x == 1 ? :red : :blue, y)) Plots.abline!(b, a, label = "real line", linecolor = :red, linewidth = 2)

SP.train!(p, X, y, epochs = 1000) ahat, bhat = p.weights[1] / p.weights[2], -p.weights[3] / p.weights[2] Plots.abline!(bhat, ahat, label = "predicted line") </lang>

Kotlin

Translation of: Java

<lang scala>// version 1.1.4-3

import java.awt.* import java.awt.event.ActionEvent import java.util.Random import javax.swing.JPanel import javax.swing.JFrame import javax.swing.Timer import javax.swing.SwingUtilities

class Perceptron(n: Int) : JPanel() {

   class Trainer(x: Double, y: Double, val answer: Int) {
       val inputs = doubleArrayOf(x, y, 1.0)
   }
   val weights: DoubleArray
   val training: Array<Trainer>
   val c = 0.00001
   var count = 0
   init {
       val r = Random()
       val dim = Dimension(640, 360)
       preferredSize = dim
       background = Color.white
       weights = DoubleArray(n) { r.nextDouble() * 2.0 - 1.0 }
       training = Array(2000) {
           val x = r.nextDouble() * dim.width
           val y = r.nextDouble() * dim.height
           val answer = if (y < f(x)) -1 else 1
           Trainer(x, y, answer)
       }
       Timer(10) { repaint() }.start()
   }
   private fun f(x: Double) = x * 0.7 + 40.0
   fun feedForward(inputs: DoubleArray): Int {
       if (inputs.size != weights.size)
           throw IllegalArgumentException("Weights and input length mismatch")
       val sum = weights.zip(inputs) { w, i -> w * i }.sum()
       return activate(sum)
   }
   fun activate(s: Double) = if (s > 0.0) 1 else -1
   fun train(inputs: DoubleArray, desired: Int) {
       val guess = feedForward(inputs)
       val error = desired - guess
       for (i in 0 until weights.size) weights[i] += c * error * inputs[i]
   }
   public override fun paintComponent(gg: Graphics) {
       super.paintComponent(gg)
       val g = gg as Graphics2D
       g.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
                          RenderingHints.VALUE_ANTIALIAS_ON)
       // we're drawing upside down
       var x = width
       var y = f(x.toDouble()).toInt()
       g.stroke = BasicStroke(2.0f)
       g.color = Color.orange
       g.drawLine(0, f(0.0).toInt(), x, y)
       train(training[count].inputs, training[count].answer)
       count = (count + 1) % training.size
       g.stroke = BasicStroke(1.0f)
       g.color = Color.black
       for (i in 0 until count) {
           val guess = feedForward(training[i].inputs)
           x = training[i].inputs[0].toInt() - 4
           y = training[i].inputs[1].toInt() - 4 
           if (guess > 0) g.drawOval(x, y, 8, 8)
           else g.fillOval(x, y, 8, 8)
       }
   }

}

fun main(args: Array<String>) {

   SwingUtilities.invokeLater {
       val f = JFrame()
       with(f) {
           defaultCloseOperation = JFrame.EXIT_ON_CLOSE
           title = "Perceptron"
           isResizable = false
           add(Perceptron(3), BorderLayout.CENTER)
           pack()
           setLocationRelativeTo(null)
           isVisible = true
       }
   }

}</lang>

Lua

Simple implementation allowing for any number of inputs (in this case, just 1), testing of the Perceptron, and training. <lang lua>local Perceptron = {} Perceptron.__index = Perceptron

function Perceptron.new(numInputs)

   local cell = {}
   setmetatable(cell, Perceptron)
   cell.weights = {}
   cell.bias = math.random()
   cell.output = 0
   for i = 1, numInputs do
       cell.weights[i] = math.random()
   end
   return cell

end

--used in both training and testing, calculates the output from inputs and weights function Perceptron:update(inputs)

   local sum = self.bias
   for i = 1, #inputs do
       sum = sum + self.weights[i] * inputs[i]
   end
   self.output = sum

end

--returns the output from a given table of inputs function Perceptron:test(inputs)

   self:update(inputs)
   return self.output

end

--used in training to adjust the weights and bias function Perceptron:optimize(stepSize)

   local gradient = self.delta * self.output
   for i = 1, #self.weights do
       self.weights[i] = self.weights[i] + (stepSize*gradient)
   end
   self.bias = self.bias + (stepSize*self.delta)

end

--takes a table of training data, the number of iterations (or epochs) to train over, and the step size for training function Perceptron:train(data, iterations, stepSize)

   for i = 1, iterations do
       for j = 1, #data do
           local datum = data[j]
           self:update(datum[1])
           self.delta = datum[2] - self.output
           self:optimize(stepSize)
       end
   end

end

local node = Perceptron.new(1) --creates a new Perceptron that takes in 1 input local trainingData = {} --this Perceptron will be trained on the function y=2x+1 print("Untrained results:") for i = -2, 2, 1 do

   print(i..":", node:test({i}))
   trainingData[i+3] = {{i},2*i+1} --the training data is a table, where each element is another table that has a table of inputs and one output

end node:train(trainingData, 100, .1) --trains on the set for 100 epochs with a step size of 0.1 print("\nTrained results:") for i = -2, 2, 1 do

   print(i..":", node:test({i}))

end </lang>

Output:
Untrained results:
-2: -0.55767321178784
-1: 0.1898736124016
0: 0.93742043659104
1: 1.6849672607805
2: 2.4325140849699

Trained results:
-2: -3
-1: -1
0: 1
1: 3
2: 5

Nim

Translation of: Pascal

<lang Nim>import random

type

 IntArray = array[0..2, int]
 FloatArray = array[0..2, float]

func targetOutput(a, b: int): int =

 ## The function the perceptron will be learning is f(x) = 2x + 1.
 if a * 2 + 1 < b: 1 else: - 1

proc showTargetOutput =

 for y in countdown(10, - 9):
   for x in countup(-9, 10):
     stdout.write if targetOutput(x, y) == 1: '#' else: 'O'
   echo()
 echo()

proc randomWeights(ws: var FloatArray) =

 ## Start with random weights.
 randomize()
 for w in ws.mitems:
   w = rand(1.0) * 2 + 1

func feedForward(ins: IntArray; ws: FloatArray): int =

 ## The perceptron outputs 1 if the sum of its inputs multiplied by
 ## its input weights is positive, otherwise -1.
 var sum = 0.0
 for i in 0..ins.high:
   sum += ins[i].toFloat * ws[i]
 result = if sum > 0: 1 else: -1

proc showOutput(ws: FloatArray) =

 var inputs: IntArray
 inputs[2] = 1   # bias.
 for y in countdown(10, -9):
   inputs[1] = y
   for x in countup(-9, 10):
     inputs[0] = x
     stdout.write if feedForward(inputs, ws) == 1: '#' else: 'O'
   echo()
 echo()

proc train(ws: var FloatArray; runs: int) =

 var inputs: IntArray
 inputs[2] = 1   # bias.
 for _ in 1..runs:
   for y in countdown(10, -9):
     inputs[1] = y
     for x in countup(-9, 10):
       inputs[0] = x
       let error = targetOutput(x, y) - feedForward(inputs, ws)
       for i in 0..2:
         ws[i] += float(error * inputs[i]) * 0.01  # 0.01 is the learning constant.

when isMainModule:

 var weights: FloatArray
 echo "Target output for the function f(x) = 2x + 1:"
 showTargetOutput()
 randomWeights(weights)
 echo "Output from untrained perceptron:"
 showOutput(weights)
 train(weights, 1)
 echo "Output from perceptron after 1 training run:"
 showOutput(weights)
 train(weights, 4)
 echo "Output from perceptron after 5 training runs:"
 showOutput(weights)</lang>
Output:
Target output for the function f(x) = 2x + 1:
##############OOOOOO
#############OOOOOOO
#############OOOOOOO
############OOOOOOOO
############OOOOOOOO
###########OOOOOOOOO
###########OOOOOOOOO
##########OOOOOOOOOO
##########OOOOOOOOOO
#########OOOOOOOOOOO
#########OOOOOOOOOOO
########OOOOOOOOOOOO
########OOOOOOOOOOOO
#######OOOOOOOOOOOOO
#######OOOOOOOOOOOOO
######OOOOOOOOOOOOOO
######OOOOOOOOOOOOOO
#####OOOOOOOOOOOOOOO
#####OOOOOOOOOOOOOOO
####OOOOOOOOOOOOOOOO

Output from untrained perceptron:
OOOO################
OOOO################
OOOOO###############
OOOOO###############
OOOOOO##############
OOOOOO##############
OOOOOOO#############
OOOOOOO#############
OOOOOOOO############
OOOOOOOO############
OOOOOOOOO###########
OOOOOOOOO###########
OOOOOOOOOO##########
OOOOOOOOOO##########
OOOOOOOOOOO#########
OOOOOOOOOOO#########
OOOOOOOOOOOO########
OOOOOOOOOOOOO#######
OOOOOOOOOOOOO#######
OOOOOOOOOOOOOO######

Output from perceptron after 1 training run:
####################
###################O
##################OO
#################OOO
#################OOO
################OOOO
###############OOOOO
##############OOOOOO
#############OOOOOOO
############OOOOOOOO
###########OOOOOOOOO
###########OOOOOOOOO
##########OOOOOOOOOO
#########OOOOOOOOOOO
########OOOOOOOOOOOO
#######OOOOOOOOOOOOO
######OOOOOOOOOOOOOO
#####OOOOOOOOOOOOOOO
#####OOOOOOOOOOOOOOO
####OOOOOOOOOOOOOOOO

Output from perceptron after 5 training runs:
################OOOO
################OOOO
###############OOOOO
##############OOOOOO
##############OOOOOO
#############OOOOOOO
############OOOOOOOO
###########OOOOOOOOO
###########OOOOOOOOO
##########OOOOOOOOOO
#########OOOOOOOOOOO
#########OOOOOOOOOOO
########OOOOOOOOOOOO
#######OOOOOOOOOOOOO
#######OOOOOOOOOOOOO
######OOOOOOOOOOOOOO
#####OOOOOOOOOOOOOOO
#####OOOOOOOOOOOOOOO
####OOOOOOOOOOOOOOOO
###OOOOOOOOOOOOOOOOO

Pascal

This is a text-based implementation, using a 20x20 grid (just like the original Mark 1 Perceptron had). The rate of improvement drops quite markedly as you increase the number of training runs. <lang pascal>program Perceptron;

(*

* implements a version of the algorithm set out at
* http://natureofcode.com/book/chapter-10-neural-networks/ ,
* but without graphics
*)

function targetOutput( a, b : integer ) : integer; (* the function the perceptron will be learning is f(x) = 2x + 1 *) begin

   if a * 2 + 1 < b then
       targetOutput := 1
   else
       targetOutput := -1

end;

procedure showTargetOutput; var x, y : integer; begin

   for y := 10 downto -9 do
   begin
       for x := -9 to 10 do
           if targetOutput( x, y ) = 1 then
               write( '#' )
           else
               write( 'O' );
       writeln
   end;
   writeln

end;

procedure randomWeights( var ws : array of real ); (* start with random weights -- NB pass by reference *) var i : integer; begin

   randomize; (* seed random-number generator *)
   for i := 0 to 2 do
       ws[i] := random * 2 - 1

end;

function feedForward( ins : array of integer; ws : array of real ) : integer; (* the perceptron outputs 1 if the sum of its inputs multiplied by its input weights is positive, otherwise -1 *) var sum : real;

   i : integer;

begin

   sum := 0;
   for i := 0 to 2 do
       sum := sum + ins[i] * ws[i];
   if sum > 0 then
       feedForward := 1
   else
       feedForward := -1

end;

procedure showOutput( ws : array of real ); var inputs : array[0..2] of integer;

   x, y : integer;

begin

   inputs[2] := 1; (* bias *)
   for y := 10 downto -9 do
   begin
       for x := -9 to 10 do
       begin
           inputs[0] := x;
           inputs[1] := y;
           if feedForward( inputs, ws ) = 1 then
               write( '#' )
           else
               write( 'O' )
       end;
       writeln
   end;
   writeln

end;

procedure train( var ws : array of real; runs : integer ); (* pass the array of weights by reference so it can be modified *) var inputs : array[0..2] of integer;

   error : real;
   x, y, i, j : integer;

begin

   inputs[2] := 1; (* bias *)
   for i := 1 to runs do
   begin
       for y := 10 downto -9 do
       begin
           for x := -9 to 10 do
           begin
               inputs[0] := x;
               inputs[1] := y;
               error := targetOutput( x, y ) - feedForward( inputs, ws );
               for j := 0 to 2 do
                   ws[j] := ws[j] + error * inputs[j] * 0.01;
                   (* 0.01 is the learning constant *)
           end;
       end;
   end;

end;

var weights : array[0..2] of real;

begin

   writeln( 'Target output for the function f(x) = 2x + 1:' );
   showTargetOutput;
   randomWeights( weights );
   writeln( 'Output from untrained perceptron:' );
   showOutput( weights );
   train( weights, 1 );
   writeln( 'Output from perceptron after 1 training run:' );
   showOutput( weights );
   train( weights, 4 );
   writeln( 'Output from perceptron after 5 training runs:' );
   showOutput( weights )

end.</lang>

Output:
Target output for the function f(x) = 2x + 1:
##############OOOOOO
#############OOOOOOO
#############OOOOOOO
############OOOOOOOO
############OOOOOOOO
###########OOOOOOOOO
###########OOOOOOOOO
##########OOOOOOOOOO
##########OOOOOOOOOO
#########OOOOOOOOOOO
#########OOOOOOOOOOO
########OOOOOOOOOOOO
########OOOOOOOOOOOO
#######OOOOOOOOOOOOO
#######OOOOOOOOOOOOO
######OOOOOOOOOOOOOO
######OOOOOOOOOOOOOO
#####OOOOOOOOOOOOOOO
#####OOOOOOOOOOOOOOO
####OOOOOOOOOOOOOOOO

Output from untrained perceptron:
OOO#################
OOOO################
OOOOO###############
OOOOO###############
OOOOOO##############
OOOOOO##############
OOOOOOO#############
OOOOOOOO############
OOOOOOOO############
OOOOOOOOO###########
OOOOOOOOO###########
OOOOOOOOOO##########
OOOOOOOOOOO#########
OOOOOOOOOOO#########
OOOOOOOOOOOO########
OOOOOOOOOOOOO#######
OOOOOOOOOOOOO#######
OOOOOOOOOOOOOO######
OOOOOOOOOOOOOO######
OOOOOOOOOOOOOOO#####

Output from perceptron after 1 training run:
###############OOOOO
###############OOOOO
##############OOOOOO
#############OOOOOOO
#############OOOOOOO
############OOOOOOOO
############OOOOOOOO
###########OOOOOOOOO
##########OOOOOOOOOO
##########OOOOOOOOOO
#########OOOOOOOOOOO
#########OOOOOOOOOOO
########OOOOOOOOOOOO
#######OOOOOOOOOOOOO
#######OOOOOOOOOOOOO
######OOOOOOOOOOOOOO
######OOOOOOOOOOOOOO
#####OOOOOOOOOOOOOOO
####OOOOOOOOOOOOOOOO
####OOOOOOOOOOOOOOOO

Output from perceptron after 5 training runs:
##############OOOOOO
#############OOOOOOO
#############OOOOOOO
############OOOOOOOO
############OOOOOOOO
###########OOOOOOOOO
###########OOOOOOOOO
##########OOOOOOOOOO
##########OOOOOOOOOO
#########OOOOOOOOOOO
#########OOOOOOOOOOO
########OOOOOOOOOOOO
########OOOOOOOOOOOO
#######OOOOOOOOOOOOO
#######OOOOOOOOOOOOO
######OOOOOOOOOOOOOO
######OOOOOOOOOOOOOO
#####OOOOOOOOOOOOOOO
#####OOOOOOOOOOOOOOO
####OOOOOOOOOOOOOOOO

Phix

Library: Phix/pGUI

Interactive GUI version. Select one of five lines, set the number of points, learning constant, learning rate, and max iterations. Plots accuracy vs. iterations and displays the training data in blue/black=above/incorrect and green/red=below/incorrect [all blue/green = 100% accurate]. <lang Phix>-- demo\rosetta\Perceptron.exw -- -- The learning curve turned out more haphazard than I imagined, and adding a -- non-linear line to f() (case 5) was perhaps not such a great idea given how -- much it sometimes struggles with some of the other straight lines anyway. -- include pGUI.e --#withtype Ihandle --#withtype Ihandles --#withtype cdCanvas

constant help_txt = """ A perceptron is the simplest possible neural network, consisting of just one neuron that we train to recognise whether a point is above or below a given straight line. NB: It would probably be unwise to overly assume that this could easily be adapted to anything more complex, or actually useful. It is just a basic introduction, but you have to start somewhere. What is interesting is that ultimately the neuron is just three numbers, plus a bucket-load of training gumpf.

The left hand panel allows settings to be changed, in the middle we plot the rate of learning, and on the right we show the training data colour coded as above/below and correct/incorrect (blue/black=above/incorrect, green/red=below/incorrect). What you want to see is all blue/green, with no black/red.

You can change the line algorithm (four straight and one curved that it is not meant to be able to cope with), the number of points (size of training data), the learning constant, learning rate (iterations/second) and the maximum number of iterations. Note that training automatically stops once 100% accuracy is reached (since the error is then always zero, no further changes would ever occur). Also note that a restart is triggered when any setting is changed, not just when the restart button is pressed.

The learning curve was expected to start at 50% (random chance of being right) and gradually improve towards 100%, except when the non-linear line was selected. It turned out far more haphazard than I thought it would. Originally it allowed up to 10,000,000 iterations, but it rarely improved much beyond 1,000,000."""

function help_cb(Ihandln /*help*/)

   IupMessage("Perceptron",help_txt)
   return IUP_DEFAULT

end function

Ihandle dlg, plot, canvas, timer,

       iteration, accuracy, w1, w2, w3

cdCanvas cddbuffer, cdcanvas

integer line_alg = 1 integer points = 2000,

       learning_rate = 10000,
       max_iterations = 1_000_000,
       total_iterations = 0

atom learning_constant = 0.00001

enum WEIGHTS, -- The actual neuron (just 3 numbers)

    TRAINING   -- training data/results, variable length

enum INPUTS, ANSWER -- contents of [TRAINING]

    -- note that length(inputs[i]) must = length(weights)

sequence perceptron = {},

        last_wh -- (recreate "" on resize)

function activate(atom t)

   return iff(t>0?+1:-1)

end function

function f(atom x)

   switch line_alg
       case 1: return x*0.7+40
       case 2: return 300-0.3*x
       case 3: return x*0.75
       case 4: return 2*x+1
       case 5: return x/2+sin(x/100)*100+100 -- (fail)
   end switch

end function

procedure new_perceptron(integer n)

   sequence weights := repeat(0, n)
   for i=1 to n do
       weights[i] = rnd()*2 - 1
   end for
   sequence training := repeat(0,points)
   integer {w,h} = last_wh
   for i=1 to points do
       integer x := rand(w),
               y := rand(h),
               answer := activate(y-f(x))
       sequence inputs = {x, y, 1}
       -- aside: inputs is {x,y,1}, rather than {x,y} because an
       --        input of {0,0} could only ever yield 0, whereas
       --        {0,0,1} can yield a non-zero guess: weights[3].
       training[i] = {inputs, answer}  -- {INPUTS, ANSWER}
   end for
   perceptron = {weights, training}  -- {WEIGHTS, TRAINING}

end procedure

function feed_forward(sequence inputs)

   if length(inputs)!=length(perceptron[WEIGHTS]) then
       throw("weights and input length mismatch, program terminated")
   end if
   atom total := 0.0
   for i=1 to length(inputs) do
       total += inputs[i] * perceptron[WEIGHTS][i]
   end for
   return activate(total)

end function

procedure train(sequence inputs, integer desired)

   integer guess := feed_forward(inputs),
           error := desired - guess
   for i=1 to length(perceptron[WEIGHTS]) do
       perceptron[WEIGHTS][i] += learning_constant * error * inputs[i]
   end for

end procedure

function draw(bool bDraw=true) -- (if bDraw is false, we just want the "correct" count)

   integer correct = 0
   atom x, y
   for i=1 to points do
       {sequence inputs, integer answer} = perceptron[TRAINING][i]
       integer guess := feed_forward(inputs)
       correct += (guess=answer)
       if bDraw then
           {x,y} = inputs
           -- blue/black=above/incorrect, green/red=below/incorrect
           integer clr = iff(guess=answer?iff(guess>0?CD_BLUE:CD_GREEN)
                                         :iff(guess>0?CD_BLACK:CD_RED))
           cdCanvasSetForeground(cddbuffer, clr)
           cdCanvasCircle(cddbuffer, x, y, 8)
       end if
   end for
   if bDraw then
       cdCanvasSetForeground(cddbuffer, CD_BLACK)
       x := last_wh[1]
       y := f(x)
       if line_alg=5 then
           -- non-linear so (crudely) draw in little segments
           for i=0 to x by 20 do
               cdCanvasLine(cddbuffer,i,f(i),i+20,f(i+20))
           end for
       else
           cdCanvasLine(cddbuffer,0,f(0),x,y)
       end if
   end if
   return correct

end function

bool re_plot = true atom plot0 sequence plotx = repeat(0,19),

        ploty = repeat(0,19)

integer imod = 1, -- keep every 1, then 10, then 100, ...

       pidx = 1

function restart_cb(Ihandln /*restart*/)

   last_wh = IupGetIntInt(canvas, "DRAWSIZE")
   new_perceptron(3)
   imod = 1
   pidx = 1
   total_iterations = 0
   plot0 = (draw(false)/points)*100
   re_plot = true
   IupSetInt(timer,"RUN",1)
   return IUP_DEFAULT

end function

function redraw_cb(Ihandle /*ih*/, integer /*posx*/, integer /*posy*/)

   if perceptron={}
   or last_wh!=IupGetIntInt(canvas, "DRAWSIZE") then
       {} = restart_cb(NULL)
   end if
   cdCanvasActivate(cddbuffer)
   cdCanvasClear(cddbuffer)
   integer correct = draw()
   cdCanvasFlush(cddbuffer)
   if re_plot then
       re_plot = false
       IupSetAttribute(plot, "CLEAR", NULL)
       IupPlotBegin(plot)
       IupPlotAdd(plot, 0, plot0)
       for i=1 to pidx-1 do
           IupPlotAdd(plot, plotx[i], ploty[i])
       end for
       {} = IupPlotEnd(plot)
       IupSetAttribute(plot, "REDRAW", NULL)
   end if
   
   IupSetStrAttribute(iteration,"TITLE","iteration: %d",{total_iterations})
   IupSetStrAttribute(w1,"TITLE","%+f",{perceptron[WEIGHTS][1]})
   IupSetStrAttribute(w2,"TITLE","%+f",{perceptron[WEIGHTS][2]})
   IupSetStrAttribute(w3,"TITLE","%+f",{perceptron[WEIGHTS][3]})
   IupSetStrAttribute(accuracy,"TITLE","accuracy: %.4g%%",{(correct/points)*100})
   IupRefresh({iteration,w1,w2,w3,accuracy})   -- (force label resize)
   if correct=points then
       IupSetInt(timer,"RUN",0)                -- stop at 100%
   end if
   return IUP_DEFAULT

end function

function map_cb(Ihandle ih)

   cdcanvas = cdCreateCanvas(CD_IUP, ih)
   cddbuffer = cdCreateCanvas(CD_DBUFFER, cdcanvas)
   cdCanvasSetBackground(cddbuffer, CD_PARCHMENT)
   return IUP_DEFAULT

end function

function valuechanged_cb(Ihandle ih)

   string name = IupGetAttribute(ih, "NAME")
   integer v = IupGetInt(ih, "VALUE")
   switch name
       case "line":    line_alg = v
       case "points":  points = power(10,v)
       case "learn":   learning_constant = power(10,-v)
       case "rate":    learning_rate = power(10,v-1)
       case "max":     max_iterations = power(10,v)
   end switch
   {} = restart_cb(NULL)
   return IUP_DEFAULT

end function

function timer_cb(Ihandle /*timer*/)

   for i=1 to min(learning_rate,max_iterations) do
       total_iterations += 1
       integer c = mod(total_iterations,points)+1
       train(perceptron[TRAINING][c][INPUTS], perceptron[TRAINING][c][ANSWER])
       if mod(total_iterations,imod)=0 then
           -- save 1,2..10, then 20,30,..100, then 200,300,..1000, etc
           re_plot = true
           plotx[pidx] = total_iterations
           ploty[pidx] = (draw(false)/points)*100
           if pidx=10 or pidx=19 then
               if pidx=19 then
                   -- drop (eg) 1,2,..9, replace with 10,20,..90,
                   -- next time replace 10,20..90 with 100,200..900, etc
                   plotx[1..10] = plotx[10..19]
                   ploty[1..10] = ploty[10..19]
               end if
               imod *= 10
               pidx = 11
           else
               pidx += 1
           end if
       end if      
   end for
   if total_iterations>=max_iterations then
       IupSetInt(timer,"RUN",0)
   end if
   IupUpdate(canvas)
   return IUP_IGNORE

end function

function esc_close(Ihandle /*ih*/, atom c)

   if c=K_ESC then return IUP_CLOSE end if
   if c=K_F1 then return help_cb(NULL) end if
   if c=K_F5 then return restart_cb(NULL) end if
   return IUP_CONTINUE

end function

function settings(string lname, name, sequence opts, integer v=1)

   Ihandle lbl = IupLabel(lname,"PADDING=0x4"),
           list = IupList("NAME=%s, DROPDOWN=YES",{name}),
           hbox = IupHbox({lbl,IupFill(),list})
   for i=1 to length(opts) do
       IupSetAttributeId(list,"",i,opts[i])
   end for
   IupSetInt(list,"VISIBLEITEMS",length(opts)+1)
   IupSetInt(list,"VALUE",v)
   IupSetCallback(list, "VALUECHANGED_CB", Icallback("valuechanged_cb"));
   return hbox

end function

function sep()

   return IupLabel("","SEPARATOR=HORIZONTAL")

end function

procedure main()

   IupOpen()
   IupControlsOpen()
   Ihandle settings_lbl = IupHbox({IupFill(),IupLabel("Settings"),IupFill()}),
           line = settings("line","line",{"x*0.7 + 40","300 - 0.3*x","x*0.75","2*x + 1","x/2+sin(x/100)*100+100"}),
           points = settings("number of points","points",{"10","100","1000","10000"},3),
           learn = settings("learning constant","learn",{"0.1","0.01","0.001","0.0001","0.00001"},5),
           rate = settings("learning rate","rate",{"1/s","10/s","100/s","1000/s","10000/s"},5),
           maxiter = settings("max iterations","max",{"10","100","1000","10,000","100,000","1,000,000"},6),
           restart = IupButton("Restart (F5)", "ACTION", Icallback("restart_cb")),
           helpbtn = IupButton("Help (F1)", "ACTION", Icallback("help_cb")),
           buttons = IupHbox({restart,IupFill(),helpbtn})
   iteration = IupLabel("iteration: 1")
   w1 = IupLabel("1")
   w2 = IupLabel("2")
   w3 = IupLabel("3")
   Ihandle weights = IupHbox({IupLabel("weights: ","PADDING=0x4"),IupVbox({w1,w2,w3})})
   accuracy = IupLabel("accuracy: 12.34%")
   Ihandle vbox = IupVbox({settings_lbl, sep(),
                           line, sep(), points, sep(), learn, sep(), 
                           rate, sep(), maxiter, sep(), buttons, sep(),
                           IupHbox({iteration}), weights, IupHbox({accuracy})})
   IupSetAttribute(vbox, "GAP", "4");
   plot = IupPlot("MENUITEMPROPERTIES=Yes")
   IupSetAttribute(plot, "TITLE", "Learning Curve");
   IupSetAttribute(plot, "TITLEFONTSIZE", "10");
   IupSetAttribute(plot, "TITLEFONTSTYLE", "ITALIC");
   IupSetAttribute(plot, "GRIDLINESTYLE", "DOTTED");
   IupSetAttribute(plot, "GRID", "YES");
   IupSetAttribute(plot, "AXS_XLABEL", "iterations");
   IupSetAttribute(plot, "AXS_YLABEL", "% correct");
   IupSetAttribute(plot, "AXS_XFONTSTYLE", "ITALIC");
   IupSetAttribute(plot, "AXS_YFONTSTYLE", "ITALIC");
   IupSetAttribute(plot, "AXS_XTICKNUMBER", "No");
   IupSetAttribute(plot, "AXS_YAUTOMIN", "No");
   IupSetAttribute(plot, "AXS_YAUTOMAX", "No");
   IupSetInt(plot, "AXS_YMIN", 0)
   IupSetInt(plot, "AXS_YMAX", 100)
   canvas = IupCanvas(NULL)
   IupSetAttribute(canvas, "RASTERSIZE", "640x360") -- initial size
   IupSetCallback(canvas, "MAP_CB", Icallback("map_cb"))
   IupSetCallback(canvas, "ACTION", Icallback("redraw_cb"))
   Ihandle hbox = IupHbox({vbox, plot, canvas},"MARGIN=4x4, GAP=10")
   dlg = IupDialog(hbox);
   IupSetCallback(dlg, "K_ANY", Icallback("esc_close"))
   IupSetAttribute(dlg, "TITLE", "Perceptron")
   IupMap(dlg)
   IupSetAttribute(canvas, "RASTERSIZE", NULL) -- release limitation
   IupShowXY(dlg,IUP_CENTER,IUP_CENTER)
   timer = IupTimer(Icallback("timer_cb"), 100) -- (was 1 sec, now 0.1s)
   IupMainLoop()
   IupClose()

end procedure main()</lang>

Python

Python 3 <lang python>import random

TRAINING_LENGTH = 2000

class Perceptron:

   Simple one neuron simulated neural network
   def __init__(self,n):
       self.c = .01
       self.weights = [random.uniform(-1.0, 1.0) for _ in range(n)]
   def feed_forward(self, inputs):
       vars = []
       for i in range(len(inputs)):
           vars.append(inputs[i] * self.weights[i])
       return self.activate(sum(vars))
   def activate(self, value):
       return 1 if value > 0 else -1
   def train(self, inputs, desired):
       guess = self.feed_forward(inputs)
       error = desired - guess
       for i in range(len(inputs)):
           self.weights[i] += self.c * error * inputs[i]
       

class Trainer():

    
   def __init__(self, x, y, a):
       self.inputs = [x, y, 1]
       self.answer = a

def F(x):

   return 2 * x + 1

if __name__ == "__main__":

   ptron = Perceptron(3)
   training = []
   for i in range(TRAINING_LENGTH):
       x = random.uniform(-10,10)
       y = random.uniform(-10,10)
       answer = 1
       if y < F(x): answer = -1
       training.append(Trainer(x,y,answer))
   result = []
   for y in range(-10,10):
       temp = []
       for x in range(-10,10):
           if ptron.feed_forward([x,y,1]) == 1:
               temp.append('^')
           else:
               temp.append('.')
       result.append(temp)
   
   print('Untrained')
   for row in result:
       print(.join(v for v in row))
   for t in training:
       ptron.train(t.inputs, t.answer)
   
   result = []
   for y in range(-10,10):
       temp = []
       for x in range(-10,10):
           if ptron.feed_forward([x,y,1]) == 1:
               temp.append('^')
           else:
               temp.append('.')
       result.append(temp)
   
   print('Trained')
   for row in result:
       print(.join(v for v in row))</lang>
Output:
Untrained
^^^^^^^^^^^^^^^^^^^^
^^^^^^^^^^^^^^^^^^^^
^^^^^^^^^^^^^^^^^^^^
^^^^^^^^^^^^^^^^^^^^
^^^^^^^^^^^^^^^^^^^^
^^^^^^^^^^^^^^^^^^^^
^^^^^^^^^^^^^^^^^^^^
^^^^^^^^^^^^^^^^^^^^
^^^^^^^^^^^^^^^^^...
^^^^^^^^^^^^^.......
^^^^^^^^............
^^^^................
....................
....................
....................
....................
....................
....................
....................
....................
Trained
^^^^^...............
^^^^^...............
^^^^^^..............
^^^^^^..............
^^^^^^^.............
^^^^^^^.............
^^^^^^^^............
^^^^^^^^............
^^^^^^^^^...........
^^^^^^^^^^..........
^^^^^^^^^^..........
^^^^^^^^^^^.........
^^^^^^^^^^^.........
^^^^^^^^^^^^........
^^^^^^^^^^^^........
^^^^^^^^^^^^^.......
^^^^^^^^^^^^^.......
^^^^^^^^^^^^^^......
^^^^^^^^^^^^^^......
^^^^^^^^^^^^^^^.....

Racket

Translation of: Java

<lang racket>#lang racket (require 2htdp/universe

        2htdp/image)

(define (activate s) (if (positive? s) 1 -1))

---------------------------------------------------------------------------------------------------
PERCEPTRON

(define perceptron%

 (class object%
   (super-new)
   (init-field n)
   
   (field [weights (build-vector n (λ (i) (- (* (random) 2) 1)))])
   
   (define c 0.001)
   (define/public (feed-forward inputs)
     (unless (= (vector-length inputs) (vector-length weights))
       (error 'feed-forward "weights and inputs lengths mismatch"))
     (activate (for/sum ((i (in-vector inputs)) (w (in-vector weights))) (* i w))))
   (define/public (train! inputs desired)
     (let ((error (- desired (feed-forward inputs))))
       (set! weights (vector-map (λ (w i) (+ w (* c error i))) weights inputs))))))
---------------------------------------------------------------------------------------------------
TRAINING

(struct training-data (inputs answer))

(define (make-training-data x y f)

 (training-data (vector x y 1) (activate (- (f x) y))))
---------------------------------------------------------------------------------------------------
DEMO

(define (demo)

 (struct demonstration (p w h f i))
 (define (draw-classification-space p w h scl n)
   (for/fold ((scn (place-image (text (~a (get-field weights p)) 12 "red")
                                (* scl (/ w 2))
                                (* scl (/ h 2))
                                (empty-scene (* w scl) (* h scl)))))
             ((_ (in-range n)))
     (let* ((x (* (random) w))
            (y (* (random) h))
            (guess+? (positive? (send p feed-forward (vector x y 1)))))          
       (place-image (rectangle 4 4 (if guess+? 'solid 'outline) (if guess+? 'red 'black))
                    (- (* scl x) 2) (- (* scl (- h y)) 2)
                    scn))))
 (define the-demo
   (let ((w 640/100) (h 360/100) (f (λ (x) (+ (* x 0.7) 0.8))))
     (demonstration (new perceptron% [n 3]) w h f 0)))
 (define (demo-train p w h f)
   (let ((td (make-training-data (* (random) w) (* (random) h) f)))
     (send p train! (training-data-inputs td) (training-data-answer td))))
 (define tick-handler
   (match-lambda
     [(and d (demonstration p w h f i))
      (for ((_ (in-range 100))) (demo-train p w h f))
      (struct-copy demonstration d [i (+ 100 i)])]))
 (define draw-demo (match-lambda
                     [(demonstration p w h f i)
                      (let ((scl 100))
                        (scene+line (place-image (text (~a i) 24 "magenta")
                                                 (* scl (/ w 2))
                                                 (* scl (/ h 3))
                                                 (draw-classification-space p w h scl 1000))
                                    0 (* scl (- h (f 0))) (* scl w) (* scl (- h (f w))) "red"))]))
 
 (big-bang the-demo (to-draw draw-demo) (on-tick tick-handler)))
                     

(module+ main (demo))</lang>

Run it and see the image for yourself, I can't get it onto RC!

Raku

Translation of: Go

<lang perl6># 20201116 Raku programming solution

use MagickWand;

our ( \c, \runs ) = 0.00001, 2000 ;

class Trainer { has ( @.inputs, $.answer ) is rw }

sub linear(\x) { return x*0.7 + 40 }

class Perceptron {

  has ( @.weights, Trainer @.training ) is rw ;
  submethod BUILD(:n($n), :w($w), :h($h)) {
     @!weights  = [ rand*2-1 xx ^$n ];
     @!training = (^runs).map: {
         my (\x,\y) = rand*$w , rand*$h ;
         my \a      = y < linear(x) ?? 1 !! -1;
         Trainer.new: inputs => (x,y,1), answer => a 
     }
  }
  method feedForward(@inputs) { 
     die "weights and input length mismatch" if +@inputs != +self.weights;
     return ( sum( @inputs »*« self.weights ) > 0 ) ?? 1 !! -1
  }
  method train(@inputs, \desired) {
     self.weights »+«= @inputs »*» (c*(desired - self.feedForward(@inputs)))
  }
  method draw(\img) {
     for ^runs { self.train(self.training[$_].inputs, self.training[$_].answer) }
     my $y = linear(my $x = img.width) ;
     img».&{ .stroke-width(3) or .stroke('black') or .fill('none') } # C returns 
     img.draw-line(0.0, linear(0), $x, $y);
     img.stroke-width( 1 );
     for ^runs {
        my $guess = self.feedForward(self.training[$_].inputs);
        ($x, $y) = self.training[$_].inputs[0,1] »-» 4;  
        $guess > 0 ?? img.stroke( 'blue' ) !! img.stroke( 'red' ); 
        img.circle( $x, $y, $x+8, $y );
     }
  }

}

my ($w, $h) = 640, 360; my $perc = Perceptron.new: n => 3, w => $w, h => $h; my $o = MagickWand.new or die; $o.create( $w, $h, "white" ); $perc.draw($o); $o.write('./perceptron.png') or die</lang>

REXX

Translation of: Java

<lang rexx>/* REXX */ Call init Call time 'R' try=0 Call show 0 Do d=1 To dots

 x=x.d
 y=y.d
 Parse Value x y 1 with inputs.0 inputs.1 inputs.2
 answer.d=sign(y-f(x))
 Select
   When f(x)<y Then r='<'
   When f(x)>y Then r='>'
   Otherwise        r='='
   End
 training.d=x y 1 answer.d
 End

Do try=1 To tries

 Call time 'R'
 zz=0
 Do d=1 To dots
   Parse Var training.d inputs.0 inputs.1 inputs.2 answer.d
   Call train d
   Do ii=1 To d
     Parse Var training.ii inputs.0 inputs.1 inputs.2 answer.d
     guess = feedForward(d)
     End
   End
 Call show try
 End

Exit

show:

 Parse Arg run
 show=wordpos(run,'0 1' tries)>0
 If run>0 Then Say ' '
 If show Then  Say 'Point    x f(x) r    y ff ok   zz'
 zz=0
 Do d=1 To dots
   x=x.d
   y=y.d
   Parse Value x.d y.d 1 with inputs.0 inputs.1 inputs.2
   ff=format(feedForward(),2)
   Select
     When f(x)<y Then r='<'
     When f(x)>y Then r='>'
     Otherwise        r='='
     End
   If r='<' & ff=1 |,
      r='>' & ff=-1 Then Do; tag='ok'; zz=zz+1; End
                    Else tag='--'
   If show Then
    Say format(d,5) format(x,4,0) format(f(x),4,0) r format(y,4,0) right(ff,2),
                                                                   tag format(zz,4)
   End
 If show Then Say copies('-',33)
 weights=format(weights.0,2,5) format(weights.1,2,5) format(weights.2,2,5)
 Select
   When run=0 Then txt='Initial pattern'
   When run=1 Then txt='After one loop '
   Otherwise       txt='After' run 'loops'
   End
 Say left(txt,15) format(zz,4) 'points fire. weights='weights
 Return

train: Procedure Expose inputs. weights.

 desired=sign(inputs.1-f(inputs.0))
 guess  = feedForward()
 error  = desired-guess
 Do i=0 To 2
   weights.i=weights.i+0.00001*error*inputs.i
   End
 Return

f: Return arg(1)*0.7+40

nextDouble: /* random number between -1 and +1 */

 Return random(100000)/100000

feedforward: Procedure Expose inputs. weights.

 sum=0
 Do i=0 To 2
   sum=sum+inputs.i*weights.i
   End
 Return activate(sum)

activate:

 If arg(1)>0 Then Return 1
             Else Return -1

init:

 Call random 10000,10000,333 /* seed the random function */
 dots=30
 width=640
 height=360
 tries=10
 Do i=0 To 2
   weights.i=nextDouble()
   End
 Do i=1 To dots
   x.i=nextDouble()*width
   y.i=nextDouble()*height
   End
 Return</lang>
Output:
Point    x f(x) r    y ff ok   zz
    1  100  110 <  204  1 ok    1
    2  613  469 >  117  1 --    1
    3  528  409 >  125  1 --    1
    4  141  139 >  119  1 --    1
    5   32   62 <  245  1 ok    2
    6   11   48 <  336  1 ok    3
    7  435  344 >  270  1 --    3
    8  572  440 >  280  1 --    3
    9  442  350 >  141  1 --    3
   10  410  327 >  209  1 --    3
   11  290  243 <  355  1 ok    4
   12  257  220 <  260  1 ok    5
   13  235  205 >   51  1 --    5
   14  600  460 >   66  1 --    5
   15   21   55 <  182  1 ok    6
   16  197  178 >   42  1 --    6
   17  444  351 >  150  1 --    6
   18  393  315 >   87  1 --    6
   19  622  475 >  280  1 --    6
   20  436  345 >  292  1 --    6
   21  553  427 >  261  1 --    6
   22  478  374 >  264  1 --    6
   23  373  301 >  120  1 --    6
   24  527  409 >   94  1 --    6
   25  558  431 >   49  1 --    6
   26  616  471 >  358  1 --    6
   27  241  209 >   68  1 --    6
   28  365  295 >  164  1 --    6
   29  371  299 >  155  1 --    6
   30  102  112 <  220  1 ok    7
---------------------------------
Initial pattern    7 points fire. weights= 0.28732  0.50931  0.45298

Point    x f(x) r    y ff ok   zz
    1  100  110 <  204  1 ok    1
    2  613  469 >  117  1 --    1
    3  528  409 >  125  1 --    1
    4  141  139 >  119  1 --    1
    5   32   62 <  245  1 ok    2
    6   11   48 <  336  1 ok    3
    7  435  344 >  270  1 --    3
    8  572  440 >  280  1 --    3
    9  442  350 >  141  1 --    3
   10  410  327 >  209  1 --    3
   11  290  243 <  355  1 ok    4
   12  257  220 <  260  1 ok    5
   13  235  205 >   51  1 --    5
   14  600  460 >   66  1 --    5
   15   21   55 <  182  1 ok    6
   16  197  178 >   42  1 --    6
   17  444  351 >  150  1 --    6
   18  393  315 >   87  1 --    6
   19  622  475 >  280  1 --    6
   20  436  345 >  292  1 --    6
   21  553  427 >  261  1 --    6
   22  478  374 >  264  1 --    6
   23  373  301 >  120  1 --    6
   24  527  409 >   94  1 --    6
   25  558  431 >   49  1 --    6
   26  616  471 >  358  1 --    6
   27  241  209 >   68  1 --    6
   28  365  295 >  164  1 --    6
   29  371  299 >  155  1 --    6
   30  102  112 <  220  1 ok    7
---------------------------------
After one loop     7 points fire. weights= 0.08433  0.43412  0.45252

After 2 loops     16 points fire. weights=-0.10749  0.35991  0.45208

After 3 loops     26 points fire. weights=-0.18168  0.31845  0.45192

After 4 loops     28 points fire. weights=-0.20192  0.30482  0.45186

After 5 loops     29 points fire. weights=-0.20473  0.30245  0.45184

After 6 loops     29 points fire. weights=-0.20755  0.30007  0.45182

After 7 loops     29 points fire. weights=-0.21037  0.29769  0.45180

After 8 loops     29 points fire. weights=-0.21319  0.29532  0.45178

After 9 loops     29 points fire. weights=-0.21601  0.29294  0.45176

Point    x f(x) r    y ff ok   zz
    1  100  110 <  204  1 ok    1
    2  613  469 >  117 -1 ok    2
    3  528  409 >  125 -1 ok    3
    4  141  139 >  119  1 --    3
    5   32   62 <  245  1 ok    4
    6   11   48 <  336  1 ok    5
    7  435  344 >  270 -1 ok    6
    8  572  440 >  280 -1 ok    7
    9  442  350 >  141 -1 ok    8
   10  410  327 >  209 -1 ok    9
   11  290  243 <  355  1 ok   10
   12  257  220 <  260  1 ok   11
   13  235  205 >   51 -1 ok   12
   14  600  460 >   66 -1 ok   13
   15   21   55 <  182  1 ok   14
   16  197  178 >   42 -1 ok   15
   17  444  351 >  150 -1 ok   16
   18  393  315 >   87 -1 ok   17
   19  622  475 >  280 -1 ok   18
   20  436  345 >  292 -1 ok   19
   21  553  427 >  261 -1 ok   20
   22  478  374 >  264 -1 ok   21
   23  373  301 >  120 -1 ok   22
   24  527  409 >   94 -1 ok   23
   25  558  431 >   49 -1 ok   24
   26  616  471 >  358 -1 ok   25
   27  241  209 >   68 -1 ok   26
   28  365  295 >  164 -1 ok   27
   29  371  299 >  155 -1 ok   28
   30  102  112 <  220  1 ok   29
---------------------------------
After 10 loops    29 points fire. weights=-0.21883  0.29057  0.45174

Scala

Java Swing Interoperability

<lang Scala>import java.awt._ import java.awt.event.ActionEvent

import javax.swing._

import scala.util.Random

object Perceptron extends App {

 SwingUtilities.invokeLater(() =>
   new JFrame("Perceptron") {
     class Perceptron(val n: Int) extends JPanel {
       private val (c, dim) = (0.00001, new Dimension(640, 360))
       private val (random, training) = (new Random, Array.ofDim[Trainer](2000))
       private val weights = Array.fill(n)(random.nextDouble * 2 - 1)
       private var count = 0
       override def paintComponent(gg: Graphics): Unit = {
         var x = getWidth
         var y = f(x).toInt
         def train(inputs: Array[Double], desired: Int): Unit = {
           val guess = feedForward(inputs)
           for (i <- weights.indices) weights(i) += c * (desired - guess) * inputs(i)
         }
         def feedForward(inputs: Array[Double]) = {
           assert(inputs.length == weights.length, "weights and input length mismatch")
           var sum = 0.0
           for (i <- weights.indices) {
             sum += inputs(i) * weights(i)
           }
           if (sum > 0) 1 else -1
         }
         super.paintComponent(gg)
         val g = gg.asInstanceOf[Graphics2D]
         g.setRenderingHint(RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON)
         // we're drawing upside down
         g.setStroke(new BasicStroke(2))
         g.setColor(Color.orange)
         g.drawLine(0, f(0).toInt, x, y)
         train(training(count).inputs, training(count).answer)
         count = (count + 1) % training.length
         g.setStroke(new BasicStroke(1))
         g.setColor(Color.black)
         for (i <- 0 until count) {
           val guess = feedForward(training(i).inputs)
           x = training(i).inputs(0).toInt - 4
           y = training(i).inputs(1).toInt - 4
           if (guess > 0) g.drawOval(x, y, 8, 8)
           else g.fillOval(x, y, 8, 8)
         }
       }
       private def f(x: Double) = x * 0.7 + 40
       class Trainer(val x: Double, val y: Double, var answer: Int) {
         val inputs = Array[Double](x, y, 1)
       }
       for (j <- training.indices;
            x = random.nextDouble * dim.width;
            y = random.nextDouble * dim.height;
            answer = if (y < f(x)) -1 else 1
       ) training(j) = new Trainer(x, y, answer)
       new Timer(10, (e: ActionEvent) => repaint()).start()
       setBackground(Color.white)
       setPreferredSize(dim)
     }
     add(new Perceptron(3), BorderLayout.CENTER)
     pack()
     setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE)
     setLocationRelativeTo(null)
     setResizable(false)
     setVisible(true)
   })

}</lang>

Scheme

<lang scheme>(import (scheme base)

       (scheme case-lambda)
       (scheme write)
       (srfi 27))      ; for random numbers

(random-source-randomize! default-random-source)

Function to create a perceptron
num-inputs
size of input data
learning-rate
small number, to give rate of learning
returns perceptron as a function
accepting 'train data -> trains on given list of data
'test data -> returns percent correct on given list of data
'show -> displays the perceptron weights
classes assumed to be 1, -1

(define (create-perceptron num-inputs learning-rate)

 (define (make-rnd-vector n) ; rnd vector, values in [-1,1]
   (let ((result (make-vector n)))
     (do ((i 0 (+ 1 i)))
       ((= i n) result)
       (vector-set! result i (- (* 2 (random-real)) 1)))))
 (define (extended input) ; add a 1 to end of vector
   (let* ((n (vector-length input))
          (result (make-vector (+ 1 n))))
     (do ((i 0 (+ 1 i)))
       ((= i n) (vector-set! result i 1)
                result)
       (vector-set! result i (vector-ref input i)))))
 (define (predict weights extended-input)
   (let ((sum 0))
     (vector-for-each (lambda (w i) (set! sum (+ sum (* w i))))
                      weights extended-input)
     (if (positive? sum) 1 -1)))
 ;
 (let ((weights (make-rnd-vector (+ 1 num-inputs))))
   (case-lambda ; defines a function for the perceptron
     ((key)
      (when (eq? key 'show)
        (display weights) (newline)))
     ((action data) 
      (case action
        ((train) 
         (for-each 
           (lambda (datum)
             (let* ((extended-input (extended (car datum)))
                    (error (- (cdr datum) (predict weights extended-input))))
               (set! weights (vector-map (lambda (w i) (+ w (* learning-rate error i)))
                                         weights
                                         extended-input))))
           data))
        ((test) 
         (let ((count 0))
           (for-each 
             (lambda (datum) (when (= (cdr datum) (predict weights (extended (car datum))))
                               (set! count (+ 1 count))))
             data)
           (inexact (* 100 (/ count (length data)))))))))))
create data
list of n ( #(input values) . target ) pairs
using formula y = mx + b, target based on if input above / below line

(define (create-data m b n)

 (define (target x y)
   (let ((fx (+ b (* m x)))) 
     (if (< fx y) 1 -1)))
 (define (create-datum)
   (let ((x (random-real))
         (y (random-real)))
     (cons (vector x y) (target x y))))
 ;
 (do ((data '() (cons (create-datum) data)))
   ((= n (length data)) data)))
train on 5000 points, show weights and result on 1000 test points

(let* ((m 0.7)

      (b 0.2)
      (perceptron (create-perceptron 2 0.001)))
 (perceptron 'train (create-data m b 5000))
 (perceptron 'show)
 (display "Percent correct on test set: ")
 (display (perceptron 'test (create-data m b 1000)))
 (newline))
show performance along training stages

(let* ((m 0.7) ; gradient of target line

      (b 0.2) ; y-intercept of target line
      (train-step 1000)  ; step in training set size
      (train-stop 20000) ; largest training set size
      (test-set (create-data m b 1000)) ; create a fixed test set
      (perceptron (create-perceptron 2 0.001)))
 (do ((i train-step (+ i train-step)))
   ((> i train-stop) )
   (perceptron 'train (create-data m b train-step))
   (display (string-append "Trained on " (number->string i)
                           ", percent correct is " 
                           (number->string (perceptron 'test test-set))
                           "\n"))))</lang>
Output:
#(-0.5914540100624854 1.073343782042039 -0.29780862758499393)
Percent correct on test set: 95.4
Trained on 1000, percent correct is 18.1
Trained on 2000, percent correct is 91.1
Trained on 3000, percent correct is 98.0
Trained on 4000, percent correct is 92.5
Trained on 5000, percent correct is 98.6
Trained on 6000, percent correct is 98.6
Trained on 7000, percent correct is 98.8
Trained on 8000, percent correct is 97.8
Trained on 9000, percent correct is 99.1
Trained on 10000, percent correct is 96.0
Trained on 11000, percent correct is 98.6
Trained on 12000, percent correct is 98.2
Trained on 13000, percent correct is 99.2
Trained on 14000, percent correct is 99.4
Trained on 15000, percent correct is 99.0
Trained on 16000, percent correct is 98.8
Trained on 17000, percent correct is 97.5
Trained on 18000, percent correct is 99.8
Trained on 19000, percent correct is 99.2
Trained on 20000, percent correct is 100.0

Smalltalk

Works with: GNU Smalltalk

<lang Smalltalk>Number extend [

   activate
       [^self > 0 ifTrue: [1] ifFalse: [-1]]

]

Object subclass: Perceptron [

   | weights |
   feedForward: inputArray
       [^(self sumOfWeighted: inputArray) activate]
   train: inputArray desire: expected
       [| actual error |
       actual := self feedForward: inputArray.
       error := 0.0001 * (expected - actual).
       weights := weights
           with: inputArray
           collect: [:weight :input | weight + (error * input)]]
   sumOfWeighted: inputArray
       [^(self weighted: inputArray)
           inject: 0
           into: [:each :sum | each + sum]]
   weighted: inputArray
       [^weights
           with: inputArray
           collect: [:weight :input | weight * input]]
   Perceptron class >> new: arity
       [^self basicNew
           initialize: arity;
           yourself]
   initialize: arity
       [weights := 1
           to: arity
           collect: [:x | self randomWeight]]
   randomWeight
       [^(Random between: -1000 and: 1000) / 1000]

]

Perceptron class extend [

   | perceptron trainings input expected actual |
   evaluationSamples := 100000.
   initializeTest
       [perceptron := self new: 3.
       input := Array new: 3.
       trainings := 0.
       input at: 1 put: 1. "Bias"]
   randomizeSample
       [| x y |
       x := Random between: 0 and: 640-1.
       y := Random between: 0 and: 360-1.
       expected := (y >= (2*x+1)) ifTrue: [1] ifFalse: [-1].
       input at: 2 put: x.
       input at: 3 put: y]
   test
       [self
           initializeTest; evaluate;
           train: 1; evaluate;
           train: 1; evaluate;
           train: 1; evaluate;
           train: 1; evaluate;
           train: 1; evaluate;
           train: 5; evaluate;
           train: 10; evaluate;
           train: 30; evaluate;
           train: 50; evaluate;
           train: 100; evaluate;
           train: 300; evaluate;
           train: 500; evaluate]
   evaluate
       [| hits |
       hits := 0.
       evaluationSamples timesRepeat:
           [self randomizeSample.
           expected = (perceptron feedForward: input)
               ifTrue: [hits := hits + 1]].
       Transcript
           display: 'After ';
           display: trainings;
           display: ' trainings: ';
           display: (hits / evaluationSamples * 100) asFloat;
           display: ' % accuracy';
           nl]
   train: anInteger
       [anInteger timesRepeat:
           [self randomizeSample.
           perceptron
               train: input
               desire: expected.
           trainings := trainings + 1]]

]

Perceptron test.</lang> Example output:

After 0 trainings: 14.158 % accuracy
After 1 trainings: 14.018 % accuracy
After 2 trainings: 14.19 % accuracy
After 3 trainings: 14.049 % accuracy
After 4 trainings: 14.029 % accuracy
After 5 trainings: 14.105 % accuracy
After 10 trainings: 20.39 % accuracy
After 20 trainings: 57.08 % accuracy
After 50 trainings: 92.998 % accuracy
After 100 trainings: 98.988 % accuracy
After 200 trainings: 98.055 % accuracy
After 500 trainings: 99.777 % accuracy
After 1000 trainings: 98.523 % accuracy

Wren

Translation of: Pascal

<lang ecmascript>import "random" for Random

var rand = Random.new()

// the function being learned is f(x) = 2x + 1 var targetOutput = Fn.new { |a, b| (a * 2 + 1 < b) ? 1 : -1 }

var showTargetOutput = Fn.new {

   for (y in 10..-9) {
       for (x in -9..10) {
           if (targetOutput.call(x, y) == 1) {
               System.write("#")
           } else {
               System.write("O")
           }
       }
       System.print()
   }
   System.print()

}

var randomWeights = Fn.new { |ws|

  for (i in 0..2) ws[i] = rand.float() * 2 - 1

}

var feedForward = Fn.new { |ins, ws|

  // the perceptron outputs 1 if the sum of its inputs multiplied by
  // its input weights is positive, otherwise -1
  var sum = 0
  for (i in 0..2) sum = sum + ins[i] * ws[i]
  return (sum > 0) ? 1 : -1

}

var showOutput = Fn.new { |ws|

   var inputs = List.filled(3, 0)
   inputs[2] = 1  // bias
   for (y in 10..-9) {
       for (x in -9..10) {
           inputs[0] = x
           inputs[1] = y
           if (feedForward.call(inputs, ws) == 1) {
               System.write("#")
           } else {
               System.write("O")
           }
       }
       System.print()
   }
   System.print()

}

var train = Fn.new { |ws, runs|

   var inputs = List.filled(3, 0)
   inputs[2] = 1  // bias
   for (i in 1..runs) {
       for (y in 10..-9) {
           for (x in -9..10) {
               inputs[0] = x
               inputs[1] = y
               var error = targetOutput.call(x, y) - feedForward.call(inputs, ws)
               for (j in 0..2) {
                   ws[j] = ws[j] + error * inputs[j] * 0.01 // 0.01 is the learning constant
               }
           }
       }
   }

}

var weights = List.filled(3, 0) System.print("Target output for the function f(x) = 2x + 1:") showTargetOutput.call() randomWeights.call(weights) System.print("Output from untrained perceptron:") showOutput.call(weights) train.call(weights, 1) System.print("Output from perceptron after 1 training run:") showOutput.call(weights) train.call(weights, 4) System.print("Output from perceptron after 5 training runs:") showOutput.call(weights)</lang>

Output:
Target output for the function f(x) = 2x + 1:
##############OOOOOO
#############OOOOOOO
#############OOOOOOO
############OOOOOOOO
############OOOOOOOO
###########OOOOOOOOO
###########OOOOOOOOO
##########OOOOOOOOOO
##########OOOOOOOOOO
#########OOOOOOOOOOO
#########OOOOOOOOOOO
########OOOOOOOOOOOO
########OOOOOOOOOOOO
#######OOOOOOOOOOOOO
#######OOOOOOOOOOOOO
######OOOOOOOOOOOOOO
######OOOOOOOOOOOOOO
#####OOOOOOOOOOOOOOO
#####OOOOOOOOOOOOOOO
####OOOOOOOOOOOOOOOO

Output from untrained perceptron:
######OOOOOOOOOOOOOO
######OOOOOOOOOOOOOO
#######OOOOOOOOOOOOO
#######OOOOOOOOOOOOO
#######OOOOOOOOOOOOO
#######OOOOOOOOOOOOO
#######OOOOOOOOOOOOO
########OOOOOOOOOOOO
########OOOOOOOOOOOO
########OOOOOOOOOOOO
########OOOOOOOOOOOO
#########OOOOOOOOOOO
#########OOOOOOOOOOO
#########OOOOOOOOOOO
#########OOOOOOOOOOO
#########OOOOOOOOOOO
##########OOOOOOOOOO
##########OOOOOOOOOO
##########OOOOOOOOOO
##########OOOOOOOOOO

Output from perceptron after 1 training run:
##############OOOOOO
#############OOOOOOO
#############OOOOOOO
############OOOOOOOO
############OOOOOOOO
###########OOOOOOOOO
###########OOOOOOOOO
##########OOOOOOOOOO
##########OOOOOOOOOO
#########OOOOOOOOOOO
#########OOOOOOOOOOO
########OOOOOOOOOOOO
########OOOOOOOOOOOO
#######OOOOOOOOOOOOO
#######OOOOOOOOOOOOO
######OOOOOOOOOOOOOO
######OOOOOOOOOOOOOO
#####OOOOOOOOOOOOOOO
#####OOOOOOOOOOOOOOO
####OOOOOOOOOOOOOOOO

Output from perceptron after 5 training runs:
##############OOOOOO
#############OOOOOOO
#############OOOOOOO
############OOOOOOOO
############OOOOOOOO
###########OOOOOOOOO
###########OOOOOOOOO
##########OOOOOOOOOO
##########OOOOOOOOOO
#########OOOOOOOOOOO
#########OOOOOOOOOOO
########OOOOOOOOOOOO
########OOOOOOOOOOOO
#######OOOOOOOOOOOOO
#######OOOOOOOOOOOOO
######OOOOOOOOOOOOOO
######OOOOOOOOOOOOOO
#####OOOOOOOOOOOOOOO
#####OOOOOOOOOOOOOOO
####OOOOOOOOOOOOOOOO

XLISP

Like the Pascal example, this is a text-based program using a 20x20 grid. It is slightly more general, however, because it allows the function that is to be learnt and the perceptron's bias and learning constant to be passed as arguments to the trainer and perceptron objects. <lang scheme>(define-class perceptron

   (instance-variables weights bias learning-constant) )

(define-method (perceptron 'initialize b lc)

   (defun random-weights (n)
       (if (> n 0)
           (cons (- (/ (random 20000) 10000) 1) (random-weights (- n 1))) ) )
   (setq weights (random-weights 3))
   (setq bias b)
   (setq learning-constant lc)
   self )

(define-method (perceptron 'value x y)

   (if (> (+ (* x (car weights)) (* y (cadr weights)) (* bias (caddr weights))) 0)
   1
   -1 ) )

(define-method (perceptron 'print-grid)

   (print-row self 10) )

(define-method (perceptron 'learn source runs)

   (defun learn-row (row)
       (defun learn-cell (cell)
           (define inputs `(,cell ,row ,bias))
           (define error (- (source 'value cell row) (self 'value cell row)))
           (defun reweight (ins ws)
               (if (car ins)
                   (cons (+ (car ws) (* error (car ins) learning-constant)) (reweight (cdr ins) (cdr ws))) ) )
           (setq weights (reweight inputs weights))
           (if (< cell 10)
               (learn-cell (+ cell 1)) ) )
       (learn-cell -9)
       (if (> row -9)
           (learn-row (- row 1)) ) )
   (do ((i 1 (+ i 1))) ((> i runs))
       (learn-row 10) ) )

(define-class trainer

   (instance-variables fn) )

(define-method (trainer 'initialize function)

   (setq fn function)
   self )

(define-method (trainer 'print-grid)

   (print-row self 10) )

(define-method (trainer 'value x y)

   (if (apply fn `(,x ,y))
       1
       -1 ) )

(defun print-row (obj row)

   (defun print-cell (cell)
       (if (= (obj 'value cell row) 1)
           (display "#")
           (display "O") )
       (if (< cell 10)
           (print-cell (+ cell 1))
           (newline) ) )
   (print-cell -9)
   (if (> row -9)
       (print-row obj (- row 1))
       (newline) ) )

(define ptron (perceptron 'new 1 0.01))

(define training (trainer 'new

   (lambda (x y) (> y (+ (* x 2) 1))) ) )

(newline) (display "Target output for y = 2x + 1:") (newline) (training 'print-grid) (display "Output from untrained perceptron:") (newline) (ptron 'print-grid) (display "Output from perceptron after 1 training run:") (newline) (ptron 'learn training 1) (ptron 'print-grid) (display "Output from perceptron after 5 training runs:") (newline) (ptron 'learn training 4) (ptron 'print-grid)</lang>

Output:
Target output for y = 2x + 1:
##############OOOOOO
#############OOOOOOO
#############OOOOOOO
############OOOOOOOO
############OOOOOOOO
###########OOOOOOOOO
###########OOOOOOOOO
##########OOOOOOOOOO
##########OOOOOOOOOO
#########OOOOOOOOOOO
#########OOOOOOOOOOO
########OOOOOOOOOOOO
########OOOOOOOOOOOO
#######OOOOOOOOOOOOO
#######OOOOOOOOOOOOO
######OOOOOOOOOOOOOO
######OOOOOOOOOOOOOO
#####OOOOOOOOOOOOOOO
#####OOOOOOOOOOOOOOO
####OOOOOOOOOOOOOOOO

Output from untrained perceptron:
######OOOOOOOOOOOOOO
######OOOOOOOOOOOOOO
#######OOOOOOOOOOOOO
#######OOOOOOOOOOOOO
#######OOOOOOOOOOOOO
########OOOOOOOOOOOO
########OOOOOOOOOOOO
########OOOOOOOOOOOO
#########OOOOOOOOOOO
#########OOOOOOOOOOO
#########OOOOOOOOOOO
##########OOOOOOOOOO
##########OOOOOOOOOO
##########OOOOOOOOOO
###########OOOOOOOOO
###########OOOOOOOOO
###########OOOOOOOOO
############OOOOOOOO
############OOOOOOOO
############OOOOOOOO

Output from perceptron after 1 training run:
###############OOOOO
###############OOOOO
##############OOOOOO
##############OOOOOO
#############OOOOOOO
############OOOOOOOO
############OOOOOOOO
###########OOOOOOOOO
##########OOOOOOOOOO
##########OOOOOOOOOO
#########OOOOOOOOOOO
#########OOOOOOOOOOO
########OOOOOOOOOOOO
#######OOOOOOOOOOOOO
#######OOOOOOOOOOOOO
######OOOOOOOOOOOOOO
#####OOOOOOOOOOOOOOO
#####OOOOOOOOOOOOOOO
####OOOOOOOOOOOOOOOO
####OOOOOOOOOOOOOOOO

Output from perceptron after 5 training runs:
##############OOOOOO
#############OOOOOOO
#############OOOOOOO
############OOOOOOOO
############OOOOOOOO
###########OOOOOOOOO
###########OOOOOOOOO
##########OOOOOOOOOO
##########OOOOOOOOOO
#########OOOOOOOOOOO
#########OOOOOOOOOOO
########OOOOOOOOOOOO
########OOOOOOOOOOOO
#######OOOOOOOOOOOOO
#######OOOOOOOOOOOOO
######OOOOOOOOOOOOOO
######OOOOOOOOOOOOOO
#####OOOOOOOOOOOOOOO
#####OOOOOOOOOOOOOOO
####OOOOOOOOOOOOOOOO

zkl

Translation of: Java

Uses the PPM class from http://rosettacode.org/wiki/Bitmap/Bresenham%27s_line_algorithm#zkl <lang zkl>class Perceptron{

  const c=0.00001;
  var [const] W=640, H=350;

  fcn init(n){
     r:=(0.0).random.fp(1); // r()-->[0..1)
     var weights=n.pump(List(),'wrap(){ r()*2 - 1 }), // Float[n]
         training=(2000).pump(List,'wrap(){         // (x,y,1,answer)[2000]
            x,y,answer:=r()*W, r()*H, (if(y<f(x)) -1 or 1);

return(x,y,1,answer) });

  }
  fcn f(x){ 0.7*x + 40 }    // a line
  fcn feedForward(xy1a){
     sum:=0.0;
     foreach i in (weights.len()){ sum+=xy1a[i]*weights[i] }
     (sum<0) and -1 or 1   // activate(sum)
  }
  fcn train(xy1a){ 
     guess,error:=feedForward(xy1a), xy1a[-1] - guess;
     foreach i in (weights.len()){ weights[i]+=c*error*xy1a[i] }
  }

}</lang> <lang zkl>p:=Perceptron(3); p.training.apply2(p.train);

PPM:=Import("ppm.zkl").PPM; pixmap:=PPM(p.W+20,p.H+20,0xFF|FF|FF);

foreach xy1a in (p.training){

  guess,x,y:=p.feedForward(xy1a), 8 + xy1a[0], 8 + xy1a[1];
  color:=(if(guess>0) 0 else 0xFF|00|00);  // black or red
  pixmap.circle(x,y,8,color);

} pixmap.writeJPGFile("perceptron.zkl.jpg");</lang>

Output: