Greatest common divisor: Difference between revisions

From Rosetta Code
Content added Content deleted
(→‎{{header|Nial}}: It is a shame to use variables in such a beautiful language.)
Line 298: Line 298:
=2
=2


defining it separately
defining it for arrays
# red is the reduction operator for a sorted list
gcd is operation m n { while m ~= 0 do g := m ; m := n mod m ; n := g ; endwhile ; g }
# one is termination condition
|gcd 6 4
red is cull filter (0 unequal) link [mod [rest, first] , first]
=2
one is or [= [1 first, tally], > [2 first, first]]
gcd is fork [one, first, gcd red] sort <=

Using it
|gcd 9 6 3
=3


=={{header|OCaml}}==
=={{header|OCaml}}==

Revision as of 19:55, 7 October 2008

Task
Greatest common divisor
You are encouraged to solve this task according to the task description, using any language you may know.

This task requires the finding of the greatest common divisor of two integers.

Ada

with Ada.Text_Io; use Ada.Text_Io;

procedure Gcd_Test is
   function Gcd (A, B : Integer) return Integer is
   begin
      if A = 0 then
         return B;
      end if;
      if B = 0 then
         return A;
      end if;
      if A > B then
         return Gcd(B, A mod B);
      else
         return Gcd(A, B mod A);
      end if;
   end Gcd;
   
begin
   Put_Line("GCD of 100, 5 is" & Integer'Image(Gcd(100, 5)));
   Put_Line("GCD of 5, 100 is" & Integer'Image(Gcd(5, 100)));
   Put_Line("GCD of 7, 23 is" & Integer'Image(Gcd(7, 23)));
end Gcd_Test;

Output:

GCD of 100, 5 is 5
GCD of 5, 100 is 5
GCD of 7, 23 is 1

ALGOL 68

PROC gcd = (INT a, b) INT: (
  IF a = 0 THEN
    b
  ELIF b = 0 THEN
    a
  ELIF a > b  THEN
    gcd(b, a MOD b)
  ELSE
    gcd(a, b MOD a)
  FI     
);

main : (
  INT a = 33, b = 77;
  printf(($x"The gcd of"g" and "g" is "gl$,a,b,gcd(a,b)));
  INT c = 49865, d = 69811;
  printf(($x"The gcd of"g" and "g" is "gl$,c,d,gcd(c,d)))
)

The output is:

The gcd of        +33 and         +77 is         +11
The gcd of     +49865 and      +69811 is       +9973

APL

Works with: Dyalog APL
       33 49865 ∨ 77 69811 
11 9973

If you're interested in how you'd write GCD in Dyalog, if Dyalog didn't have a primitive for it, (i.e. using other algorithms mentioned on this page: iterative, recursive, binary recursive), see different ways to write GCD in Dyalog.

Works with: APL2
       ⌈/(^/0=A∘.|X)/A←⍳⌊/X←49865 69811 
9973

C

Iterative Euclid algorithm

int
gcd_iter(int u, int v) {
  int t;
  while (v) {
    t = u; 
    u = v; 
    v = t % v;
  }
  return u < 0 ? -u : u; /* abs(u) */
}

Recursive Euclid algorithm

int
gcd(int u, int v) {
  if (v)
    return gcd(v, u % v);
  else 
    return u < 0 ? -u : u; /* abs(u) */
}

Iterative binary algorithm

int
gcd_bin(int u, int v) {
  int t, k;

  u = u < 0 ? -u : u; /* abs(u) */
  v = v < 0 ? -v : v; 
  if (u < v) {
    t = u;
    u = v;
    v = t;
  }
  if (v == 0)
    return u;

  k = 1;
  while (u & 1 == 0 && v & 1 == 0) { /* u, v - even */
    u >>= 1; v >>= 1;
    k <<= 1;
  }

  t = (u & 1) ? -v : u;
  while (t) {
    while (t & 1 == 0) 
      t >>= 1;

    if (t > 0)
      u = t;
    else
      v = -t;

    t = u - v;
  }
  return u * k;        
}

Notes on performance

gcd_iter(40902, 24140) takes us about 2.87 usec

gcd_bin(40902, 24140) takes us about 2.47 usec

gcd(40902, 24140) takes us about 2.86 usec

Forth

: gcd ( a b -- n )
  begin dup while tuck mod repeat drop ;

Fortran

Recursive Euclid algorithm

In ISO Fortran 95 or later, use RECURSIVE function:

   recursive function gcd_rec(u, v) result(gcd)
       integer             :: gcd
       integer, intent(in) :: u, v
       
       if (mod(u, v) /= 0) then
           gcd = gcd_rec(v, mod(u, v))
       else
           gcd = v
       end if
   end function gcd_rec

Iterative Euclid algorithm

      subroutine gcd_iter(value, u, v)
Cf2py integer, intent(out) :: value
      integer value, u, v, t
      intrinsic abs, mod
C
      do while( v.NE.0 )
         t = u
         u = v
         v = mod(t, v)
      enddo
      value = abs(u)
      end subroutine gcd_iter

Iterative binary algorithm

      subroutine gcd_bin(value, u, v)
Cf2py integer, intent(out) :: value
      integer value, u, v, k, t, abs, mod
      intrinsic abs, mod
      u = abs(u)
      v = abs(v)
      if( u.lt.v ) then
         t = u
         u = v
         v = t
      endif
      if( v.eq.0 ) then
         value = u
         return
      endif
      k = 1
      do while( (mod(u, 2).eq.0).and.(mod(v, 2).eq.0) )
         u = u / 2
         v = v / 2
         k = k * 2
      enddo
      if( (mod(u, 2).eq.0) ) then
         t = u
      else
         t = -v
      endif
      do while( t.ne.0 )
         do while( (mod(t, 2).eq.0) )
            t = t / 2
         enddo
         if( t.gt.0 ) then
            u = t
         else
            v = -t
         endif
         t = u - v
      enddo
      value = u * k
      end subroutine gcd_bin

Notes on performance

gcd_iter(40902, 24140) takes us about 2.8 usec

gcd_bin(40902, 24140) takes us about 2.5 usec

Haskell

That is already available as the function gcd in the Prelude. Here's the implementation:

gcd :: (Integral a) => a -> a -> a
gcd 0 0 =  error "Prelude.gcd: gcd 0 0 is undefined"
gcd x y =  gcd' (abs x) (abs y) where
  gcd' a 0  =  a
  gcd' a b  =  gcd' b (a `rem` b)

J

x+.y

Java

Iterative

public static long gcd(long a, long b){
   long factor= 0;
   factor= Math.max(a, b);
   for(long loop= factor;loop > 1;loop--){
      if(a % loop == 0 && b % loop == 0){
         return loop;
      }
   }
   return 1;
}

Recursive

public static long gcd(long a, long b){
   if(a == 0) return b;
   if(b == 0) return a;
   if(a > b) return gcd(b, a % b);
   return gcd(a, b % a);
}

Joy

gcd == [0 >] [dup rollup rem] while pop;

to gcd :a :b
  if :b = 0 [output :a]
  output gcd :b  modulo :a :b
end

Lucid

dataflow algorithm

gcd(n,m) where
   z = [% n, m %] fby if x > y then [% x - y, y %] else [% x, y - x%] fi;
   x = hd(z);
   y = hd(tl(z));
   gcd(n, m) = (x asa x*y eq 0) fby eod;
end

Mathematica

GCD[a, b]

MAXScript

Iterative Euclid algorithm

fn gcdIter a b =
(
    while b > 0 do
    (
        c = mod a b
        a = b
        b = c
    )
    abs a
)

Recursive Euclid algorithm

fn gcdRec a b =
(
    if b > 0 then gcdRec b (mod a b) else abs a
)

Nial

Nial provides gcd in the standard lib.

|loaddefs 'niallib/gcd.ndf'
|gcd 6 4
=2

defining it for arrays

# red is the reduction operator for a sorted list
# one is termination condition
red is cull filter (0 unequal) link [mod [rest, first] , first]
one is or [= [1 first, tally], > [2 first,  first]]
gcd is fork [one, first, gcd red] sort <=

Using it

|gcd 9 6 3
=3

OCaml

let rec gcd a b =
  if      a = 0 then b
  else if b = 0 then a
  else if a > b then gcd b (a mod b)
  else               gcd a (b mod a)

Perl

Iterative Euclid algorithm

sub gcd_iter($$) {
  ($u, $v) = @_;
  while ($v) {
    $t = $u;
    $u = $v;
    $v = $t % $v;
  }
  return abs($u);
}

Recursive Euclid algorithm

sub gcd($$) {
  ($u, $v) = @_;
  if ($v) {
    return gcd($v, $u % $v);
  } else {
    return abs($u);
  }
}

Iterative binary algorithm

sub gcd_bin($$) {
  ($u, $v) = @_;
  $u = abs($u);
  $v = abs($v);
  if ($u < $v) {
    $t = $u;
    $u = $v;
    $v = $t;
  }
  if ($v == 0) {
    return $u;
  }
  $k = 1;
  while ($u & 1 == 0 && $v & 1 == 0) {
    $u >>= 1;
    $v >>= 1;
    $k <<= 1;
  }
  $t = ($u & 1) ? -$v : $u;
  while ($t) {
    while ($t & 1 == 0) {
      $t >>= 1;
    }
    if ($t > 0) {
      $u = $t;
    } else {
      $v = -$t;
    }
    $t = $u - $v;
  }
  return $u * $k;
}

Notes on performance

use Benchmark qw(cmpthese);

$u = 40902;
$v = 24140;
(-5, {
  'gcd' => sub { gcd($u, $v); },
  'gcd_iter' => sub { gcd_iter($u, $v); },
  'gcd_bin' => sub { gcd_bin($u, $v); },
});

Output on 'Intel(R) Pentium(R) 4 CPU 1.50GHz' / Linux / Perl 5.8.8:

             Rate  gcd_bin gcd_iter      gcd
gcd_bin  321639/s       --     -12%     -20%
gcd_iter 366890/s      14%       --      -9%
gcd      401149/s      25%       9%       --

Pop11

Built-in gcd

gcd_n(15, 12, 2) =>

Note: the last argument gives the number of other arguments (in this case 2).

Iterative Euclid algorithm

define gcd(k, l) -> r;
    lvars k , l, r = l;
    abs(k) -> k;
    abs(l) -> l;
    if k < l then (k, l) -> (l, k) endif;
    while l /= 0 do
        (l, k rem l) -> (k, l)
    endwhile;
    k -> r;
enddefine;

Prolog

Recursive Euclid Algorithm

gcd(X, 0, X).
gcd(0, X, X).
gcd(X, X, X).
gcd(X, Y, D) :- X > Y, Z is X mod Y, gcd(Y, Z, D).
gcd(X, Y, D) :- X < Y, Z is Y mod X, gcd(X, Z, D).

Repeated Subtraction

gcd(X, X, X).
gcd(X, Y, D) :- X < Y, Z is Y - X, gcd(X, Z, D).
gcd(X, Y, D) :- Y < X, gcd(Y, X, D).

Python

Iterative Euclid algorithm

def gcd_iter(u, v):
    while v:
        u, v = v, u % v
    return abs(u)

Recursive Euclid algorithm

Interpreter: Python 2.5

def gcd(u, v):
    return gcd(v, u % v) if v else abs(u)

Tests

>>> gcd(0,0)
0
>>> gcd(0, 10) == gcd(10, 0) == gcd(-10, 0) == gcd(0, -10) == 10
True
>>> gcd(9, 6) == gcd(6, 9) == gcd(-6, 9) == gcd(9, -6) == gcd(6, -9) == gcd(-9, 6) == 3
True
>>> gcd(8, 45) == gcd(45, 8) == gcd(-45, 8) == gcd(8, -45) == gcd(-8, 45) == gcd(45, -8) == 1
True
>>> gcd(40902, 24140) # check Knuth :)
34

Iterative binary algorithm

See The Art of Computer Programming by Knuth (Vol.2)

def gcd_bin(u, v):
    u, v = abs(u), abs(v) # u >= 0, v >= 0
    if u < v:
        u, v = v, u # u >= v >= 0
    if v == 0:
        return u
   
    # u >= v > 0
    k = 1
    while u & 1 == 0 and v & 1 == 0: # u, v - even
        u >>= 1; v >>= 1
        k <<= 1
       
    t = -v if u & 1 else u
    while t:
        while t & 1 == 0:
            t >>= 1
        if t > 0:
            u = t
        else:
            v = -t
        t = u - v
    return u * k

Notes on performance

gcd(40902, 24140) takes us about 17 usec

gcd_iter(40902, 24140) takes us about 11 usec

gcd_bin(40902, 24140) takes us about 41 usec

SETL

a := 33; b := 77;
print(" the gcd of",a," and ",b," is ",gcd(a,b));

c := 49865; d := 69811;
print(" the gcd of",c," and ",d," is ",gcd(c,d));

procedure gcd(a, b);
  return if a = 0 then
    b
  elseif b = 0 then
    a
  elseif a > b  then
    gcd(b, a mod b)
  else
    gcd(a, b mod a)
  end if;
end gcd;

Output:

the gcd of 33  and  77  is  11
the gcd of 49865  and  69811  is  9973

Scheme

(define (gcd a b)
  (cond ((= a 0) b)
        ((= b 0) a)
        ((> a b) (gcd b (modulo a b)))
        (else    (gcd a (modulo b a)))))

or using the standard function included with Scheme (takes any number of arguments):

(gcd a b)

TI-83 BASIC

gcd(A,B)

V

like joy

iterative

[gcd
   [0 >] [dup rollup %]
   while
   pop
].

recursive

like python

[gcd
   [zero?] [pop]
      [swap [dup] dip swap %]
   tailrec].

same with view: (swap [dup] dip swap % is replaced with a destructuring view)

[gcd
   [zero?] [pop]
     [[a b : [b a b %]] view i]
   tailrec].

running it

|1071 1029 gcd
=21