Bitmap/Bézier curves/Cubic

From Rosetta Code
Task
Bitmap/Bézier curves/Cubic
You are encouraged to solve this task according to the task description, using any language you may know.

Using the data storage type defined on this page for raster images, and the draw_line function defined in this other one, draw a cubic bezier curve (definition on Wikipedia).


Ada

procedure Cubic_Bezier
( Picture  : in out Image;
P1, P2, P3, P4 : Point;
Color  : Pixel;
N  : Positive := 20
) is
Points : array (0..N) of Point;
begin
for I in Points'Range loop
declare
T : constant Float := Float (I) / Float (N);
A : constant Float := (1.0 - T)**3;
B : constant Float := 3.0 * T * (1.0 - T)**2;
C : constant Float := 3.0 * T**2 * (1.0 - T);
D : constant Float := T**3;
begin
Points (I).X := Positive (A * Float (P1.X) + B * Float (P2.X) + C * Float (P3.X) + D * Float (P4.X));
Points (I).Y := Positive (A * Float (P1.Y) + B * Float (P2.Y) + C * Float (P3.Y) + D * Float (P4.Y));
end;
end loop;
for I in Points'First..Points'Last - 1 loop
Line (Picture, Points (I), Points (I + 1), Color);
end loop;
end Cubic_Bezier;

The following test

   X : Image (1..16, 1..16);
begin
Fill (X, White);
Cubic_Bezier (X, (16, 1), (1, 4), (3, 16), (15, 11), Black);
Print (X);

should produce output:





       HH
     HH  HH
    H      H
    H      H
   H       H
  H        H
 H         H
 H         H
 H         H
 H         H
H         H
H

ALGOL 68

Translation of: Ada
Works with: ALGOL 68 version Revision 1 - one minor extension to language used - PRAGMA READ, similar to C's #include directive.
Works with: ALGOL 68G version Any - tested with release algol68g-2.6.
File: prelude/Bitmap/Bezier_curves/Cubic.a68
# -*- coding: utf-8 -*- #
 
cubic bezier OF class image :=
( REF IMAGE picture,
POINT p1, p2, p3, p4,
PIXEL color,
UNION(INT, VOID) in n
)VOID:
BEGIN
INT n = (in n|(INT n):n|20); # default 20 #
[0:n]POINT points;
FOR i FROM LWB points TO UPB points DO
REAL t = i / n,
a = (1 - t)**3,
b = 3 * t * (1 - t)**2,
c = 3 * t**2 * (1 - t),
d = t**3;
x OF points [i] := ENTIER (0.5 + a * x OF p1 + b * x OF p2 + c * x OF p3 + d * x OF p4);
y OF points [i] := ENTIER (0.5 + a * y OF p1 + b * y OF p2 + c * y OF p3 + d * y OF p4)
OD;
FOR i FROM LWB points TO UPB points - 1 DO
(line OF class image)(picture, points (i), points (i + 1), color)
OD
END # cubic bezier #;
 
SKIP
File: test/Bitmap/Bezier_curves/Cubic.a68
#!/usr/bin/a68g --script #
# -*- coding: utf-8 -*- #
 
PR READ "prelude/Bitmap.a68" PR; # c.f. [[rc:Bitmap]] #
PR READ "prelude/Bitmap/Bresenhams_line_algorithm.a68" PR; # c.f. [[rc:Bitmap/Bresenhams_line_algorithm]] #
PR READ "prelude/Bitmap/Bezier_curves/Cubic.a68" PR;
 
# The following test #
test:(
REF IMAGE x = INIT LOC[16,16]PIXEL;
(fill OF class image)(x, (white OF class image));
(cubic bezier OF class image)(x, (16, 1), (1, 4), (3, 16), (15, 11), (black OF class image), EMPTY);
(print OF class image) (x)
)
Output:
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
ffffffffffffffffffffffffffffffffffffffffff000000000000ffffffffffffffffffffffffffffffffffffffffff
ffffffffffffffffffffffffffffff000000000000ffffffffffff000000000000ffffffffffffffffffffffffffffff
ffffffffffffffffffffffff000000ffffffffffffffffffffffffffffffffffff000000ffffffffffffffffffffffff
ffffffffffffffffffffffff000000ffffffffffffffffffffffffffffffffffff000000ffffffffffffffffffffffff
ffffffffffffffffff000000ffffffffffffffffffffffffffffffffffffffffff000000ffffffffffffffffffffffff
ffffffffffff000000ffffffffffffffffffffffffffffffffffffffffffffffff000000ffffffffffffffffffffffff
ffffff000000ffffffffffffffffffffffffffffffffffffffffffffffffffffff000000ffffffffffffffffffffffff
ffffff000000ffffffffffffffffffffffffffffffffffffffffffffffffffffff000000ffffffffffffffffffffffff
ffffff000000ffffffffffffffffffffffffffffffffffffffffffffffffffffff000000ffffffffffffffffffffffff
ffffff000000ffffffffffffffffffffffffffffffffffffffffffffffffffffff000000ffffffffffffffffffffffff
000000ffffffffffffffffffffffffffffffffffffffffffffffffffffff000000ffffffffffffffffffffffffffffff
000000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff

BBC BASIC

Beziercubic bbc.gif
      Width% = 200
Height% = 200
 
REM Set window size:
VDU 23,22,Width%;Height%;8,16,16,128
 
REM Draw cubic Bézier curve:
PROCbeziercubic(160,150, 10,120, 30,0, 150,50, 20, 0,0,0)
END
 
DEF PROCbeziercubic(x1,y1,x2,y2,x3,y3,x4,y4,n%,r%,g%,b%)
LOCAL i%, t, t1, a, b, c, d, p{()}
DIM p{(n%) x%,y%}
 
FOR i% = 0 TO n%
t = i% / n%
t1 = 1 - t
a = t1^3
b = 3 * t * t1^2
c = 3 * t^2 * t1
d = t^3
p{(i%)}.x% = INT(a * x1 + b * x2 + c * x3 + d * x4 + 0.5)
p{(i%)}.y% = INT(a * y1 + b * y2 + c * y3 + d * y4 + 0.5)
NEXT
 
FOR i% = 0 TO n%-1
PROCbresenham(p{(i%)}.x%,p{(i%)}.y%,p{(i%+1)}.x%,p{(i%+1)}.y%, \
\ r%,g%,b%)
NEXT
ENDPROC
 
DEF PROCbresenham(x1%,y1%,x2%,y2%,r%,g%,b%)
LOCAL dx%, dy%, sx%, sy%, e
dx% = ABS(x2% - x1%) : sx% = SGN(x2% - x1%)
dy% = ABS(y2% - y1%) : sy% = SGN(y2% - y1%)
IF dx% < dy% e = dx% / 2 ELSE e = dy% / 2
REPEAT
PROCsetpixel(x1%,y1%,r%,g%,b%)
IF x1% = x2% IF y1% = y2% EXIT REPEAT
IF dx% > dy% THEN
x1% += sx% : e -= dy% : IF e < 0 e += dx% : y1% += sy%
ELSE
y1% += sy% : e -= dx% : IF e < 0 e += dy% : x1% += sx%
ENDIF
UNTIL FALSE
ENDPROC
 
DEF PROCsetpixel(x%,y%,r%,g%,b%)
COLOUR 1,r%,g%,b%
GCOL 1
LINE x%*2,y%*2,x%*2,y%*2
ENDPROC

C

"Interface" imglib.h.

void cubic_bezier(
image img,
unsigned int x1, unsigned int y1,
unsigned int x2, unsigned int y2,
unsigned int x3, unsigned int y3,
unsigned int x4, unsigned int y4,
color_component r,
color_component g,
color_component b );
#include <math.h>
 
/* number of segments for the curve */
#define N_SEG 20
 
#define plot(x, y) put_pixel_clip(img, x, y, r, g, b)
#define line(x0,y0,x1,y1) draw_line(img, x0,y0,x1,y1, r,g,b)
 
void cubic_bezier(
image img,
unsigned int x1, unsigned int y1,
unsigned int x2, unsigned int y2,
unsigned int x3, unsigned int y3,
unsigned int x4, unsigned int y4,
color_component r,
color_component g,
color_component b )
{
unsigned int i;
double pts[N_SEG+1][2];
for (i=0; i <= N_SEG; ++i)
{
double t = (double)i / (double)N_SEG;
 
double a = pow((1.0 - t), 3.0);
double b = 3.0 * t * pow((1.0 - t), 2.0);
double c = 3.0 * pow(t, 2.0) * (1.0 - t);
double d = pow(t, 3.0);
 
double x = a * x1 + b * x2 + c * x3 + d * x4;
double y = a * y1 + b * y2 + c * y3 + d * y4;
pts[i][0] = x;
pts[i][1] = y;
}
 
#if 0
/* draw only points */
for (i=0; i <= N_SEG; ++i)
{
plot( pts[i][0],
pts[i][1] );
}
#else
/* draw segments */
for (i=0; i < N_SEG; ++i)
{
int j = i + 1;
line( pts[i][0], pts[i][1],
pts[j][0], pts[j][1] );
}
#endif
}
#undef plot
#undef line

D

This solution uses two modules, from the Grayscale image and Bresenham's line algorithm Tasks.

import grayscale_image, bitmap_bresenhams_line_algorithm;
 
struct Pt { int x, y; } // Signed.
 
void cubicBezier(size_t nSegments=20, Color)
(Image!Color im,
in Pt p1, in Pt p2, in Pt p3, in Pt p4,
in Color color)
pure nothrow @nogc if (nSegments > 0) {
Pt[nSegments + 1] points = void;
 
foreach (immutable i, ref p; points) {
immutable double t = i / double(nSegments),
a = (1.0 - t) ^^ 3,
b = 3.0 * t * (1.0 - t) ^^ 2,
c = 3.0 * t ^^ 2 * (1.0 - t),
d = t ^^ 3;
 
alias T = typeof(Pt.x);
p = Pt(cast(T)(a * p1.x + b * p2.x + c * p3.x + d * p4.x),
cast(T)(a * p1.y + b * p2.y + c * p3.y + d * p4.y));
}
 
foreach (immutable i, immutable p; points[0 .. $ - 1])
im.drawLine(p.x, p.y, points[i + 1].x, points[i + 1].y, color);
}
 
void main() {
auto im = new Image!Gray(17, 17);
im.clear(Gray.white);
im.cubicBezier(Pt(16, 1), Pt(1, 4), Pt(3, 16), Pt(15, 11),
Gray.black);
im.textualShow();
}
Output:
.................
.............####
.........####....
........#........
.......#.........
......#..........
......#..........
.....#...........
.....#...........
.....#...........
.....#...........
......##....####.
........####.....
.................
.................
.................
.................

F#

 
/// Uses Vector<float> from Microsoft.FSharp.Math (in F# PowerPack)
module CubicBezier
 
/// Create bezier curve from p1 to p4, using the control points p2, p3
/// Returns the requested number of segments
let cubic_bezier (p1:vector) (p2:vector) (p3:vector) (p4:vector) segments =
[0 .. segments - 1]
|> List.map(fun i ->
let t = float i / float segments
let a = (1. - t) ** 3.
let b = 3. * t * ((1. - t) ** 2.)
let c = 3. * (t ** 2.) * (1. - t)
let d = t ** 3.
let x = a * p1.[0] + b * p2.[0] + c * p3.[0] + d * p4.[0]
let y = a * p1.[1] + b * p2.[1] + c * p3.[1] + d * p4.[1]
vector [x; y])
 
 
 
// For rendering..
let drawPoints points (canvas:System.Windows.Controls.Canvas) =
let addLineToScreen (v1:vector) (v2:vector) =
canvas.Children.Add(new System.Windows.Shapes.Line(X1 = v1.[0],
Y1 = -v1.[1],
X2 = v2.[0],
Y2 = -v2.[1],
StrokeThickness = 2.)) |> ignore
let renderPoint (previous:vector) (current:vector) =
addLineToScreen previous current
current
 
points |> List.fold renderPoint points.Head
 

FBSL

Windows' graphics origin is located at the bottom-left corner of device bitmap.

Translation of BBC BASIC using pure FBSL's built-in graphics functions:

#DEFINE WM_LBUTTONDOWN 513
#DEFINE WM_CLOSE 16
 
FBSLSETTEXT(ME, "Bezier Cubic")
FBSLSETFORMCOLOR(ME, RGB(0, 255, 255)) ' Cyan: persistent background color
DRAWWIDTH(5) ' Adjust point size
FBSL.GETDC(ME) ' Use volatile FBSL.GETDC below to avoid extra assignments
 
RESIZE(ME, 0, 0, 235, 235)
CENTER(ME)
SHOW(ME)
 
DIM Height AS INTEGER
FBSL.GETCLIENTRECT(ME, 0, 0, 0, Height)
 
BEGIN EVENTS
SELECT CASE CBMSG
CASE WM_LBUTTONDOWN: BezierCube(160, 150, 10, 120, 30, 0, 150, 50, 20) ' Draw
CASE WM_CLOSE: FBSL.RELEASEDC(ME, FBSL.GETDC) ' Clean up
END SELECT
END EVENTS
 
SUB BezierCube(x1, y1, x2, y2, x3, y3, x4, y4, n)
TYPE POINTAPI
x AS INTEGER
y AS INTEGER
END TYPE
 
DIM t, t1, a, b, c, d, p[n] AS POINTAPI
 
FOR DIM i = 0 TO n
t = i / n: t1 = 1 - t
a = t1 ^ 3
b = 3 * t * t1 ^ 2
c = 3 * t ^ 2 * t1
d = t ^ 3
p[i].x = a * x1 + b * x2 + c * x3 + d * x4 + 0.5
p[i].y = Height - (a * y1 + b * y2 + c * y3 + d * y4 + 0.5)
NEXT
 
FOR i = 0 TO n - 1
Bresenham(p[i].x, p[i].y, p[i + 1].x, p[i + 1].y)
NEXT
 
SUB Bresenham(x0, y0, x1, y1)
DIM dx = ABS(x0 - x1), sx = SGN(x0 - x1)
DIM dy = ABS(y0 - y1), sy = SGN(y0 - y1)
DIM tmp, er = IIF(dx > dy, dx, -dy) / 2
 
WHILE NOT (x0 = x1 ANDALSO y0 = y1)
PSET(FBSL.GETDC, x0, y0, &HFF) ' Red: Windows stores colors in BGR order
tmp = er
IF tmp > -dx THEN: er = er - dy: x0 = x0 + sx: END IF
IF tmp < +dy THEN: er = er + dx: y0 = y0 + sy: END IF
WEND
END SUB
END SUB

Output: FBSLBezierCube.PNG

Factor

The points should probably be in a sequence...

USING: arrays kernel locals math math.functions
rosettacode.raster.storage sequences ;
IN: rosettacode.raster.line
 
! this gives a function
:: (cubic-bezier) ( P0 P1 P2 P3 -- bezier )
[ :> x
1 x - 3 ^ P0 n*v
1 x - sq 3 * x * P1 n*v
1 x - 3 * x sq * P2 n*v
x 3 ^ P3 n*v
v+ v+ v+ ] ; inline
! gives an interval of x from 0 to 1 to map the bezier function
: t-interval ( x -- interval )
[ iota ] keep 1 - [ / ] curry map ;
! turns a list of points into the list of lines between them
: points-to-lines ( seq -- seq )
dup rest [ 2array ] 2map ;
: draw-lines ( {R,G,B} points image -- )
[ [ first2 ] dip draw-line ] curry with each ;
:: bezier-lines ( {R,G,B} P0 P1 P2 P3 image -- )
 ! 100 is an arbitrary value.. could be given as a parameter..
100 t-interval P0 P1 P2 P3 (cubic-bezier) map
points-to-lines
{R,G,B} swap image draw-lines ;

Fortran

Translation of: C

This subroutine should go inside the RCImagePrimitive module (see Bresenham's line algorithm)

subroutine cubic_bezier(img, p1, p2, p3, p4, color)
type(rgbimage), intent(inout) :: img
type(point), intent(in) :: p1, p2, p3, p4
type(rgb), intent(in) :: color
 
integer :: i, j
real :: pts(0:N_SEG,0:1), t, a, b, c, d, x, y
 
do i = 0, N_SEG
t = real(i) / real(N_SEG)
a = (1.0 - t)**3.0
b = 3.0 * t * (1.0 - t)**2
c = 3.0 * (1.0 - t) * t**2
d = t**3.0
x = a * p1%x + b * p2%x + c * p3%x + d * p4%x
y = a * p1%y + b * p2%y + c * p3%y + d * p4%y
pts(i,0) = x
pts(i,1) = y
end do
 
do i = 0, N_SEG-1
j = i + 1
call draw_line(img, point(pts(i,0), pts(i,1)), &
point(pts(j,0), pts(j,1)), color)
end do
 
end subroutine cubic_bezier

FreeBASIC

Translation of: BBC BASIC
' version 01-11-2016
' compile with: fbc -s console
 
' translation from Bitmap/Bresenham's line algorithm C entry
Sub Br_line(x0 As Integer, y0 As Integer, x1 As Integer, y1 As Integer, _
Col As UInteger = &HFFFFFF)
 
Dim As Integer dx = Abs(x1 - x0), dy = Abs(y1 - y0)
Dim As Integer sx = IIf(x0 < x1, 1, -1)
Dim As Integer sy = IIf(y0 < y1, 1, -1)
Dim As Integer er = IIf(dx > dy, dx, -dy) \ 2, e2
 
Do
PSet(x0, y0), col
If (x0 = x1) And (y0 = y1) Then Exit Do
e2 = er
If e2 > -dx Then Er -= dy : x0 += sx
If e2 < dy Then Er += dx : y0 += sy
Loop
 
End Sub
 
' Bitmap/Bézier curves/Cubic BBC BASIC entry
Sub beziercubic(x1 As Double, y1 As Double, x2 As Double, y2 As Double, _
x3 As Double, y3 As Double, x4 As Double, y4 As Double, _
n As ULong, col As UInteger = &HFFFFFF)
 
Type point_
x As Integer
y As Integer
End Type
 
Dim As ULong i
Dim As Double t, t1, a, b, c, d
Dim As point_ p(n)
 
For i = 0 To n
t = i / n
t1 = 1 - t
a = t1 ^ 3
b = t * t1 * t1 * 3
c = t * t * t1 * 3
d = t ^ 3
p(i).x = Int(a * x1 + b * x2 + c * x3 + d * x4 + .5)
p(i).y = Int(a * y1 + b * y2 + c * y3 + d * y4 + .5)
Next
 
For i = 0 To n -1
Br_line(p(i).x, p(i).y, p(i +1).x, p(i +1).y, col)
Next
 
End Sub
 
' ------=< MAIN >=------
 
ScreenRes 250,250,32 ' 0,0 in top left corner
 
beziercubic(160, 150, 10, 120, 30, 0, 150, 50, 20)
 
 
' empty keyboard buffer
While Inkey <> "" : Wend
Print : Print "hit any key to end program"
Sleep
End

Go

Translation of: C
package raster
 
const b3Seg = 30
 
func (b *Bitmap) Bézier3(x1, y1, x2, y2, x3, y3, x4, y4 int, p Pixel) {
var px, py [b3Seg + 1]int
fx1, fy1 := float64(x1), float64(y1)
fx2, fy2 := float64(x2), float64(y2)
fx3, fy3 := float64(x3), float64(y3)
fx4, fy4 := float64(x4), float64(y4)
for i := range px {
d := float64(i) / b3Seg
a := 1 - d
b, c := a * a, d * d
a, b, c, d = a*b, 3*b*d, 3*a*c, c*d
px[i] = int(a*fx1 + b*fx2 + c*fx3 + d*fx4)
py[i] = int(a*fy1 + b*fy2 + c*fy3 + d*fy4)
}
x0, y0 := px[0], py[0]
for i := 1; i <= b3Seg; i++ {
x1, y1 := px[i], py[i]
b.Line(x0, y0, x1, y1, p)
x0, y0 = x1, y1
}
}
 
func (b *Bitmap) Bézier3Rgb(x1, y1, x2, y2, x3, y3, x4, y4 int, c Rgb) {
b.Bézier3(x1, y1, x2, y2, x3, y3, x4, y4, c.Pixel())
}

Demonstration program:

GoBez3.png
package main
 
import (
"fmt"
"raster"
)
 
func main() {
b := raster.NewBitmap(400, 300)
b.FillRgb(0xffefbf)
b.Bézier3Rgb(20, 200, 700, 50, -300, 50, 380, 150, raster.Rgb(0x3f8fef))
if err := b.WritePpmFile("bez3.ppm"); err != nil {
fmt.Println(err)
}
}

J

Solution:
See the Bernstein Polynomials essay on the J Wiki.
Uses code from Basic bitmap storage, Bresenham's line algorithm and Midpoint circle algorithm.

require 'numeric'
 
bik=: 2 : '((*&(u!v))@(^&u * ^&(v-u)@-.))'
basiscoeffs=: <: 4 : 'x bik y t. i.>:y'"0~ i.
linearcomb=: basiscoeffs@#@[
evalBernstein=: ([ +/ .* linearcomb) p. ] NB. evaluate Bernstein Polynomial (general)
 
NB.*getBezierPoints v Returns points for bezier curve given control points (y)
NB. eg: getBezierPoints controlpoints
NB. y is: y0 x0, y1 x1, y2 x2 ...
getBezierPoints=: monad define
ctrlpts=. (/: {:"1) _2]\ y NB. sort ctrlpts for increasing x
xvals=. ({: ,~ {. + +:@:i.@<.@-:@-~/) ({:"1) 0 _1{ctrlpts
tvals=. ((] - {.) % ({: - {.)) xvals
xvals ,.~ ({."1 ctrlpts) evalBernstein tvals
)
 
NB.*drawBezier v Draws bezier curve defined by (x) on image (y)
NB. eg: (42 40 10 30 186 269 26 187;255 0 0) drawBezier myimg
NB. x is: 2-item list of boxed (controlpoints) ; (color)
drawBezier=: (1&{:: ;~ 2 ]\ [: [email protected]"1 (0&{::))@[ drawLines ]

Example usage:

myimg=: 0 0 255 makeRGB 300 300
]randomctrlpts=: ,3 2 ?@$ }:$ myimg NB. 3 control points - quadratic
]randomctrlpts=: ,4 2 ?@$ }:$ myimg NB. 4 control points - cubic
myimg=: ((2 ,.~ _2]\randomctrlpts);255 0 255) drawCircles myimg NB. draw control points
viewRGB (randomctrlpts; 255 255 0) drawBezier myimg NB. display image with bezier line

JavaScript

 
function draw() {
var canvas = document.getElementById("container");
context = canvas.getContext("2d");
 
bezier3(20, 200, 700, 50, -300, 50, 380, 150);
// bezier3(160, 10, 10, 40, 30, 160, 150, 110);
// bezier3(0,149, 30,50, 120,130, 160,30, 0);
}
 
// http://rosettacode.org/wiki/Cubic_bezier_curves#C
function bezier3(x1, y1, x2, y2, x3, y3, x4, y4) {
var px = [], py = [];
for (var i = 0; i <= b3Seg; i++) {
var d = i / b3Seg;
var a = 1 - d;
var b = a * a;
var c = d * d;
a = a * b;
b = 3 * b * d;
c = 3 * a * c;
d = c * d;
px[i] = parseInt(a * x1 + b * x2 + c * x3 + d * x4);
py[i] = parseInt(a * y1 + b * y2 + c * y3 + d * y4);
}
var x0 = px[0];
var y0 = py[0];
for (i = 1; i <= b3Seg; i++) {
var x = px[i];
var y = py[i];
drawPolygon(context, [[x0, y0], [x, y]], "red", "red");
x0 = x;
y0 = y;
}
}
function drawPolygon(context, polygon, strokeStyle, fillStyle) {
context.strokeStyle = strokeStyle;
context.beginPath();
 
context.moveTo(polygon[0][0],polygon[0][1]);
for (i = 1; i < polygon.length; i++)
context.lineTo(polygon[i][0],polygon[i][1]);
 
context.closePath();
context.stroke();
 
if (fillStyle == undefined)
return;
context.fillStyle = fillStyle;
context.fill();
}
 

Mathematica / Wolfram Language

points= {{0, 0}, {1, 1}, {2, -1}, {3, 0}};
Graphics[{BSplineCurve[points], Green, Line[points], Red, Point[points]}]

MmaCubicBezier.png

MATLAB

Note: Store this function in a file named "bezierCubic.mat" in the @Bitmap folder for the Bitmap class defined here.

 
function bezierCubic(obj,pixel_0,pixel_1,pixel_2,pixel_3,color,varargin)
 
if( isempty(varargin) )
resolution = 20;
else
resolution = varargin{1};
end
 
%Calculate time axis
time = (0:1/resolution:1)';
timeMinus = 1-time;
 
%The formula for the curve is expanded for clarity, the lack of
%loops is because its calculation has been vectorized
curve = (timeMinus).^3*pixel_0; %First term of polynomial
curve = curve + (3.*time.*timeMinus.^2)*pixel_1; %second term of polynomial
curve = curve + (3.*timeMinus.*time.^2)*pixel_2; %third term of polynomial
curve = curve + time.^3*pixel_3; %Fourth term of polynomial
 
curve = round(curve); %round each of the points to the nearest integer
 
%connect each of the points in the curve with a line using the
%Bresenham Line algorithm
for i = (1:length(curve)-1)
obj.bresenhamLine(curve(i,:),curve(i+1,:),color);
end
 
assignin('caller',inputname(1),obj); %saves the changes to the object
 
end
 

Sample usage: This will generate the image example for the PHP solution.

 
>> img = Bitmap(200,200);
>> img.fill([255 255 255]);
>> img.bezierCubic([160 10],[10 40],[30 160],[150 110],[255 0 0],110);
>> disp(img)
 

OCaml

let cubic_bezier ~img ~color
~p1:(_x1, _y1)
~p2:(_x2, _y2)
~p3:(_x3, _y3)
~p4:(_x4, _y4) =
let x1, y1, x2, y2, x3, y3, x4, y4 =
(float _x1, float _y1,
float _x2, float _y2,
float _x3, float _y3,
float _x4, float _y4)
in
let bz t =
let a = (1.0 -. t) ** 3.0
and b = 3.0 *. t *. ((1.0 -. t) ** 2.0)
and c = 3.0 *. (t ** 2.0) *. (1.0 -. t)
and d = t ** 3.0
in
let x = a *. x1 +. b *. x2 +. c *. x3 +. d *. x4
and y = a *. y1 +. b *. y2 +. c *. y3 +. d *. y4
in
(int_of_float x, int_of_float y)
in
let rec loop _t acc =
if _t > 20 then acc else
begin
let t = (float _t) /. 20.0 in
let x, y = bz t in
loop (succ _t) ((x,y)::acc)
end
in
let pts = loop 0 [] in
 
(*
(* draw only points *)
List.iter (fun (x, y) -> put_pixel img color x y) pts;
*)

 
(* draw segments *)
let line = draw_line ~img ~color in
let by_pair li f =
ignore (List.fold_left (fun prev x -> f prev x; x) (List.hd li) (List.tl li))
in
by_pair pts (fun p0 p1 -> line ~p0 ~p1);
;;

Phix

Output similar to Mathematica Requires new_image() from Bitmap, bresLine() from Bresenham's_line_algorithm, write_ppm() from Write_a_PPM_file. Included as demo\rosetta\Bitmap_BezierCubic.exw, results may be verified with demo\rosetta\viewppm.exw

function cubic_bezier(sequence img, atom x1, atom y1, atom x2, atom y2, atom x3, atom y3, atom x4, atom y4, integer colour, integer segments)
atom t, t1, a, b, c, d
sequence pts = repeat(0,segments*2)
 
for i=0 to segments*2-1 by 2 do
t = i/segments
t1 = 1-t
a = power(t1,3)
b = 3*t*power(t1,2)
c = 3*power(t,2)*t1
d = power(t,3)
pts[i+1] = floor(a*x1+b*x2+c*x3+d*x4)
pts[i+2] = floor(a*y1+b*y2+c*y3+d*y4)
end for
for i=1 to segments*2-2 by 2 do
img = bresLine(img, pts[i], pts[i+1], pts[i+2], pts[i+3], colour)
end for
return img
end function
 
sequence img = new_image(300,200,black)
img = cubic_bezier(img, 0,100, 100,0, 200,200, 300,100, white, 40)
img = bresLine(img,0,100,100,0,green)
img = bresLine(img,100,0,200,200,green)
img = bresLine(img,200,200,300,100,green)
img[1][100] = red
img[100][1] = red
img[200][200] = red
img[300][100] = red
write_ppm("Bézier.ppm",img)

PHP

Cubic bezier curve PHP.png
Translation of: Python
Works with: PHP version 4.3.0
Library: GD

Outputs image to the right directly to browser or stdout.

<?
 
$image = imagecreate(200, 200);
// The first allocated color will be the background color:
imagecolorallocate($image, 255, 255, 255);
$color = imagecolorallocate($image, 255, 0, 0);
cubicbezier($image, $color, 160, 10, 10, 40, 30, 160, 150, 110);
imagepng($image);
 
function cubicbezier($img, $col, $x0, $y0, $x1, $y1, $x2, $y2, $x3, $y3, $n = 20) {
$pts = array();
 
for($i = 0; $i <= $n; $i++) {
$t = $i / $n;
$t1 = 1 - $t;
$a = pow($t1, 3);
$b = 3 * $t * pow($t1, 2);
$c = 3 * pow($t, 2) * $t1;
$d = pow($t, 3);
 
$x = round($a * $x0 + $b * $x1 + $c * $x2 + $d * $x3);
$y = round($a * $y0 + $b * $y1 + $c * $y2 + $d * $y3);
$pts[$i] = array($x, $y);
}
 
for($i = 0; $i < $n; $i++) {
imageline($img, $pts[$i][0], $pts[$i][1], $pts[$i+1][0], $pts[$i+1][1], $col);
}
}
 

PicoLisp

This uses the 'brez' line drawing function from Bitmap/Bresenham's line algorithm#PicoLisp.

(scl 6)
 
(de cubicBezier (Img N X1 Y1 X2 Y2 X3 Y3 X4 Y4)
(let (R (* N N N) X X1 Y Y1 DX 0 DY 0)
(for I N
(let
(J (- N I)
A (*/ 1.0 J J J R)
B (*/ 3.0 I J J R)
C (*/ 3.0 I I J R)
D (*/ 1.0 I I I R) )
(brez Img
X
Y
(setq DX
(-
(+ (*/ A X1 1.0) (*/ B X2 1.0) (*/ C X3 1.0) (*/ D X4 1.0))
X ) )
(setq DY
(-
(+ (*/ A Y1 1.0) (*/ B Y2 1.0) (*/ C Y3 1.0) (*/ D Y4 1.0))
Y ) ) )
(inc 'X DX)
(inc 'Y DY) ) ) ) )

Test:

(let Img (make (do 200 (link (need 300 0))))       # Create image 300 x 200
(cubicBezier Img 24 20 120 540 33 -225 33 285 100)
(out "img.pbm" # Write to bitmap file
(prinl "P1")
(prinl 300 " " 200)
(mapc prinl Img) ) )
 
(call 'display "img.pbm")

PureBasic

Procedure cubic_bezier(img, p1x, p1y, p2x, p2y, p3x, p3y, p4x, p4y, Color, n_seg)
Protected i
Protected.f t, t1, a, b, c, d
Dim pts.POINT(n_seg)
 
For i = 0 To n_seg
t = i / n_seg
t1 = 1.0 - t
a = Pow(t1, 3)
b = 3.0 * t * Pow(t1, 2)
c = 3.0 * Pow(t, 2) * t1
d = Pow(t, 3)
pts(i)\x = a * p1x + b * p2x + c * p3x + d * p4x
pts(i)\y = a * p1y + b * p2y + c * p3y + d * p4y
Next
 
StartDrawing(ImageOutput(img))
FrontColor(Color)
For i = 0 To n_seg - 1
BresenhamLine(pts(i)\x, pts(i)\y, pts(i + 1)\x, pts(i + 1)\y) ;this calls the implementation of a draw_line routine
Next
StopDrawing()
EndProcedure
 
Define w, h, img
w = 200: h = 200: img = 1
CreateImage(img, w, h) ;img is internal id of the image
 
OpenWindow(0, 0, 0, w, h,"Bezier curve, cubic", #PB_Window_SystemMenu)
cubic_bezier(1, 160,10, 10,40, 30,160, 150,110, RGB(255, 255, 255), 20)
ImageGadget(0, 0, 0, w, h, ImageID(1))
 
Define event
Repeat
event = WaitWindowEvent()
Until event = #PB_Event_CloseWindow

Python

Works with: Python version 3.1

Extending the example given here and using the algorithm from the C solution above:

def cubicbezier(self, x0, y0, x1, y1, x2, y2, x3, y3, n=20):
pts = []
for i in range(n+1):
t = i / n
a = (1. - t)**3
b = 3. * t * (1. - t)**2
c = 3.0 * t**2 * (1.0 - t)
d = t**3
 
x = int(a * x0 + b * x1 + c * x2 + d * x3)
y = int(a * y0 + b * y1 + c * y2 + d * y3)
pts.append( (x, y) )
for i in range(n):
self.line(pts[i][0], pts[i][1], pts[i+1][0], pts[i+1][1])
Bitmap.cubicbezier = cubicbezier
 
bitmap = Bitmap(17,17)
bitmap.cubicbezier(16,1, 1,4, 3,16, 15,11)
bitmap.chardisplay()
 
 
'''
The origin, 0,0; is the lower left, with x increasing to the right,
and Y increasing upwards.
 
The chardisplay above produces the following output :
+-----------------+
| |
| |
| |
| |
| @@@@ |
| @@@ @@@ |
| @ |
| @ |
| @ |
| @ |
| @ |
| @ |
| @ |
| @ |
| @@@@ |
| @@@@|
| |
+-----------------+
'''

R

# x, y: the x and y coordinates of the hull points
# n: the number of points in the curve.
bezierCurve <- function(x, y, n=10)
{
outx <- NULL
outy <- NULL
 
i <- 1
for (t in seq(0, 1, length.out=n))
{
b <- bez(x, y, t)
outx[i] <- b$x
outy[i] <- b$y
 
i <- i+1
}
 
return (list(x=outx, y=outy))
}
 
bez <- function(x, y, t)
{
outx <- 0
outy <- 0
n <- length(x)-1
for (i in 0:n)
{
outx <- outx + choose(n, i)*((1-t)^(n-i))*t^i*x[i+1]
outy <- outy + choose(n, i)*((1-t)^(n-i))*t^i*y[i+1]
}
 
return (list(x=outx, y=outy))
}
 
# Example usage
x <- c(4,6,4,5,6,7)
y <- 1:6
plot(x, y, "o", pch=20)
points(bezierCurve(x,y,20), type="l", col="red")

Racket

 
#lang racket
(require racket/draw)
 
(define (draw-line dc p q)
(match* (p q) [((list x y) (list s t)) (send dc draw-line x y s t)]))
 
(define (draw-lines dc ps)
(void
(for/fold ([p0 (first ps)]) ([p (rest ps)])
(draw-line dc p0 p)
p)))
 
(define (int t p q)
(define ((int1 t) x0 x1) (+ (* (- 1 t) x0) (* t x1)))
(map (int1 t) p q))
 
(define (bezier-points p0 p1 p2 p3)
(for/list ([t (in-range 0.0 1.0 (/ 1.0 20))])
(int t (int t p0 p1) (int t p2 p3))))
 
(define bm (make-object bitmap% 17 17))
(define dc (new bitmap-dc% [bitmap bm]))
(send dc set-smoothing 'unsmoothed)
(send dc set-pen "red" 1 'solid)
(draw-lines dc (bezier-points '(16 1) '(1 4) '(3 16) '(15 11)))
bm
 

Ruby

Translation of: Tcl

Requires code from the Bitmap and Bitmap/Bresenham's line algorithm#Ruby Bresenham's line algorithm tasks

class Pixmap
def draw_bezier_curve(points, colour)
# ensure the points are increasing along the x-axis
points = points.sort_by {|p| [p.x, p.y]}
xmin = points[0].x
xmax = points[-1].x
increment = 2
prev = points[0]
((xmin + increment) .. xmax).step(increment) do |x|
t = 1.0 * (x - xmin) / (xmax - xmin)
p = Pixel[x, bezier(t, points).round]
draw_line(prev, p, colour)
prev = p
end
end
end
 
# the generalized n-degree Bezier summation
def bezier(t, points)
n = points.length - 1
points.each_with_index.inject(0.0) do |sum, (point, i)|
sum += n.choose(i) * (1-t)**(n - i) * t**i * point.y
end
end
 
class Fixnum
def choose(k)
self.factorial / (k.factorial * (self - k).factorial)
end
def factorial
(2 .. self).reduce(1, :*)
end
end
 
bitmap = Pixmap.new(400, 400)
points = [
Pixel[40,100], Pixel[100,350], Pixel[150,50],
Pixel[150,150], Pixel[350,250], Pixel[250,250]
]
points.each {|p| bitmap.draw_circle(p, 3, RGBColour::RED)}
bitmap.draw_bezier_curve(points, RGBColour::BLUE)

Tcl

Library: Tk

This solution can be applied to any number of points. Uses code from Basic bitmap storage (newImage, fill), Bresenham's line algorithm (drawLine), and Midpoint circle algorithm (drawCircle)

package require Tcl 8.5
package require Tk
 
proc drawBezier {img colour args} {
# ensure the points are increasing along the x-axis
set points [lsort -real -index 0 $args]
 
set xmin [x [lindex $points 0]]
set xmax [x [lindex $points end]]
set prev [lindex $points 0]
set increment 2
for {set x [expr {$xmin + $increment}]} {$x <= $xmax} {incr x $increment} {
set t [expr {1.0 * ($x - $xmin) / ($xmax - $xmin)}]
set this [list $x [::tcl::mathfunc::round [bezier $t $points]]]
drawLine $img $colour $prev $this
set prev $this
}
}
 
# the generalized n-degree Bezier summation
proc bezier {t points} {
set n [expr {[llength $points] - 1}]
for {set i 0; set sum 0.0} {$i <= $n} {incr i} {
set sum [expr {$sum + [C $n $i] * (1-$t)**($n - $i) * $t**$i * [y [lindex $points $i]]}]
}
return $sum
}
 
proc C {n i} {expr {[ifact $n] / ([ifact $i] * [ifact [expr {$n - $i}]])}}
proc ifact n {
for {set i $n; set sum 1} {$i >= 2} {incr i -1} {
set sum [expr {$sum * $i}]
}
return $sum
}
 
proc x p {lindex $p 0}
proc y p {lindex $p 1}
 
proc newbezier {n w} {
set size 400
set bezier [newImage $size $size]
fill $bezier white
for {set i 1} {$i <= $n} {incr i} {
set point [list [expr {int($size*rand())}] [expr {int($size*rand())}]]
lappend points $point
drawCircle $bezier red $point 3
}
puts $points
 
drawBezier $bezier blue {*}$points
 
$w configure -image $bezier
}
 
set degree 4 ;# cubic bezier -- for quadratic, use 3
label .img
button .new -command [list newbezier $degree .img] -text New
button .exit -command exit -text Exit
pack .new .img .exit -side top

Results in:

Tcl cubic bezier.png

TI-89 BASIC

Note: This example does not use a user-defined image type, since that would be particularly impractical, but rather draws on the calculator's graph screen, which has essentially the same operations as an implementation of Basic bitmap storage would, except for being black-and-white.
Define cubic(p1,p2,p3,p4,segs) = Prgm
Local i,t,u,prev,pt
0 → pt
For i,1,segs+1
(i-1.0)/segs → t © Decimal to avoid slow exact arithetic
(1-t) → u
pt → prev
u^3*p1 + 3t*u^2*p2 + 3t^2*u*p3 + t^3*p4 → pt
If i>1 Then
PxlLine floor(prev[1,1]), floor(prev[1,2]), floor(pt[1,1]), floor(pt[1,2])
EndIf
EndFor
EndPrgm

XPL0

CubicXPL0.png
include c:\cxpl\codes;          \intrinsic 'code' declarations
 
proc Bezier(P0, P1, P2, P3); \Draw cubic Bezier curve
real P0, P1, P2, P3;
def Segments = 8;
int I;
real S1, T, T2, T3, U, U2, U3, B, C, X, Y;
[Move(fix(P0(0)), fix(P0(1)));
S1:= 1./float(Segments);
T:= 0.;
for I:= 1 to Segments-1 do
[T:= T+S1;
T2:= T*T;
T3:= T2*T;
U:= 1.-T;
U2:= U*U;
U3:= U2*U;
B:= 3.*T*U2;
C:= 3.*T2*U;
X:= U3*P0(0) + B*P1(0) + C*P2(0) + T3*P3(0);
Y:= U3*P0(1) + B*P1(1) + C*P2(1) + T3*P3(1);
Line(fix(X), fix(Y), $00FFFF); \cyan line segments
];
Line(fix(P3(0)), fix(P3(1)), $00FFFF);
Point(fix(P0(0)), fix(P0(1)), $FF0000); \red control points
Point(fix(P1(0)), fix(P1(1)), $FF0000);
Point(fix(P2(0)), fix(P2(1)), $FF0000);
Point(fix(P3(0)), fix(P3(1)), $FF0000);
];
 
[SetVid($112); \set 640x480x24 video graphics
Bezier([0., 0.], [30., 100.], [120., 20.], [160., 120.]);
if ChIn(1) then []; \wait for keystroke
SetVid(3); \restore normal text display
]

zkl

CubicXPL0.png

Image cribbed from XPL0

Uses the PPM class from http://rosettacode.org/wiki/Bitmap/Bresenham%27s_line_algorithm#zkl

Add this to the PPM class:

   fcn cBezier(p0x,p0y, p1x,p1y, p2x,p2y, p3x,p3y, rgb, numPts=500){
numPts.pump(Void,'wrap(t){ // B(t)
t=t.toFloat()/numPts; t1:=(1.0 - t);
a:=t1*t1*t1; b:=t*t1*t1*3; c:=t1*t*t*3; d:=t*t*t;
x:=a*p0x + b*p1x + c*p2x + d*p3x + 0.5;
y:=a*p0y + b*p1y + c*p2y + d*p3y + 0.5;
__sSet(rgb,x,y);
});
}

Doesn't use line segments, they don't seem like an improvement.

bitmap:=PPM(200,150,0xff|ff|ff);
bitmap.cBezier(0,149, 30,50, 120,130, 160,30, 0);
bitmap.write(File("foo.ppm","wb"));