Zeckendorf arithmetic: Difference between revisions

From Rosetta Code
Content added Content deleted
(→‎{{header|Perl 6}}: Converted to a completely string based implementation)
(Promoted)
Line 1: Line 1:
{{draft task}}
{{task}}
This task is a total immersion zeckendorf task, using decimal numbers will attract serious disapprobation.
This task is a total immersion zeckendorf task, using decimal numbers will attract serious disapprobation.


Line 382: Line 382:


[[Category:Arithmetic operations]]
[[Category:Arithmetic operations]]
[http://www.example.com link title]

Revision as of 11:16, 10 April 2013

Task
Zeckendorf arithmetic
You are encouraged to solve this task according to the task description, using any language you may know.

This task is a total immersion zeckendorf task, using decimal numbers will attract serious disapprobation.

The task is to implement addition, subtraction, multiplication, and division using Zeckendorf number representation. Optionally provide decrement, increment and comparitive operation functions.

Addition

Like binary 1 + 1 = 10, note carry 1 left. There the similarity ends. 10 + 10 = 101, note carry 1 left and 1 right. 100 + 100 = 1001, note carry 1 left and 2 right, this is the general case.

Occurrences of 11 must be changed to 100. Occurrences of 111 may be changed from the right by replacing 11 with 100, or from the left converting 111 to 100 + 100;

Subtraction

10 - 1 = 1. The general rule is borrow 1 right carry 1 left. eg:

  abcde
  10100 -
   1000
  _____
    100  borrow 1 from a leaves 100
  + 100  add the carry
  _____
   1001

A larger example:

  abcdef
  100100 -
    1000
  ______
  1*0100 borrow 1 from b
   + 100 add the carry
  ______
  1*1001

Sadly we borrowed 1 from b which didn't have it to lend. So now b borrows from a:

    1001
  + 1000 add the carry
    ____
   10100
Multiplication

Here you teach your computer its zeckendorf tables. eg. 101 * 1001:

  a = 1 * 101 = 101
  b = 10 * 101 = a + a = 10000
  c = 100 * 101 = b + a = 10101
  d = 1000 * 101 = c + b = 101010

  1001 = d + a therefore 101 * 1001 =
 
  101010
   + 101
  ______
 1000100
Division

Lets try 1000101 divided by 101, so we can use the same table used for addition.

  1000101 -
   101010 subtract d (1000 * 101)
  _______
     1000 -
      101 b and c are too large to subtract, so subtract a
     ____
        1 so 1000101 divided by 101 is d + a (1001) remainder 1

C++

Works with: C++11

<lang cpp>// For a class N which implements Zeckendorf numbers: // I define an increment operation ++() // I define a comparison operation <=(other N) // I define an addition operation +=(other N) // I define a subtraction operation -=(other N) // Nigel Galloway October 28th., 2012

  1. include <iostream>

enum class zd {N00,N01,N10,N11}; class N { private:

 int dVal = 0, dLen;
 void _a(int i) {
   for (;; i++) {
     if (dLen < i) dLen = i;
     switch ((zd)((dVal >> (i*2)) & 3)) {
       case zd::N00: case zd::N01: return;
       case zd::N10: if (((dVal >> ((i+1)*2)) & 1) != 1) return;
                     dVal += (1 << (i*2+1)); return;
       case zd::N11: dVal &= ~(3 << (i*2)); _b((i+1)*2);
 }}}
 void _b(int pos) {
   if (pos == 0) {++*this; return;}
   if (((dVal >> pos) & 1) == 0) {
     dVal += 1 << pos;
     _a(pos/2);
     if (pos > 1) _a((pos/2)-1);
     } else {
     dVal &= ~(1 << pos);
     _b(pos + 1);
     _b(pos - ((pos > 1)? 2:1));
 }}
 void _c(int pos) {
   if (((dVal >> pos) & 1) == 1) {dVal &= ~(1 << pos); return;}
   _c(pos + 1);
   if (pos > 0) _b(pos - 1); else ++*this;
   return;
 }

public:

 N(char const* x = "0") {
   int i = 0, q = 1;
   for (; x[i] > 0; i++);
   for (dLen = --i/2; i >= 0; i--) {dVal+=(x[i]-48)*q; q*=2;
 }}
 const N& operator++() {dVal += 1; _a(0); return *this;}
 const N& operator+=(const N& other) {
   for (int GN = 0; GN < (other.dLen + 1) * 2; GN++) if ((other.dVal >> GN) & 1 == 1) _b(GN);
   return *this;
 }
 const N& operator-=(const N& other) {
   for (int GN = 0; GN < (other.dLen + 1) * 2; GN++) if ((other.dVal >> GN) & 1 == 1) _c(GN);
   for (;((dVal >> dLen*2) & 3) == 0 or dLen == 0; dLen--);
   return *this;
 }
 const N& operator*=(const N& other) {
   N Na = other, Nb = other, Nt, Nr;
   for (int i = 0; i <= (dLen + 1) * 2; i++) {
     if (((dVal >> i) & 1) > 0) Nr += Nb;
     Nt = Nb; Nb += Na; Na = Nt;
   }
   return *this = Nr;
 }
 const bool operator<=(const N& other) const {return dVal <= other.dVal;}
 friend std::ostream& operator<<(std::ostream&, const N&);

}; N operator "" N(char const* x) {return N(x);} std::ostream &operator<<(std::ostream &os, const N &G) {

 const static std::string dig[] {"00","01","10"}, dig1[] {"","1","10"};
 if (G.dVal == 0) return os << "0";
 os << dig1[(G.dVal >> (G.dLen*2)) & 3];
 for (int i = G.dLen-1; i >= 0; i--) os << dig[(G.dVal >> (i*2)) & 3];
 return os;

} </lang>

Testing

The following tests addtition: <lang cpp>int main(void) {

 N G;
 G = 10N;
 G += 10N;
 std::cout << G << std::endl;
 G += 10N;
 std::cout << G << std::endl;
 G += 1001N;
 std::cout << G << std::endl;
 G += 1000N;
 std::cout << G << std::endl;
 G += 10101N;
 std::cout << G << std::endl;
 return 0;

}</lang>

Output:
101
1001
10101
100101
1010000

The following tests subtraction: <lang cpp>int main(void) {

 N G;
 G = 1000N;
 G -= 101N;
 std::cout << G << std::endl;
 G = 10101010N;
 G -= 1010101N;
 std::cout << G << std::endl;
 return 0;

}</lang>

Output:
1
1000000

The following tests multiplication: <lang cpp> int main(void) {

 N G = 1001N;
 G *= 101N;
 std::cout << G << std::endl;
 G = 101010N;
 G += 101N;
 std::cout << G << std::endl;
 return 0;

}</lang>

Output:
1000100
1000100

Perl 6

This is a somewhat limited implementation of Zeckendorf arithmetic operators. They only handle positive integer values. There are no actual calculations, everything is done with string manipulations, so it doesn't matter what glyphs you use for 1 and 0.

Implemented arithmetic operators:

 addition: +z
 subtraction: -z
 multiplication: *z
 division: /z (more of a divmod really)
 post increment: ++z
 post decrement: --z

Comparison operators:

 equal eqz
 not equal nez
 greater than gtz
 less than ltz

<lang perl6>my $z1 = '1'; # glyph to use for a '1' my $z0 = '0'; # glyph to use for a '0'

  1. helper sub to translate constants into the particular glyphs you used

sub z($a) { $a.trans([<1 0>] => [$z1, $z0]) };

                1. Zeckendorf comparison operators #########
  1. less than

sub infix:<ltz>($a, $b) { ($z0 lt $z1) ?? ($a lt $b) !!

   ($a.trans([$z1, $z0] => [<1 0>]) lt $b.trans([$z1, $z0] => [<1 0>]))

};

  1. greater than

sub infix:<gtz>($a, $b) { ($z0 lt $z1) ?? ($a gt $b) !!

   ($a.trans([$z1, $z0] => [<1 0>]) gt $b.trans([$z1, $z0] => [<1 0>]))

};

  1. equal

sub infix:<eqz>($a, $b) { $a eq $b };

  1. not equal

sub infix:<nez>($a, $b) { $a ne $b };


                1. Operators for Zeckendorf arithmetic ########
  1. post increment

sub postfix:<++z>($a is rw) {

   $a = ("$z0$z0"~$a).subst(/("$z0$z0")($z1+ %% $z0)?$/, -> $/ { "$z0$z1" ~ $z0 x $1.chars });
   $a ~~ s/^$z0+//;
   $a

}

  1. post decrement

sub postfix:<--z>($a is rw) {

   $a.=subst(/$z1($z0*)$/, -> $/ {$z0 ~ "$z1$z0" x $0.chars div 2 ~ $z1 x $0.chars mod 2});
   $a ~~ s/^$z0+(.+)$/$0/;
   $a

}

  1. addition

sub infix:<+z>($a is copy, $b is copy) { $a++z while $b--z nez $z0; $a };

  1. subtraction

sub infix:<-z>($a is copy, $b is copy) { $a--z while $b--z nez $z0; $a };

  1. multiplication

sub infix:<*z>($a, $b) {

   return $z0 if $a eq $z0 or $b eq $z0;
   return $a if $b eq $z1;
   return $b if $a eq $z1;
   my $c = $a;
   my $d = $z1;
   repeat { 
        my $e = $z0;
        repeat { $c++z; $e++z } until $e eqz $a;
        $d++z;
   } until $d eqz $b;
   $c

};

  1. division (really more of a div mod)

sub infix:</z>($a is copy, $b is copy) {

   fail "Divide by zero" if $b eqz $z0;
   return $a if $a eqz $z0 or $b eqz $z1;
   my $c = $z0;
   repeat { 
       my $d = $b +z ($z1 ~ $z0);
       $c++z;
       $a--z while $d--z nez $z0
   } until $a ltz $b;
   $c ~= " remainder $a" if $a nez $z0;
   $c

};


                                            1. Testing ######################

say "Using the glyph '$z1' for 1 and '$z0' for 0\n";

my $fmt = "%-22s = %15s %s\n";

my $zeck = $z1;

printf( $fmt, "$zeck++z", $zeck++z, '# increment' ) for 1 .. 10;

printf $fmt, "$zeck +z {z('1010')}", $zeck +z= z('1010'), '# addition';

printf $fmt, "$zeck -z {z('100')}", $zeck -z= z('100'), '# subtraction';

printf $fmt, "$zeck *z {z('100101')}", $zeck *z= z('100101'), '# multiplication';

printf $fmt, "$zeck /z {z('100')}", $zeck /z= z('100'), '# division';

printf( $fmt, "$zeck--z", $zeck--z, '# decrement' ) for 1 .. 5;

printf $fmt, "$zeck *z {z('101001')}", $zeck *z= z('101001'), '# multiplication';

printf $fmt, "$zeck /z {z('100')}", $zeck /z= z('100'), '# division'; </lang>

Testing Output

Using the glyph '1' for 1 and '0' for 0

1++z                   =              10  # increment
10++z                  =             100  # increment
100++z                 =             101  # increment
101++z                 =            1000  # increment
1000++z                =            1001  # increment
1001++z                =            1010  # increment
1010++z                =           10000  # increment
10000++z               =           10001  # increment
10001++z               =           10010  # increment
10010++z               =           10100  # increment
10100 +z 1010          =          100101  # addition
100101 -z 100          =          100010  # subtraction
100010 *z 100101       =    100001000001  # multiplication
100001000001 /z 100    =       101010001  # division
101010001--z           =       101010000  # decrement
101010000--z           =       101001010  # decrement
101001010--z           =       101001001  # decrement
101001001--z           =       101001000  # decrement
101001000--z           =       101000101  # decrement
101000101 *z 101001    = 101010000010101  # multiplication
101010000010101 /z 100 = 1001010001001 remainder 10  # division

Output using 'X' for 1 and 'O' for 0:

Using the glyph 'X' for 1 and 'O' for 0

X++z                   =              XO  # increment
XO++z                  =             XOO  # increment
XOO++z                 =             XOX  # increment
XOX++z                 =            XOOO  # increment
XOOO++z                =            XOOX  # increment
XOOX++z                =            XOXO  # increment
XOXO++z                =           XOOOO  # increment
XOOOO++z               =           XOOOX  # increment
XOOOX++z               =           XOOXO  # increment
XOOXO++z               =           XOXOO  # increment
XOXOO +z XOXO          =          XOOXOX  # addition
XOOXOX -z XOO          =          XOOOXO  # subtraction
XOOOXO *z XOOXOX       =    XOOOOXOOOOOX  # multiplication
XOOOOXOOOOOX /z XOO    =       XOXOXOOOX  # division
XOXOXOOOX--z           =       XOXOXOOOO  # decrement
XOXOXOOOO--z           =       XOXOOXOXO  # decrement
XOXOOXOXO--z           =       XOXOOXOOX  # decrement
XOXOOXOOX--z           =       XOXOOXOOO  # decrement
XOXOOXOOO--z           =       XOXOOOXOX  # decrement
XOXOOOXOX *z XOXOOX    = XOXOXOOOOOXOXOX  # multiplication
XOXOXOOOOOXOXOX /z XOO = XOOXOXOOOXOOX remainder XO  # division

link title