Magic squares/Raku
Appearance
Rather than having multiple examples for different orders of magic square, this will generate a magic square for any valid n x n grid.
Invoke at the command line and pass in the desired size as a parameter.
See:
- Magic squares of odd order#Perl 6
- Magic squares of singly even order#Perl 6
- Magic squares of doubly even order#Perl 6
<lang perl6>sub MAIN (Int $n where {$n > 0}) {
my @sq; my $i = 1; my $h = $n div 2; my $q = $n div 4; gen-sq($n);
say .fmt("%{$i.chars}d", ' ') for @sq;
say "\nThe magic number is ", [+] @sq[0].list;
multi sub gen-sq (2) { # invalid note "Sorry, can not generate a 2 x 2 magic square." and exit; }
multi sub gen-sq ($n where {$n % 2}) { # odd my $x = $n/2; my $y = 0; @sq[($i % $n ?? $y-- !! $y++) % $n][($i % $n ?? $x++ !! $x) % $n] = $i++ for ^$n²; }
multi sub gen-sq ($n where {$n %% 4}) { # doubly even my $x = 0; my $y = 0; @sq[$i % $n ?? $y !! $y++][($i-1) % $n] = $i++ for ^$n²; for ^$q -> $r { for $q ..^ $n - $q -> $c { my $ŕ = $n - 1 - $r; my $ć = $n - 1 - $c; (@sq[$r;$c], @sq[$ŕ;$ć]) = (@sq[$ŕ;$ć], @sq[$r;$c]); (@sq[$c;$r], @sq[$ć;$ŕ]) = (@sq[$ć;$ŕ], @sq[$c;$r]); } } }
multi sub gen-sq ($n where {$n %% 2 and $n % 4}) { # singly even gen-sq($h); $i *= 4; for ^$h -> $r { for ^$h -> $c { @sq[$r + $h; $c] = @sq[$r;$c] + $h² * 3; @sq[$r; $c + $h] = @sq[$r;$c] + $h² * 2; @sq[$r + $h; $c + $h] = @sq[$r;$c] + $h²; } for ^$q -> $c { next if $c == 0 and $r == ($h-1) div 2; (@sq[$r;$c], @sq[$r + $h;$c]) = (@sq[$r + $h;$c], @sq[$r;$c]); } if $h > 4 { for ($n - $q + 1) ..^ $n -> $c { (@sq[$r;$c], @sq[$r + $h;$c]) = (@sq[$r + $h;$c], @sq[$r;$c]); } } } (@sq[$q;$q], @sq[$q+$h;$q]) = (@sq[$q+$h;$q], @sq[$q;$q]); }
}</lang>