Tic-tac-toe: Difference between revisions

(7 intermediate revisions by 4 users not shown)
Line 4,741:
It uses minimax with alpha-beta pruning. Therefore, the computer never loses.
 
[https://easylang.onlinedev/apps/tictactoe.html Run it]
 
<syntaxhighlight lang="text">
len f[] 9
state = 0
textsize 14
#
proc init . .
linewidth 2
Line 4,801:
res = 0
for i = 1 step 3 to 7
call sum3 i 1 res
.
for i = 1 to 3
call sum3 i 3 res
.
call sum3 1 4 res
call sum3 3 2 res
cnt = 1
for i = 1 to 9
Line 4,821:
.
proc minmax player alpha beta . rval rmov .
call rate rval done
if done = 1
if player = 1
Line 4,828:
else
rval = alpha
start = randomrandint 9
mov = start
repeat
if f[mov] = 0
f[mov] = player
call minmax (5 - player) (-beta) (-rval) val h
val = -val
f[mov] = 0
Line 4,860:
.
proc computer . .
call minmax 4 -11 11 val mov
f[mov] = 4
call draw mov
call rate val done
state = 0
if done = 1
call show_result val
.
.
Line 4,873:
if f[mov] = 0
f[mov] = 1
call draw mov
state = 1
timer 0.5
Line 4,879:
.
on timer
call rate val done
if done = 1
call show_result val
else
call computer
.
.
Line 4,889:
if state = 0
if mouse_x > 6 and mouse_x < 90 and mouse_y > 16
call human
.
elif state >= 2
state -= 2
call init
.
.
call init
</syntaxhighlight>
 
Line 8,742:
Draw!
 
</pre>
 
=={{header|jq}}==
'''Adapted from [[#Wren|Wren]]'''
 
'''Works with jq, the C implementation of jq'''
 
'''Works with gojq, the Go implementation of jq'''
 
As with the Wren solution, in successive rounds, play alternates between the user (O) and the computer (X) being the first to move. When the computer is first to move, its first placement is selected at random.
 
As of this writing, the C and Go implementations of jq do not include a PRN generator,
and so in the following the MRG32k3a module available at [[:Category:jq/MRG32k3a.jq]]
is used.
<syntaxhighlight lang="jq">
include "MRG32k3a" {search: "."}; # see comment above
 
### Generic functions
 
def inform(msg):
. as $in
| msg + "\n" | stderr
| $in;
def lpad($len): tostring | ($len - length) as $l | (" " * $l) + .;
 
# Create an m x n matrix with initial values specified by .
def matrix($m; $n):
if $m == 0 then []
else . as $init
| if $m == 1 then [range(0;$n) | $init]
elif $m > 0 then
matrix(1; $n) as $row
| [range(0; $m) | $row ]
else error("matrix\($m);\($n)) invalid")
end
end;
 
 
### Tic-Tac-Toe
 
# The board is represented by a matrix in which:
# 0 : blank; -1: computer; 1: user
def init:
{b: (0 | matrix(3;3)),
bestI: 0,
bestJ: 0,
prng: seed(now | tostring | sub("^.*[.]";"") | tonumber)};
 
# Output: 0 if undecided, null if game over, otherwise the player id
def checkWinner:
first(range(0; 3) as $i
| if .b[$i][0] != 0 and .b[$i][1] == .b[$i][0] and .b[$i][2] == .b[$i][0] then .b[$i][0]
elif .b[0][$i] != 0 and .b[1][$i] == .b[0][$i] and .b[2][$i] == .b[0][$i] then .b[0][$i]
else empty
end)
// if (.b[1][1] == 0) then 0
elif (.b[1][1] == .b[0][0] and .b[2][2] == .b[0][0]) then .b[0][0]
elif (.b[1][1] == .b[2][0] and .b[0][2] == .b[1][1]) then .b[1][1]
elif all(.b[][]; . != 0) then null
else 0
end ;
 
def showBoard:
["X", " ", "O"] as $t
| .b as $b
| range(0;3) as $i
| reduce range(0;3) as $j ("";
. + "\($t[$b[$i][$j] + 1]) " ), # b == -1 => "X"; b == 1 => "O"
"-----";
 
# Examine possible moves of the player identified by $value, avoiding embarrassment
# Set .result, .bestI, .bestJ, etc
def testMove($value; $depth):
checkWinner as $score
| if $score == null then .result = 0
elif $score != 0
then .result = (if $score == $value then 1 else -1 end)
else .best = -1
| .changed = 0
| reduce range(0;3) as $i (.;
reduce range(0;3) as $j (.;
if .b[$i][$j] == 0
then .b[$i][$j] = $value
| .changed = $value
| testMove(-$value; $depth + 1) as $test
| (-$test.result) as $score
| .b[$i][$j] = 0
| if $score > .best
then if $depth == 0
then .bestI = $i
| .bestJ = $j
end
| .best = $score
end
end ) )
| .result = if .changed != 0 then .best else 0 end
end;
 
# Issue prompts on stderr;
# always allow q for quit
def read($prompt; $regex):
def r:
($prompt | stderr | empty),
(try ((input
| if . == "q" then halt
else select(test($regex))
end) // r)
catch if . == "break" then halt else r end );
r;
 
# Input: irrelevant
# $user should be boolean; specify `true` if the user plays first
def game($user):
"Board positions are numbered so:\n1 2 3\n4 5 6\n7 8 9",
"You have O, I have X.\n",
(init + {$user}
| label $out
| foreach range(0;9) as $k (.;
if .user
then .move = null
| until(.move;
(read("Your move: "; "^ *[1-9]") | tonumber - 1) as $move
| ($move/3|floor) as $i
| ($move % 3) as $j
| if .b[$i][$j] == 0
then .b[$i][$j] = 1
| .move = $move
end )
end
| if (.user|not)
then # in the interests of entertainment, randomize if computer opens
if $k == 0
then .prng |= nextFloat
| .bestI = (.prng.nextFloat * 100 | trunc) % 3
| .prng |= nextFloat
| .bestJ = (.prng.nextFloat * 100 | trunc) % 3
else testMove(-1; 0)
end
| .b[.bestI][.bestJ] = -1
| inform("My move: \(.bestI * 3 + .bestJ + 1)")
end
| .user |= not
;
# Output:
showBoard,
(checkWinner
| if . == 0 then empty
else (if . == 1 then "You win"
elif . == -1 then "I win"
else "A draw.\n\n"
end),
break $out
end ) )) ;
 
# Alternate players
def controller:
def c($user):
game($user),
(read("Play again? [yn]: "; "^[yYnN]") as $in
| if $in|.[0:1]|ascii_downcase == "n" then halt
else c($user|not)
end);
c(true);
 
controller
</syntaxhighlight>
{{output}}
Invocation: jq -nRrf tic-tac-toe.jq
<pre>
Board positions are numbered so:
1 2 3
4 5 6
7 8 9
You have O, I have X.
 
Your move: 5
-----
O
-----
-----
My move: 1
X
-----
O
-----
-----
Your move:
... etc ...
</pre>
 
Line 8,892 ⟶ 9,084:
Game over. Computer wins!
</pre>
 
=={{header|Koka}}==
Effectful Version
<syntaxhighlight lang="koka">
import std/os/readline
 
fun member(x: a, xs: list<a>, compare: (a, a) -> bool) : bool
match xs
Nil -> False
Cons(y, ys) -> x.compare(y) || member(x, ys,compare)
 
fun member(xs: list<a>, x: a, compare: (a, a) -> bool) : bool
x.member(xs, compare)
 
 
struct coord
x: int
y: int
 
fun show(c: coord) : string {
"(" ++ c.x.show() ++ ", " ++ c.y.show() ++ ")"
}
 
 
fun (==)(c1: coord, c2: coord) : bool
c1.x == c2.x && c1.y == c2.y
 
 
effect ctl eject(): a
 
 
fun parse(str : string, moves : list<coord>) : <console, exn|_e>coord
match str.list()
Cons('0', Cons(' ', Cons('0', Nil))) -> Coord(0,0)
Cons('0', Cons(' ', Cons('1', Nil))) -> Coord(0,1)
Cons('0', Cons(' ', Cons('2', Nil))) -> Coord(0,2)
Cons('1', Cons(' ', Cons('0', Nil))) -> Coord(1,0)
Cons('1', Cons(' ', Cons('1', Nil))) -> Coord(1,1)
Cons('1', Cons(' ', Cons('2', Nil))) -> Coord(1,2)
Cons('2', Cons(' ', Cons('0', Nil))) -> Coord(2,0)
Cons('2', Cons(' ', Cons('1', Nil))) -> Coord(2,1)
Cons('2', Cons(' ', Cons('2', Nil))) -> Coord(2,2)
Cons('0', Cons(',', Cons('0', Nil))) -> Coord(0,0)
Cons('0', Cons(',', Cons('1', Nil))) -> Coord(0,1)
Cons('0', Cons(',', Cons('2', Nil))) -> Coord(0,2)
Cons('1', Cons(',', Cons('0', Nil))) -> Coord(1,0)
Cons('1', Cons(',', Cons('1', Nil))) -> Coord(1,1)
Cons('1', Cons(',', Cons('2', Nil))) -> Coord(1,2)
Cons('2', Cons(',', Cons('0', Nil))) -> Coord(2,0)
Cons('2', Cons(',', Cons('1', Nil))) -> Coord(2,1)
Cons('2', Cons(',', Cons('2', Nil))) -> Coord(2,2)
Cons('q', Nil) -> eject()
_ ->
println("Invalid move, please try again")
gen_move(moves)
 
fun gen_move(moves : list<coord>) : <console, exn|_e> coord
val move : coord = parse(readline(), moves)
 
if moves.any() fn (c : coord) { c == move } then {
println("Invalid move, please try again")
gen_move(moves)
} else {
move
}
 
fun create-board() : list<list<char>> {
[['.','.','.'],['.','.','.'],['.','.','.']]
}
 
fun show(grid: list<list<char>>) : string
var line := 0
grid.foldl(" 0 1 2\n") fn(acc, row: list<char>)
val out = row.foldl(acc ++ line.show() ++ " ") fn(acc, col: char)
acc ++ col.string() ++ " "
++ "\n"
line := line + 1
out
 
fun get_board_position(board : list<list<char>>, coord : coord) : maybe<char> {
match board[coord.y] {
Nothing -> Nothing
Just(row) -> row[coord.x]
}
}
fun mark_board(board: list<list<char>>,coord: coord, mark: char): maybe<list<list<char>>>
val new_row: maybe<list<char>> = match board[coord.y]
Nothing -> Nothing
Just(row) -> Just(row.take(coord.x) ++ mark.Cons(row.drop(coord.x + 1)))
match new_row
Nothing -> Nothing
Just(row) -> Just(board.take(coord.y) ++ row.Cons(board.drop(coord.y + 1)))
 
 
effect ctl not_full() : ()
 
fun check_full(board: list<list<char>>) : bool
fun helper()
var full := True
board.foreach() fn(row)
if '.'.member(row) fn (a, b) a == b then {
not_full()
}
full
with ctl not_full() False
helper()
 
fun check_win(board: list<list<char>>, mark: char) : <div, exn|_e>bool
var win := False
var i := 0
while {i < 3} {
if board.get_board_position(Coord(i,0)).unwrap() == mark && board.get_board_position(Coord(i,1)).unwrap() == mark && board.get_board_position(Coord(i,2)).unwrap() == mark then {
win := True
}
if board.get_board_position(Coord(0,i)).unwrap() == mark && board.get_board_position(Coord(1,i)).unwrap() == mark && board.get_board_position(Coord(2,i)).unwrap() == mark then {
win := True
}
i := i + 1
}
if board.get_board_position(Coord(0,0)).unwrap() == mark && board.get_board_position(Coord(1,1)).unwrap() == mark && board.get_board_position(Coord(2,2)).unwrap() == mark then {
win := True
}
if board.get_board_position(Coord(0,2)).unwrap() == mark && board.get_board_position(Coord(1,1)).unwrap() == mark && board.get_board_position(Coord(2,0)).unwrap() == mark then {
win := True
}
win
 
 
 
fun human_logic(board: list<list<char>>, moves: list<coord>, mark: char, other_mark: char) : <console,div,exn|_e> coord
gen_move(moves)
 
fun ai_logic(board: list<list<char>>, moves: list<coord>, mark: char, other_mark: char)
board.gen_ai_move(moves,mark, other_mark)
 
 
struct move
move : coord
score: int
 
fun (==)(m1 : move, m2 : move) : bool {
m1.move == m2.move && m1.score == m2.score
}
 
fun eval_board(board : list<list<char>>, mark: char, other-mark : char) {
if board.check_win(mark) then {
10
}
elif board.check_win(other-mark) then {
-10
}
else {
0
}
}
 
fun maximum-move(a : move, b : move) : move {
if a.score > b.score then {
a
}
else {
b
}
}
 
 
fun gen_ai_move(board : list<list<char>>, moves : list<coord>, mark : char, other-mark : char) {
val best_move : move = Move(Coord(-1,-1), -1000)
[0,1,2].foldl(best_move) fn (bstMove : move, i : int) {
[0,1,2].foldl(bstMove) fn (bstMve : move, j : int) {
if Coord(i,j).member(moves) fn (a,b) {a == b} then {
bstMve
}
else {
val new_board : list<list<char>> = board.mark_board(Coord(i,j), mark).unwrap()
val new-max = maximum-move(bstMve, Move(Coord(i,j), new_board.minimax(moves ++ [Coord(i,j)], 0, False, mark, other-mark)))
new-max
}
}
}.move
}
 
fun unwrap(x: maybe<a>): <exn> a
match x
Just(a) -> a
Nothing -> throw("value was Nothing")
 
// A basic implementation of Minimax
// This uses brace style to show that it is possible
fun minimax(board : list<list<char>>, moves: list<coord>, depth : int, isMaximizingPlayer : bool, mark : char, other-mark : char) : <div,exn|_e> int {
val score : int = board.eval_board(mark, other-mark)
if score == 10 then {
score
}
elif score == -10 then {
score
}
elif board.check_full() then {
0
}
else {
if isMaximizingPlayer then {
val bestVal: int = -1000
[0,1,2].foldl(bestVal) fn (bstVal : int, i : int) {
[0,1,2].foldl(bstVal) fn (bstVl : int, j : int) {
if Coord(i,j).member(moves) fn(a, b) {a == b} then {
bstVl
}
else {
val new_board : list<list<char>> = board.mark_board(Coord(i,j), mark).unwrap()
val value : int = new_board.minimax(moves ++ [Coord(i,j)], depth + 1, !isMaximizingPlayer, mark, other-mark)
max(bstVl, value)
}
}
}
}
else {
val bestVal: int = 1000
[0,1,2].foldl(bestVal) fn (bstVal : int, i : int) {
[0,1,2].foldl(bstVal) fn (bstVl : int, j : int) {
if Coord(i,j).member(moves) fn(a,b) {a == b} then {
bstVl
}
else {
val new_board : list<list<char>> = board.mark_board(Coord(i,j), other-mark).unwrap()
val value : int = new_board.minimax(moves ++ [Coord(i,j)], depth + 1, !isMaximizingPlayer, mark, other-mark)
min(bstVl, value)
}
}
}
}
}
}
 
// The main business logic of the entire game
// This function checks if there is a draw or a win
fun play_game()
val board = get_board()
if board.check_full() then
println("Draw!")
println("Final board:")
board.show().println
else
"Next Turn:".println
board.show().println
val current_mark = get_current_mark()
val other_mark = get_other_mark()
play_turn(current_mark, other_mark)
val new_board = get_board()
if new_board.check_win(current_mark) then
println("Player " ++ current_mark.show() ++ " wins!")
println("Final board:")
new_board.show().println
else
flip()
play_game()
 
 
effect human_turn
fun play_human_turn(pair: (list<list<char>>, list<coord>), marks: (char, char)) : coord
effect ai_turn
fun play_ai_turn(pair: (list<list<char>>, list<coord>), marks: (char, char)) : coord
 
effect player1
fun player1_turn(pair: (list<list<char>>, list<coord>), marks: (char, char)) : coord
fun get_player1_mark() : char
effect player2
fun player2_turn(pair: (list<list<char>>, list<coord>), marks: (char, char)) : coord
fun get_player2_mark() : char
 
 
effect turn
// Changes the current player to a different one
fun flip() : ()
// Calls the appropriate code for the current player
fun play_turn(mark: char, other_mark: char) : ()
// Gets the symbol of the active player
fun get_current_mark(): char
// Gets the symbol of the inactive player
fun get_other_mark(): char
// This allows us to access the board
fun get_board() : list<list<char>>
// This allows us to access the moves that have been made
fun get_moves(): list<coord>
 
 
 
type player
Human
AI
 
type players
One
Two
 
// This function encapsulates the state of the entire game
// Think of it as calling a method on an object but with pure functions
fun initialize_and_start_game(game_type: int)
var current_player := One
var current_board := create-board()
var all_moves := []
 
var player1 := Human
var player2 := AI
 
match game_type
1 -> {
player1 := Human
player2 := Human
}
2 -> {
player1 := Human
player2 := AI
}
3 -> {
player1 := AI
player2 := AI
}
_ -> throw("invalid game type")
 
with handler
ctl eject()
println("Have a nice day.")
with fun play_human_turn(pair: (list<list<char>>, list<coord>), marks: (char, char))
human_logic(pair.fst,pair.snd,marks.fst,marks.snd)
with fun play_ai_turn(pair: (list<list<char>>, list<coord>), marks: (char, char))
ai_logic(pair.fst,pair.snd,marks.fst,marks.snd)
with handler
fun player1_turn(pair: (list<list<char>>, list<coord>), marks: (char, char))
match player1
Human -> play_human_turn(pair, marks)
AI -> play_ai_turn(pair, marks)
fun get_player1_mark()
'X'
with handler
fun player2_turn(pair: (list<list<char>>, list<coord>), marks: (char, char))
match player2
Human -> play_human_turn(pair, marks)
AI -> play_ai_turn(pair, marks)
fun get_player2_mark()
'O'
with handler
return(x) ()
fun flip()
match current_player
One -> current_player := Two
Two -> current_player := One
fun play_turn(mark: char, other_mark: char)
match current_player
One -> {
val coord = player1_turn((current_board, all_moves), (mark, other_mark))
current_board := mark_board(current_board,coord,get_player1_mark()).unwrap
all_moves := Cons(coord, all_moves)
()
}
Two -> {
val coord = player2_turn((current_board, all_moves), (mark, other_mark))
 
current_board := mark_board(current_board,coord,get_player2_mark()).unwrap
all_moves := Cons(coord, all_moves)
()
}
fun get_current_mark() match current_player
One -> get_player1_mark()
Two -> get_player2_mark()
fun get_other_mark() match current_player
Two -> get_player1_mark()
One -> get_player2_mark()
fun get_board() current_board
fun get_moves() all_moves
play_game()
 
 
fun prompt_game_type()
match readline().list()
Cons('1', Nil) -> 1
Cons('2', Nil) -> 2
Cons('3', Nil) -> 3
_ ->
println("Invalid game mode, please try again")
prompt_game_type()
 
 
fun main ()
println("Welcome to Tic Tac Toe!")
println("Please select a game mode:")
println("1. Two player")
println("2. One player")
println("3. Zero player")
println("Enter the number of the game mode you want to play")
 
val game_type = prompt_game_type()
 
"Enter your input as 'x y' or 'x,y' when selecting a spot".println
 
initialize_and_start_game(game_type)
</syntaxhighlight>
 
=={{header|Kotlin}}==
Line 11,673 ⟶ 12,277:
+---+---+---+
a b c</pre>
 
=={{header|PostScript}}==
<syntaxhighlight lang="postscript">
%!PS
%
% Play Tic-Tac-Toe against your printer
% 2024-04 Nicolas Seriot https://github.com/nst/PSTicTacToe
%
% On GhostScript:
% gs -DNOSAFER -dBATCH -dNOPAUSE -sDEVICE=pdfwrite -sOutputFile="%d.pdf" ttt.ps
%
% On a real PostScript printer:
% cat ttt.ps - | nc 192.168.2.10 9100
 
<</PageSize[595 842]>>setpagedevice/Courier findfont 48 scalefont setfont/b
(.........)def/f{/n 0 def b{46 eq{/n n 1 add def}if}forall n}def/w{/c exch def
[(O)(X)]{/p exch def[[0 1 2][3 4 5][6 7 8][0 3 6][1 4 7][2 5 8][0 4 8][2 4 6]]{
/t exch def/o true def t{/pos exch def/o c pos 1 getinterval p eq o and def}
forall o{exit}if}forall o{exit}if}forall o}def/g{/s exch def/m null def f 0 eq{
/m(TIE)def}if b w{/m(XXXXXXX WINS)def m 0 s putinterval}if()= 0 3 6{b exch 3
getinterval =}for()= m null ne{m =}if 4 setlinewidth 200 700 moveto 200 400
lineto 300 700 moveto 300 400 lineto 100 600 moveto 400 600 lineto 100 500
moveto 400 500 lineto stroke 0 1 b length 1 sub{/i exch def b i 1 getinterval
(.)ne{gsave 0 0 moveto 100 i 3 mod 100 mul add 35 add 700 i 3 idiv 100 mul sub
65 sub moveto b i 1 getinterval show grestore}if}for m null ne{100 300 moveto m
show}if showpage m null ne{quit}if}def{/d false def 0 1 8{/i exch def/e b dup
length string cvs def e i 1 getinterval(.)eq{[(X)(O)]{/p exch def e i p
putinterval e w{b i(X)putinterval/d true def exit}if}forall}if d{exit}if}for d
not{/x rand f mod def/c 0 def 0 1 b length 1 sub{/i exch def b i 1 getinterval
(.)eq{c x eq{b i(X)putinterval exit}if/c c 1 add def}if}for}if(PRINTER)g b{
(human turn (1-9) >)print flush(%lineedit)(r)file( )readline pop dup length
0 gt{0 1 getinterval}{pop( )}ifelse/o exch def(123456789)o search{pop pop pop b
o cvi 1 sub 1 getinterval(.)eq{o cvi 1 sub exit}if}{pop}ifelse(bad input) ==}
loop(O)putinterval(HUMAN )g}loop
</syntaxhighlight>
 
=={{header|Prolog}}==
Line 15,534 ⟶ 16,173:
{{trans|Kotlin}}
{{libheader|Wren-ioutil}}
<syntaxhighlight lang="ecmascriptwren">import "random" for Random
import "./ioutil" for Input
 
var r = Random.new()
2,503

edits