Talk:Self numbers
Improvement to the clever sieving of purefox
It takes a lot of space for sieving all.
Thinking of a highest number to test has 12 digits then max digitcount is 12.
One can use small blocks of 10,000 (or 100,000 ( 4..5 digits )) + an extension of (max digitcount)*9
So the upper limit is 10,000 +(max digitcount)*9 -1 here 10,107
For example:
After marking the first 10000 (n = 0--9999) not selfnumbers the last marked is 9999+4*9 = 10035
Now counting all selfnumbers 0..9999 than copy 10000- (max digitcount)*9 to Position 0..- (max digitcount)*9 and clear the rest to the upper limit.
This can all be done lightning fast in Level I cache. Horst.h 18:20, 7 October 2020 (UTC)
- New observation using Base*Base+1 = 101. Line 0 is modified 1,3,5 are deleted
- Many same lines, changes in constant distances only a rotation of line 1 with some.
- There shall be a build system for this pattern.
- mostly 10 out of 101 are selfnumbers, every 9*101 -2 , every 99*101 -3 , every 999*101 -4
annotation number of self numbers up to 101 13 1010 103 10100 991 101000 9880 1010000 98761 10100000 987562 101000000 9875563 1010000000 98755565 10100000000 987555566 n Div 101 0 0 00000001010000000000100000000001000000000010000000000100000000001000000000010000000000100000000001000 101 1 00000001010000000000100000000001000000000010000000000100000000001000000000010000000000100000000001000 202 2 00000001010000000000100000000001000000000010000000000100000000001000000000010000000000100000000001000 303 3 00000001010000000000100000000001000000000010000000000100000000001000000000010000000000100000000001000 404 4 00000001010000000000100000000001000000000010000000000100000000001000000000010000000000100000000001000 505 5 00000001010000000000100000000001000000000010000000000100000000001000000000010000000000100000000001000 606 6 00000001010000000000100000000001000000000010000000000100000000001000000000010000000000100000000001000 707 7 00000001010000000000100000000001000000000010000000000100000000001000000000010000000000100000000001000 808 8 00000001010000000000100000000001000000000010000000000100000000001000000000010000000000100000000001000 909 9 00000001010000000000100000000001000000000010000000000100000000001000000000010000000000100000000001000 -- rotate <<<<<<<<< -- v deleted 1010 10 00000000000100000000001000000000010000000000100000000001000000000010000000000100000000001000000000010 -- v inserted 1111 11 10000000000100000000001000000000010000000000100000000001000000000010000000000100000000001000000000010 -- 1818 18 10000000000100000000001000000000010000000000100000000001000000000010000000000100000000001000000000010 -- v 1919 19 10000000000100000000001000000000010000000000100000000001000000000010000000000100000000001000000000000 2020 20 00100000000001000000000010000000000100000000001000000000010000000000100000000001000000000010100000000 -- 2828 28 00100000000001000000000010000000000100000000001000000000010000000000100000000001000000000010100000000 -- vvv 2929 29 00100000000001000000000010000000000100000000001000000000010000000000100000000001000000000000001000000 3030 30 00001000000000010000000000100000000001000000000010000000000100000000001000000000010100000000001000000 -- vvv 3939 39 00001000000000010000000000100000000001000000000010000000000100000000001000000000000001000000000010000 4040 40 00000010000000000100000000001000000000010000000000100000000001000000000010100000000001000000000010000 -- 4848 48 00000010000000000100000000001000000000010000000000100000000001000000000010100000000001000000000010000 vvv 4949 49 00000010000000000100000000001000000000010000000000100000000001000000000000001000000000010000000000100 5050 50 00000000100000000001000000000010000000000100000000001000000000010100000000001000000000010000000000100 -- vvv 5959 59 00000000100000000001000000000010000000000100000000001000000000000001000000000010000000000100000000001 6060 60 00000000001000000000010000000000100000000001000000000010100000000001000000000010000000000100000000001 -- vvv 6969 69 00000000001000000000010000000000100000000001000000000000001000000000010000000000100000000001000000000 7070 70 01000000000010000000000100000000001000000000010100000000001000000000010000000000100000000001000000000 -- vvv 7979 79 01000000000010000000000100000000001000000000000001000000000010000000000100000000001000000000010000000 8080 80 00010000000000100000000001000000000010100000000001000000000010000000000100000000001000000000010000000 -- vvv 8989 89 00010000000000100000000001000000000000001000000000010000000000100000000001000000000010000000000100000 9090 90 00000100000000001000000000010100000000001000000000010000000000100000000001000000000010000000000100000 -- V VVV 9999 99 00000100000000000000000000000000010000000000100000000001000000000010000000000100000000001000000000010 ---- 99889 989 01000000000010000000000100000000001000000000010100000000001000000000010000000000100000000001000000000 -- v v vvv 99990 990 01000000000010000000000000000000000000000000000000000100000000001000000000010000000000100000000001000 First line found: ..8810 matches found... last one 100992930 999930 00000001010000000000100000000001000000000010000000000100000000001000000000010000000000100000000001000
Go, tweaked
Rearranged some of the nested additions, seems to go around 25% faster, or so. (Original was taking over 12 seconds on tio.run) linky
Just saw Horst's idea, haven't incorporated it yet.--Enter your username (talk) 19:47, 7 October 2020 (UTC)
- Actually, I wondered after I'd done the 'sieve based' version whether using partial sums for each loop would quicken it up but, when it came in so much faster than the 'low memory' version, I didn't bother investigating further.
- Anyway I've now tested it and it does indeed improve performance by around 25% so I've incorporated it into the main page. Have done it slighly different to you (using an array of partial sums) to keep it more 'go fmt' friendly.
- Incidentally, the timings are for my core i7 which is why they're much faster than tio.run's.
- Might do a separate version incorporating Horst.h's ideas as I suspect it might come in a bit slower for the basic task of 100 million numbers while allowing us to stretch that to 1 billion. But we'll see. --PureFox (talk) 09:06, 8 October 2020 (UTC)
- I was wrong. Horst.h's approach is not only quicker for 100 million numbers but I can't even extend the second version to do up to 1 billion numbers without running into memory issues. So I've added a third version. A little slower than Pascal but not too bad :) --PureFox (talk) 12:53, 8 October 2020 (UTC)