Talk:Paraffins: Difference between revisions

m
→‎Algorithm?: corrected some misspellings.
(Homolysis by thermal energy)
m (→‎Algorithm?: corrected some misspellings.)
 
(One intermediate revision by the same user not shown)
Line 5:
and explain why there is only 1 paraffin for 4 or less carbon atoms? and why there are 2 for 5 and a few more, so that those of us who don't know organic chemistry can get some understanding of how the results are created?--[[User:EMBee|eMBee]] 16:53, 30 November 2011 (UTC)
:Even just some general rules about how the atoms are allowed to be arranged would help. I know that carbon atoms can have 4 bonds (usually...I remember a Christmas carol from my high school chemistry class called "Rudolph the 5-bond Carbon"). It also looks like for this class of molecules that cycles aren't allowed? --[[User:Mwn3d|Mwn3d]] 17:24, 30 November 2011 (UTC)
:4 to 6 carbon configuationsconfigurations: (if any "c" doesn't have 4 bonds already, imagine it's connected to invisableinvisible hydrogenshydrogen atoms). The basic algorithm would be some kind of recursive tree generation, probably with memoization for large numbers.<lang>4:
<lang>4:
c-c-c c-c-c-c
|
Line 32 ⟶ 33:
 
=== stereo-isomers ===
Someone (IP:79.54.58.148) has reverted part of my edit because they incorrectly think paraffins cannot have stereo-isomers. In fact they can, for example C(H)(CH<sub>3</sub>)(C<sub>2</sub>H<sub>5</sub>)(C<sub>3</sub>H<sub>7</sub>) (better known as 3-methylhexane: CH3CH2CHCH<sub>3</sub>CH<sub>2</sub>CH(CH3CH<sub>3</sub>)CH2CH2CH3CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>) is [http://www.wwnorton.com/college/chemistry/orgo3/ch4/2_methylhexane.htm chiral] and so exists in stereo-isomeric form. If you disagree please discuss it here before I change the page back. [[User:TobyK|TobyK]] 00:09, 1 December 2011 (UTC)
: <s>I think Anon is mostly right: single carbon-carbon bond can (almost) freely rotate around its axis, so stereoisomers can be rotated at each "joint" to transform from one into the other. The only conceivable case where this can't be done is when the carbon tree branches in a very complicated way that different branches spatially interlock each other, so the rotations are restricted--though I don't know if that can really happen, and I'd imagine you'll need at least 20ish carbons in the molecule for that.</s> No wait, that was wrong. Another case is if a carbon atom is bonded to 4 different structures, then there will be a chirality difference that can't be fixed by rotations. --[[User:Ledrug|Ledrug]] 01:41, 1 December 2011 (UTC)