Talk:Geometric algebra: Difference between revisions

Line 110:
::::::::::::::::: The axioms don't specify what kind of product they use because they ''define'' it. Any product that satisfy these axioms '''IS''' a geometric product. That's what axioms do.--[[User:Grondilu|Grondilu]] ([[User talk:Grondilu|talk]]) 12:01, 20 October 2015 (UTC)
::::::::::::::::::One difficulty here is that the definition uses the term "dimension". And, while we might reasonably assume that we know what a "[[Dimension_(vector_space)|dimension]]" is, you have also declared that multivectors are not vectors. This means that we should not be using the definition of dimension which applies to vectors. I hope you can see the difficulty... --[[User:Rdm|Rdm]] ([[User talk:Rdm|talk]]) 13:29, 20 October 2015 (UTC)
:::::::::::::::::::I've explained that already. Strictly speaking, multivectors are vectors, but the term ''vector'' is reserved to elements of <math>\mathcal{V}</math>. The task description also briefly mentions this.--[[User:Grondilu|Grondilu]] ([[User talk:Grondilu|talk]]) 14:22, 20 October 2015 (UTC)
 
== "Orthonormal basis" ==
1,934

edits