Talk:Addition-chain exponentiation: Difference between revisions

Content added Content deleted
m (Make consistency among section headers.)
m (→‎wikipedia content: Cannot call Wikipedia's template from here.)
Line 63: Line 63:
Given that the bulk of the task was copied wholesale from the wikipedia page, perhaps the following paragraph should be included as well?
Given that the bulk of the task was copied wholesale from the wikipedia page, perhaps the following paragraph should be included as well?


:On the other hand, the addition-chain method is much more complicated, since the determination of a shortest addition chain seems quite difficult: no efficient optimal methods are currently known for arbitrary exponents, and the related problem of finding a shortest addition chain for a given set of exponents has been proven [[wp:NP-complete|NP-complete]].<ref>{{Cite journal|first1=Peter|last1=Downey|first2=Benton|last2=Leong|first3=Ravi|last3=Sethi|title=Computing sequences with addition chains|journal=SIAM Journal on Computing|volume=10|issue=3|year=1981|pages=638–646|doi=10.1137/0210047}}</ref> Even given a shortest chain, addition-chain exponentiation requires more memory than the binary method, because it must potentially store many previous exponents from the chain simultaneously. In practice, therefore, shortest addition-chain exponentiation is primarily used for small fixed exponents for which a shortest chain can be precomputed and is not too large.
:On the other hand, the addition-chain method is much more complicated, since the determination of a shortest addition chain seems quite difficult: no efficient optimal methods are currently known for arbitrary exponents, and the related problem of finding a shortest addition chain for a given set of exponents has been proven [[wp:NP-complete|NP-complete]].<ref><nowiki>{{Cite journal|first1=Peter|last1=Downey|first2=Benton|last2=Leong|first3=Ravi|last3=Sethi|title=Computing sequences with addition chains|journal=SIAM Journal on Computing|volume=10|issue=3|year=1981|pages=638–646|doi=10.1137/0210047}}</nowiki></ref> Even given a shortest chain, addition-chain exponentiation requires more memory than the binary method, because it must potentially store many previous exponents from the chain simultaneously. In practice, therefore, shortest addition-chain exponentiation is primarily used for small fixed exponents for which a shortest chain can be precomputed and is not too large.
<references/>
<references/>