# Category talk:ALGOL 68-rows

(Redirected from Talk:ALGOL 68-rows)

### Source code

```# rows.incl.a68: array related utilities for Algol 68 RC tasks                #

# prints the elements of an array of integers separated by spaces         #
OP   SHOW = ( []INT list )VOID:
FOR i FROM LWB list TO UPB list DO
print( ( " ", whole( list[ i ], 0 ) ) )
OD # SHOW # ;
# prints the elements of an array of reals separated by spaces            #
OP   SHOW = ( []REAL list )VOID:
FOR i FROM LWB list TO UPB list DO
print( ( " ", fixed( list[ i ], -14, 8 ) ) )
OD # SHOW # ;

# operators and modes to allow "QUICKSORT x FROMELEMENT lb TOELEMENT ub"  #

# mode to hold the lower and upper element indexes to sort                #
MODE SORTBOUNDS = STRUCT( INT lb, ub );

# unary operator that returns its argument                                #
# if we were to support multiple sort methods, could retuen the array     #
# plus a code to specify sorting using quicksort                          #
OP QUICKSORT = ( REF[]INT  a )REF[]INT:  a;
OP QUICKSORT = ( REF[]REAL a )REF[]REAL: a;

# constructs a SORTBOUNDS from its parameters                             #
PRIO TOELEMENT   = 9;
OP   TOELEMENT   = ( INT lb, ub )SORTBOUNDS: SORTBOUNDS( lb, ub );

# in-place quick sort an array                                            #
PRIO FROMELEMENT = 8;
# in-place quick sort an array of integers                                #
OP   FROMELEMENT = ( REF[]INT a, SORTBOUNDS bounds )REF[]INT:
IF INT lb = lb OF bounds;
INT ub = ub OF bounds;
ub <= lb
THEN
# empty array or only 1 element #
a
ELSE
# more than one element, so must sort #
INT left   := lb;
INT right  := ub;
# choosing the middle element of the array as the pivot #
INT pivot  := a[ left + ( ( right + 1 ) - left ) OVER 2 ];
WHILE
WHILE IF left  <= ub THEN a[ left  ] < pivot ELSE FALSE FI
DO
left  +:= 1
OD;
WHILE IF right >= lb THEN a[ right ] > pivot ELSE FALSE FI
DO
right -:= 1
OD;
left <= right
DO
INT t      := a[ left  ];
a[ left  ] := a[ right ];
a[ right ] := t;
left      +:= 1;
right     -:= 1
OD;
QUICKSORT a FROMELEMENT lb   TOELEMENT right;
QUICKSORT a FROMELEMENT left TOELEMENT ub;
a
FI # FROMELEMENT # ;
# in-place quick sort an array of reals                                   #
OP   FROMELEMENT = ( REF[]REAL a, SORTBOUNDS bounds )REF[]REAL:
IF INT lb = lb OF bounds;
INT ub = ub OF bounds;
ub <= lb
THEN
# empty array or only 1 element #
a
ELSE
# more than one element, so must sort #
INT  left  := lb;
INT  right := ub;
# choosing the middle element of the array as the pivot #
REAL pivot := a[ left + ( ( right + 1 ) - left ) OVER 2 ];
WHILE
WHILE IF left  <= ub THEN a[ left  ] < pivot ELSE FALSE FI
DO
left  +:= 1
OD;
WHILE IF right >= lb THEN a[ right ] > pivot ELSE FALSE FI
DO
right -:= 1
OD;
left <= right
DO
REAL t     := a[ left  ];
a[ left  ] := a[ right ];
a[ right ] := t;
left      +:= 1;
right     -:= 1
OD;
QUICKSORT a FROMELEMENT lb   TOELEMENT right;
QUICKSORT a FROMELEMENT left TOELEMENT ub;
a
FI # FROMELEMENT # ;

# END rows.incl.a68                                                           #```