Strong and weak primes: Difference between revisions

m
(Added Swift solution)
 
(18 intermediate revisions by 16 users not shown)
Line 34:
::*   The OEIS article [[oeis:A051635|A051635: weak primes]].
<br><br>
 
=={{header|11l}}==
<syntaxhighlight lang="11l">F primes_upto(limit)
V is_prime = [0B] * 2 [+] [1B] * (limit - 1)
L(n) 0 .< Int(limit ^ 0.5 + 1.5)
I is_prime[n]
L(i) (n * n .< limit + 1).step(n)
is_prime[i] = 0B
R enumerate(is_prime).filter((i, prime) -> prime).map((i, prime) -> i)
 
V p = primes_upto(10'000'000)
[Int] s, w, b
L(i) 1 .< p.len - 1
I p[i] > (p[i - 1] + p[i + 1]) * 0.5
s [+]= p[i]
E I p[i] < (p[i - 1] + p[i + 1]) * 0.5
w [+]= p[i]
E
b [+]= p[i]
 
print(‘The first 36 strong primes: ’s[0.<36])
print(‘The count of the strong primes below 1,000,000: ’sum(s.filter(p -> p < 1'000'000).map(p -> 1)))
print(‘The count of the strong primes below 10,000,000: ’s.len)
print("\nThe first 37 weak primes: "w[0.<37])
print(‘The count of the weak primes below 1,000,000: ’sum(w.filter(p -> p < 1'000'000).map(p -> 1)))
print(‘The count of the weak primes below 10,000,000: ’w.len)
print("\n\nThe first 10 balanced primes: "b[0.<10])
print(‘The count of balanced primes below 1,000,000: ’sum(b.filter(p -> p < 1'000'000).map(p -> 1)))
print(‘The count of balanced primes below 10,000,000: ’b.len)
print("\nTOTAL primes below 1,000,000: "sum(p.filter(pr -> pr < 1'000'000).map(pr -> 1)))
print(‘TOTAL primes below 10,000,000: ’p.len)</syntaxhighlight>
 
{{out}}
<pre>
The first 36 strong primes: [11, 17, 29, 37, 41, 59, 67, 71, 79, 97, 101, 107, 127, 137, 149, 163, 179, 191, 197, 223, 227, 239, 251, 269, 277, 281, 307, 311, 331, 347, 367, 379, 397, 419, 431, 439]
The count of the strong primes below 1,000,000: 37723
The count of the strong primes below 10,000,000: 320991
 
The first 37 weak primes: [3, 7, 13, 19, 23, 31, 43, 47, 61, 73, 83, 89, 103, 109, 113, 131, 139, 151, 167, 181, 193, 199, 229, 233, 241, 271, 283, 293, 313, 317, 337, 349, 353, 359, 383, 389, 401]
The count of the weak primes below 1,000,000: 37780
The count of the weak primes below 10,000,000: 321749
 
 
The first 10 balanced primes: [5, 53, 157, 173, 211, 257, 263, 373, 563, 593]
The count of balanced primes below 1,000,000: 2994
The count of balanced primes below 10,000,000: 21837
 
TOTAL primes below 1,000,000: 78498
TOTAL primes below 10,000,000: 664579
</pre>
 
=={{header|ALGOL 68}}==
{{works with|ALGOL 68G|Any - tested with release 2.8.3.win32}}
<langsyntaxhighlight lang="algol68"># find and count strong and weak primes #
PR heap=128M PR # set heap memory size for Algol 68G #
# returns a string representation of n with commas #
Line 128 ⟶ 178:
print( ( newline ) );
print( ( " weak primes below 1,000,000: ", commatise( weak1 ), newline ) );
print( ( " weak primes below 10,000,000: ", commatise( weak10 ), newline ) )</langsyntaxhighlight>
{{out}}
<pre>
Line 139 ⟶ 189:
weak primes below 1,000,000: 37,780
weak primes below 10,000,000: 321,750
</pre>
=={{header|AWK}}==
<syntaxhighlight lang="awk">
# syntax: GAWK -f STRONG_AND_WEAK_PRIMES.AWK
BEGIN {
for (i=1; i<1E7; i++) {
if (is_prime(i)) {
arr[++n] = i
}
}
# strong:
stop1 = 36 ; stop2 = 1E6 ; stop3 = 1E7
count1 = count2 = count3 = 0
printf("The first %d strong primes:",stop1)
for (i=2; count1<stop1; i++) {
if (arr[i] > (arr[i-1] + arr[i+1]) / 2) {
count1++
printf(" %d",arr[i])
}
}
printf("\n")
for (i=2; i<stop3; i++) {
if (arr[i] > (arr[i-1] + arr[i+1]) / 2) {
count3++
if (arr[i] < stop2) {
count2++
}
}
}
printf("Number below %d: %d\n",stop2,count2)
printf("Number below %d: %d\n",stop3,count3)
# weak:
stop1 = 37 ; stop2 = 1E6 ; stop3 = 1E7
count1 = count2 = count3 = 0
printf("The first %d weak primes:",stop1)
for (i=2; count1<stop1; i++) {
if (arr[i] < (arr[i-1] + arr[i+1]) / 2) {
count1++
printf(" %d",arr[i])
}
}
printf("\n")
for (i=2; i<stop3; i++) {
if (arr[i] < (arr[i-1] + arr[i+1]) / 2) {
count3++
if (arr[i] < stop2) {
count2++
}
}
}
printf("Number below %d: %d\n",stop2,count2)
printf("Number below %d: %d\n",stop3,count3)
exit(0)
}
function is_prime(n, d) {
d = 5
if (n < 2) { return(0) }
if (n % 2 == 0) { return(n == 2) }
if (n % 3 == 0) { return(n == 3) }
while (d*d <= n) {
if (n % d == 0) { return(0) }
d += 2
if (n % d == 0) { return(0) }
d += 4
}
return(1)
}
</syntaxhighlight>
{{out}}
<pre>
The first 36 strong primes: 11 17 29 37 41 59 67 71 79 97 101 107 127 137 149 163 179 191 197 223 227 239 251 269 277 281 307 311 331 347 367 379 397 419 431 439
Number below 1000000: 37723
Number below 10000000: 320992
The first 37 weak primes: 3 7 13 19 23 31 43 47 61 73 83 89 103 109 113 131 139 151 167 181 193 199 229 233 241 271 283 293 313 317 337 349 353 359 383 389 401
Number below 1000000: 37781
Number below 10000000: 321750
</pre>
 
=={{header|C}}==
{{trans|D}}
<langsyntaxhighlight lang="c">#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
Line 264 ⟶ 390:
free(primePtr);
return EXIT_SUCCESS;
}</langsyntaxhighlight>
{{out}}
<pre>First 36 strong primes: 11 17 29 37 41 59 67 71 79 97 101 107 127 137 149 163 179 191 197 223 227 239 251 269 277 281 307 311 331 347 367 379 397 419 431 439
Line 276 ⟶ 402:
=={{header|C sharp}}==
{{works with|C sharp|7}}
<langsyntaxhighlight lang="csharp">using static System.Console;
using static System.Linq.Enumerable;
using System;
Line 294 ⟶ 420:
}
}</langsyntaxhighlight>
{{out}}
<pre>
Line 305 ⟶ 431:
 
=={{header|C++}}==
<langsyntaxhighlight lang="cpp">#include <iostreamalgorithm>
#include <iomanipiostream>
#include <iterator>
#include <locale>
#include <sstreamvector>
#include "prime_sieve.hpp"
 
Line 317 ⟶ 444:
public:
explicit prime_info(int max) : max_print(max) {}
void add_prime(int prime);
 
void add_primeprint(intstd::ostream& primeos, const char* name) {const;
++count2;
if (prime < limit1)
++count1;
if (count2 <= max_print) {
if (count2 > 1)
out << ' ';
out << prime;
}
}
void print(std::ostream& os, const char* name) const {
os << "First " << max_print << " " << name << " primes: " << out.str() << '\n';
os << "Number of " << name << " primes below " << limit1 << ": " << count1 << '\n';
os << "Number of " << name << " primes below " << limit2 << ": " << count2 << '\n';
}
private:
int max_print;
int count1 = 0;
int count2 = 0;
std::ostringstreamvector<int> outprimes;
};
 
void prime_info::add_prime(int prime) {
++count2;
if (prime < limit1)
++count1;
if (count2 <= max_print)
primes.push_back(prime);
}
 
void prime_info::print(std::ostream& os, const char* name) const {
os << "First " << max_print << " " << name << " primes: ";
std::copy(primes.begin(), primes.end(), std::ostream_iterator<int>(os, " "));
os << '\n';
os << "Number of " << name << " primes below " << limit1 << ": " << count1 << '\n';
os << "Number of " << name << " primes below " << limit2 << ": " << count2 << '\n';
}
 
int main() {
Line 365 ⟶ 493:
weak_primes.print(std::cout, "weak");
return 0;
}</langsyntaxhighlight>
 
Contents of prime_sieve.hpp:
<langsyntaxhighlight lang="cpp">#ifndef PRIME_SIEVE_HPP
#define PRIME_SIEVE_HPP
 
Line 419 ⟶ 547:
}
 
#endif</langsyntaxhighlight>
 
{{out}}
<pre>
First 36 strong primes: 11 17 29 37 41 59 67 71 79 97 101 107 127 137 149 163 179 191 197 223 227 239 251 269 277 281 307 311 331 347 367 379 397 419 431 439
Number of strong primes below 1,000,000: 37,723
Number of strong primes below 10,000,000: 320,991
First 37 weak primes: 3 7 13 19 23 31 43 47 61 73 83 89 103 109 113 131 139 151 167 181 193 199 229 233 241 271 283 293 313 317 337 349 353 359 383 389 401
Number of weak primes below 1,000,000: 37,780
Number of weak primes below 10,000,000: 321,750
Line 432 ⟶ 560:
 
=={{header|D}}==
<langsyntaxhighlight lang="d">import std.algorithm;
import std.array;
import std.range;
Line 525 ⟶ 653:
writefln("There are %d weak primes below 1,000,000", weakPrimes.filter!"a<1_000_000".count);
writefln("There are %d weak primes below 10,000,000", weakPrimes.filter!"a<10_000_000".count);
}</langsyntaxhighlight>
{{out}}
<pre>First 36 strong primes: [11, 17, 29, 37, 41, 59, 67, 71, 79, 97, 101, 107, 127, 137, 149, 163, 179, 191, 197, 223, 227, 239, 251, 269, 277, 281, 307, 311, 331, 347, 367, 379, 397, 419, 431, 439]
Line 533 ⟶ 661:
There are 37780 weak primes below 1,000,000
There are 321750 weak primes below 10,000,000</pre>
 
=={{header|Delphi}}==
{{works with|Delphi|6.0}}
{{libheader|SysUtils,StdCtrls}}
 
 
<syntaxhighlight lang="Delphi">
procedure StrongWeakPrimes(Memo: TMemo);
{Display Strong/Weak prime information}
var I,P: integer;
var Sieve: TPrimeSieve;
var S: string;
var Cnt,Cnt1,Cnt2: integer;
 
type TPrimeTypes = (ptStrong,ptWeak,ptBalanced);
 
 
function GetTypeStr(PrimeType: TPrimeTypes): string;
{Get string describing PrimeType}
begin
case PrimeType of
ptStrong: Result:='Strong';
ptWeak: Result:='Weak';
ptBalanced: Result:='Balanced';
end;
end;
 
function GetPrimeType(N: integer): TPrimeTypes;
{Return flag indicating type of prime Primes[N] is}
{Strong = Primes(N) > [Primes(N-1) + Primes(N+1)] / 2}
{Weak = Primes(N) < [Primes(N-1) + Primes(N+1)] / 2}
{Balanced = Primes(N) = [Primes(N-1) + Primes(N+1)] / 2}
var P,P1: double;
begin
P:=Sieve.Primes[N];
P1:=(Sieve.Primes[N-1] + Sieve.Primes[N+1]) / 2;
if P>P1 then Result:=ptStrong
else if P<P1 then Result:=ptWeak
else Result:=ptBalanced;
end;
 
procedure GetPrimeCounts(PT: TPrimeTypes; var Cnt1,Cnt2: integer);
{Get number of primes of type "PT" below 1 million and 10 million}
var I: integer;
begin
Cnt1:=0; Cnt2:=0;
for I:=1 to 1000000-1 do
begin
if GetPrimeType(I)=PT then
begin
if Sieve.Primes[I]>10000000 then break;
Inc(Cnt2);
if Sieve.Primes[I]<1000000 then Inc(Cnt1);
end;
end;
end;
 
 
function GetPrimeList(PT: TPrimeTypes; Limit: integer): string;
{Get a list of primes of type PT up to Limit}
var I,Cnt: integer;
begin
Result:='';
Cnt:=0;
for I:=1 to Sieve.PrimeCount-1 do
if GetPrimeType(I)=PT then
begin
Inc(Cnt);
P:=Sieve.Primes[I];
Result:=Result+Format('%5d',[P]);
if Cnt>=Limit then break;
if (Cnt mod 10)=0 then Result:=Result+CRLF;
end;
end;
 
 
 
procedure ShowPrimeTypeData(PT: TPrimeTypes; Limit: Integer);
{Display information about specified PrimeType, listing items up to Limit}
var S,TS: string;
begin
S:=GetPrimeList(PT,Limit);
TS:=GetTypeStr(PT);
Memo.Lines.Add(Format('First %d %s primes are:',[Limit,TS]));
Memo.Lines.Add(S);
 
GetPrimeCounts(PT,Cnt1,Cnt2);
Memo.Lines.Add(Format('Number %s primes <1,000,000: %8.0n', [TS,Cnt1+0.0]));
Memo.Lines.Add(Format('Number %s primes <10,000,000: %8.0n', [TS,Cnt2+0.0]));
Memo.Lines.Add('');
end;
 
 
begin
Sieve:=TPrimeSieve.Create;
try
Sieve.Intialize(200000000);
Memo.Lines.Add('Primes in Sieve : '+IntToStr(Sieve.PrimeCount));
ShowPrimeTypeData(ptStrong,36);
ShowPrimeTypeData(ptWeak,37);
ShowPrimeTypeData(ptBalanced,28);
finally Sieve.Free; end;
end;
 
</syntaxhighlight>
{{out}}
<pre>
Primes in Sieve : 11078937
First 36 Strong primes are:
11 17 29 37 41 59 67 71 79 97
101 107 127 137 149 163 179 191 197 223
227 239 251 269 277 281 307 311 331 347
367 379 397 419 431 439
Number Strong primes <1,000,000: 37,723
Number Strong primes <10,000,000: 320,991
 
First 37 Weak primes are:
3 7 13 19 23 31 43 47 61 73
83 89 103 109 113 131 139 151 167 181
193 199 229 233 241 271 283 293 313 317
337 349 353 359 383 389 401
Number Weak primes <1,000,000: 37,780
Number Weak primes <10,000,000: 321,750
 
First 28 Balanced primes are:
5 53 157 173 211 257 263 373 563 593
607 653 733 947 977 1103 1123 1187 1223 1367
1511 1747 1753 1907 2287 2417 2677 2903
Number Balanced primes <1,000,000: 2,994
Number Balanced primes <10,000,000: 21,837
 
Elapsed Time: 2.947 Sec.
 
</pre>
 
 
=={{header|EasyLang}}==
<syntaxhighlight>
fastfunc isprim num .
i = 3
while i <= sqrt num
if num mod i = 0
return 0
.
i += 2
.
return 1
.
func nextprim n .
repeat
n += 2
until isprim n = 1
.
return n
.
proc strwkprimes ncnt sgn . .
write "First " & ncnt & ": "
pr2 = 2
pr3 = 3
repeat
pr1 = pr2
pr2 = pr3
until pr2 >= 10000000
pr3 = nextprim pr3
if pr1 < 1000000 and pr2 > 1000000
print ""
print "Count lower 10e6: " & cnt
.
if sgn * pr2 > sgn * (pr1 + pr3) / 2
cnt += 1
if cnt <= ncnt
write pr2 & " "
.
.
.
print "Count lower 10e7: " & cnt
print ""
.
print "Strong primes:"
strwkprimes 36 1
print "Weak primes:"
strwkprimes 37 -1
</syntaxhighlight>
 
{{out}}
<pre>
Strong primes:
First 36: 11 17 29 37 41 59 67 71 79 97 101 107 127 137 149 163 179 191 197 223 227 239 251 269 277 281 307 311 331 347 367 379 397 419 431 439
Count lower 10e6: 37723
Count lower 10e7: 320991
 
Weak primes:
First 37: 3 7 13 19 23 31 43 47 61 73 83 89 103 109 113 131 139 151 167 181 193 199 229 233 241 271 283 293 313 317 337 349 353 359 383 389 401
Count lower 10e6: 37780
Count lower 10e7: 321750
</pre>
 
=={{header|Factor}}==
<langsyntaxhighlight lang="factor">USING: formatting grouping kernel math math.primes sequences
tools.memory.private ;
IN: rosetta-code.strong-primes
Line 559 ⟶ 883:
First 37 weak primes:\n%[%d, %]
%s weak primes below 1,000,000
%s weak primes below 10,000,000\n" printf</langsyntaxhighlight>
{{out}}
<pre>
Line 571 ⟶ 895:
37,780 weak primes below 1,000,000
321,750 weak primes below 10,000,000
</pre>
 
=={{header|FreeBASIC}}==
<syntaxhighlight lang="freebasic">
#include "isprime.bas"
 
function nextprime( n as uinteger ) as uinteger
'finds the next prime after n, excluding n if it happens to be prime itself
if n = 0 then return 2
if n < 3 then return n + 1
dim as integer q = n + 2
while not isprime(q)
q+=2
wend
return q
end function
 
function lastprime( n as uinteger ) as uinteger
'finds the last prime before n, excluding n if it happens to be prime itself
if n = 2 then return 0 'zero isn't prime, but it is a good sentinel value :)
if n = 3 then return 2
dim as integer q = n - 2
while not isprime(q)
q-=2
wend
return q
end function
 
function isstrong( p as integer ) as boolean
if nextprime(p) + lastprime(p) >= 2*p then return false else return true
end function
 
function isweak( p as integer ) as boolean
if nextprime(p) + lastprime(p) <= 2*p then return false else return true
end function
 
print "The first 36 strong primes are: "
dim as uinteger c, p=3
while p < 10000000
if isprime(p) andalso isstrong(p) then
c += 1
if c <= 36 then print p;" ";
if c=37 then print
end if
if p = 1000001 then print "There are ";c;" strong primes below one million"
p+=2
wend
print "There are ";c;" strong primes below ten million"
print
print "The first 37 weak primes are: "
p=3 : c=0
while p < 10000000
if isprime(p) andalso isweak(p) then
c += 1
if c <= 37 then print p;" ";
if c=38 then print
end if
 
if p = 1000001 then print "There are ";c;" weak primes below one million"
p+=2
wend
print "There are ";c;" weak primes below ten million"
print</syntaxhighlight>
{{out}}<pre>
The first 36 strong primes are:
11 17 29 37 41 59 67 71 79 97 101 107 127 137 149 163 179 191 197 223 227 239 251 269 277 281 307 311 331 347 367 379 397 419 431 439
There are 37723 strong primes below one million
There are 320991 strong primes below ten million
 
The first 37 weak primes are:
3 7 13 19 23 31 43 47 61 73 83 89 103 109 113 131 139 151 167 181 193 199 229 233 241 271 283 293 313 317 337 349 353 359 383 389 401
There are 37780 weak primes below one million
There are 321750 weak primes below ten million
</pre>
 
=={{header|Frink}}==
<langsyntaxhighlight lang="frink">
strongPrimes[end=undef] := select[primes[3,end], {|p| p > (previousPrime[p] + nextPrime[p])/2 }]
weakPrimes[end=undef] := select[primes[3,end], {|p| p < (previousPrime[p] + nextPrime[p])/2 }]
Line 585 ⟶ 983:
println["Weak primes below 1,000,000: " + length[weakPrimes[1_000_000]]]
println["Weak primes below 10,000,000: " + length[weakPrimes[10_000_000]]]
</syntaxhighlight>
</lang>
 
{{out}}
Line 598 ⟶ 996:
 
=={{header|Go}}==
<langsyntaxhighlight lang="go">package main
 
import "fmt"
Line 683 ⟶ 1,081:
fmt.Println("\nThe number of weak primes below 1,000,000 is", commatize(count))
fmt.Println("\nThe number of weak primes below 10,000,000 is", commatize(len(weak)))
}</langsyntaxhighlight>
 
{{out}}
Line 703 ⟶ 1,101:
=={{header|Haskell}}==
Uses primes library: http://hackage.haskell.org/package/primes-0.2.1.0/docs/Data-Numbers-Primes.html
<langsyntaxhighlight lang="haskell">import Text.Printf (printf)
import Data.Numbers.Primes (primes)
 
Line 721 ⟶ 1,119:
printf "Weak primes below 10,000,000: %d\n\n" . length . takeWhile (<10000000) $ weakPrimes
where strongPrimes = xPrimes (>) primes
weakPrimes = xPrimes (<) primes</langsyntaxhighlight>
{{out}}
<pre>
Line 764 ⟶ 1,162:
 
=={{header|Java}}==
<langsyntaxhighlight lang="java">
public class StrongAndWeakPrimes {
 
Line 869 ⟶ 1,267:
 
}
</syntaxhighlight>
</lang>
{{out}}
<pre>
Line 880 ⟶ 1,278:
Number of weak primes below 1,000,000 = 37,780
Number of weak primes below 10,000,000 = 321,750
</pre>
 
=={{header|jq}}==
{{Works with|jq}}
'''Also works with gojq, the Go implementation of jq'''
 
The following assumes that `primes` generates a stream of primes less
than or equal to `.`
as defined, for example, at [[Sieve_of_Eratosthenes#jq|Sieve of Eratosthenes]]]].
 
<syntaxhighlight lang=jq>
def count(s): reduce s as $_ (0; .+1);
 
# Emit {strong, weak} primes up to and including $n
def strong_weak_primes:
. as $n
| primes as $primes
| ("\nCheck: last prime generated: \($primes[-1])" | debug) as $debug
| reduce range(1; $primes|length-1) as $p ({};
(($primes[$p-1] + $primes[$p+1]) / 2) as $x
| if $primes[$p] > $x
then .strong += [$primes[$p]]
elif $primes[$p] < $x
then .weak += [$primes[$p]]
else .
end );
 
(1e7 + 19)
| strong_weak_primes as {$strong, $weak}
| "The first 36 strong primes are:",
$strong[:36],
"\nThe count of the strong primes below 1e6: \(count($strong[]|select(. < 1e6 )))",
"\nThe count of the strong primes below 1e7: \(count($strong[]|select(. < 1e7 )))",
 
"\nThe first 37 weak primes are:",
$weak[:37],
"\nThe count of the weak primes below 1e6: \(count($weak[]|select(. < 1e6 )))",
"\nThe count of the weak primes below 1e7: \(count($weak[]|select(. < 1e7 )))"
</syntaxhighlight>
{{output}}
<pre>
The first 36 strong primes are:
[11,17,29,37,41,59,67,71,79,97,101,107,127,137,149,163,179,191,197,223,227,239,251,269,277,281,307,311,331,347,367,379,397,419,431,439]
 
The count of the strong primes below 1e6: 37723
 
The count of the strong primes below 1e7: 320991
 
The first 37 weak primes are:
[3,7,13,19,23,31,43,47,61,73,83,89,103,109,113,131,139,151,167,181,193,199,229,233,241,271,283,293,313,317,337,349,353,359,383,389,401]
 
The count of the weak primes below 1e6: 37780
 
The count of the weak primes below 1e7: 321750
</pre>
 
=={{header|Julia}}==
<langsyntaxhighlight lang="julia">using Primes, Formatting
 
function parseprimelist()
Line 915 ⟶ 1,367:
 
parseprimelist()
</langsyntaxhighlight> {{output}} <pre>
The first 36 strong primes are: [11, 17, 29, 37, 41, 59, 67, 71, 79, 97, 101, 107, 127, 137, 149, 163, 179, 191, 197, 223, 227, 239, 251, 269, 277, 281, 307, 311, 331, 347, 367, 379, 397, 419, 431, 439]
There are 37,723 stromg primes less than 1 million.
Line 929 ⟶ 1,381:
=={{header|Kotlin}}==
{{trans|Java}}
<langsyntaxhighlight lang="scala">private const val MAX = 10000000 + 1000
private val primes = BooleanArray(MAX)
 
Line 1,031 ⟶ 1,483:
}
}
}</langsyntaxhighlight>
{{out}}
<pre>First 36 strong primes:
Line 1,041 ⟶ 1,493:
Number of weak primes below 1,000,000 = 37,780
Number of weak primes below 10,000,000 = 321,750</pre>
 
=={{header|Ksh}}==
<syntaxhighlight lang="ksh">
#!/bin/ksh
 
# Strong and weak primes
# # Find and display (on one line) the first   36 strong primes.
# # Find and display the count of the strong primes below 1,000,000.
# # Find and display the count of the strong primes below 10,000,000.
# # Find and display (on one line) the first   37 weak primes.
# # Find and display the count of the weak primes below 1,000,000.
# # Find and display the count of the weak primes below 10,000,000.
# # (Optional) display the counts and "below numbers" with commas. ???
 
# # A strong prime is when prime[p] > (prime[p-1] + prime[p+1]) ÷ 2
# # A weak prime is when prime[p] < (prime[p-1] + prime[p+1]) ÷ 2
# # Balanced prime is when prime[p] = (prime[p-1] + prime[p+1]) ÷ 2
 
# # Variables:
#
integer NUM_STRONG=36 NUM_WEAK=37 GOAL1=1000000 MAX_INT=10000000
 
# # Functions:
#
# # Function _isprime(n) return 1 for prime, 0 for not prime
#
function _isprime {
typeset _n ; integer _n=$1
typeset _i ; integer _i
 
(( _n < 2 )) && return 0
for (( _i=2 ; _i*_i<=_n ; _i++ )); do
(( ! ( _n % _i ) )) && return 0
done
return 1
}
 
# # Function _strength(prime[n], prime[n-1], prime[n+1]) return 1 for strong
#
function _strength {
typeset _pri ; integer _pri=$1 # PRIme number under consideration
typeset _pre ; integer _pre=$2 # PREvious prime number
typeset _nex ; integer _nex=$3 # NEXt prime number
typeset _result ; typeset -F1 _result
 
(( _result = (_pre + _nex) / 2.0 ))
(( _pri > _result )) && echo STRONG && return 0
(( _pri < _result )) && echo WEAK && return 1
echo BALANCED && return 99
}
 
#####
# main #
######
 
integer spcnt=0 wpcnt=0 bpcnt=0 sflg=0 wflg=0 i j k goal1_strong goal1_weak
typeset -C prime # prime[].val prime[].typ
typeset -a prime.val
typeset -a prime.typ
prime.typ[0]='NA' ; prime.typ[1]='NA'
 
for (( i=2; i<MAX_INT; i++ )); do
_isprime ${i} ; (( ! $? )) && continue
prime.val+=( ${i} )
(( ${#prime.val[*]} <= 2 )) && continue
 
(( j = ${#prime.val[*]} - 2 )) ; (( k = j - 1 ))
prime.typ+=( $(_strength ${prime.val[${j}]} ${prime.val[k]} ${prime.val[-1]}) )
case $? in
0) (( spcnt++ ))
(( spcnt <= NUM_STRONG )) && strbuff+="${prime.val[j]}, "
(( i >= GOAL1 )) && (( ! sflg )) && (( goal1_strong = spcnt - 1 )) && (( sflg = 1 ))
;;
 
1) (( wpcnt++ ))
(( wpcnt <= NUM_WEAK )) && weabuff+="${prime.val[j]}, "
(( i >= GOAL1 )) && (( ! wflg )) && (( goal1_weak = wpcnt - 1 )) && (( wflg = 1 ))
;;
 
99) (( bpcnt++ ))
;;
esac
done
 
printf "Total primes under %d = %d\n\n" $MAX_INT ${#prime.val[*]}
printf "First %d Strong Primes are: %s\n\n" $NUM_STRONG "${strbuff%,*}"
printf "Number of Strong Primes under %d is: %d\n" $GOAL1 ${goal1_strong}
printf "Number of Strong Primes under %d is: %d\n\n\n" $MAX_INT ${spcnt}
printf "First %d Weak Primes are: %s\n\n" $NUM_WEAK "${weabuff%,*}"
printf "Number of Weak Primes under %d is: %d\n" $GOAL1 ${goal1_weak}
printf "Number of Weak Primes under %d is: %d\n\n\n" $MAX_INT ${wpcnt}
printf "Number of Balanced Primes under %d is: %d\n\n\n" $MAX_INT ${bpcnt}</syntaxhighlight>
{{out}}<pre>
Total primes under 10000000 = 664579
 
First 36 Strong Primes are: 11, 17, 29, 37, 41, 59, 67, 71, 79, 97, 101, 107, 127, 137, 149, 163, 179, 191, 197, 223, 227, 239, 251, 269, 277, 281, 307, 311, 331, 347, 367, 379, 397, 419, 431, 439
 
Number of Strong Primes under 1000000 is: 37723
Number of Strong Primes under 10000000 is: 320991
 
First 37 Weak Primes are: 3, 7, 13, 19, 23, 31, 43, 47, 61, 73, 83, 89, 103, 109, 113, 131, 139, 151, 167, 181, 193, 199, 229, 233, 241, 271, 283, 293, 313, 317, 337, 349, 353, 359, 383, 389, 401
 
Number of Weak Primes under 1000000 is: 37779
Number of Weak Primes under 10000000 is: 321749
 
Number of Balanced Primes under 10000000 is: 21837</pre>
 
 
=={{header|Lua}}==
This could be made faster but favours readability. It runs in about 3.3 seconds in LuaJIT on a 2.8 GHz core.
<langsyntaxhighlight lang="lua">-- Return a table of the primes up to n, then one more
function primeList (n)
local function isPrime (x)
Line 1,096 ⟶ 1,655:
for i = 1, 37 do io.write(weak[i] .. " ") end
print("\n\nThere are " .. wCount .. " weak primes below one million.")
print("\nThere are " .. #weak .. " weak primes below ten million.")</langsyntaxhighlight>
{{out}}
<pre>The first 36 strong primes are:
Line 1,114 ⟶ 1,673:
 
=={{header|Maple}}==
<langsyntaxhighlight lang="maple">isStrong := proc(n::posint) local holder;
holder := false;
if isprime(n) and 1/2*prevprime(n) + 1/2*nextprime(n) < n then
Line 1,157 ⟶ 1,716:
countStrong(10000000)
countWeak(1000000)
countWeak(10000000)</langsyntaxhighlight>
{{Out}}
<pre>[11, 17, 29, 37, 41, 59, 67, 71, 79, 97, 101, 107, 127, 137, 149, 163, 179, 191, 197, 223, 227, 239, 251, 269, 277, 281, 307, 311, 331, 347, 367, 379, 397, 419, 431, 439]
Line 1,165 ⟶ 1,724:
37780
321750</pre>
 
=={{header|Mathematica}}/{{header|Wolfram Language}}==
<syntaxhighlight lang="mathematica">p = Prime[Range[PrimePi[10^3]]];
SequenceCases[p, ({a_, b_, c_}) /; (a + c < 2 b) :> b, 36, Overlaps -> True]
SequenceCases[p, ({a_, b_, c_}) /; (a + c > 2 b) :> b, 37, Overlaps -> True]
p = Prime[Range[PrimePi[10^6] + 1]];
Length[Select[Partition[p, 3, 1], #[[3]] + #[[1]] < 2 #[[2]] &]]
Length[Select[Partition[p, 3, 1], #[[3]] + #[[1]] > 2 #[[2]] &]]
p = Prime[Range[PrimePi[10^7] + 1]];
Length[Select[Partition[p, 3, 1], #[[3]] + #[[1]] < 2 #[[2]] &]]
Length[Select[Partition[p, 3, 1], #[[3]] + #[[1]] > 2 #[[2]] &]]</syntaxhighlight>
{{out}}
<pre>{11,17,29,37,41,59,67,71,79,97,101,107,127,137,149,163,179,191,197,223,227,239,251,269,277,281,307,311,331,347,367,379,397,419,431,439}
{3,7,13,19,23,31,43,47,61,73,83,89,103,109,113,131,139,151,167,181,193,199,229,233,241,271,283,293,313,317,337,349,353,359,383,389,401}
37723
37780
320991
321750</pre>
 
 
=={{header|Nim}}==
<syntaxhighlight lang="nim">import math, strutils
 
const
M = 10_000_000
N = M + 19 # Maximum value for sieve.
 
# Fill sieve of Erathosthenes.
var comp: array[2..N, bool] # True means composite; default is prime.
for n in countup(3, sqrt(N.toFloat).int, 2):
if not comp[n]:
for k in countup(n * n, N, 2 * n):
comp[k] = true
 
# Build list of primes.
var primes = @[2]
for n in countup(3, N, 2):
if not comp[n]:
primes.add n
if primes[^1] < M: quit "Not enough primes: please, increase value of N."
 
# Build lists of strong and weak primes.
var strongPrimes, weakPrimes: seq[int]
for i in 1..<primes.high:
let p = primes[i]
if p shl 1 > primes[i - 1] + primes[i + 1]:
strongPrimes.add p
elif p shl 1 < primes[i - 1] + primes[i + 1]:
weakPrimes.add p
 
 
when isMainModule:
 
proc count(list: seq[int]; max: int): int =
## Return the count of values less than "max".
for p in list:
if p >= max: break
inc result
 
echo "First 36 strong primes:"
echo " ", strongPrimes[0..35].join(" ")
echo "Count of strong primes below 1_000_000: ", strongPrimes.count(1_000_000)
echo "Count of strong primes below 10_000_000: ", strongPrimes.count(10_000_000)
echo()
 
echo "First 37 weak primes:"
echo " ", weakPrimes[0..36].join(" ")
echo "Count of weak primes below 1_000_000: ", weakPrimes.count(1_000_000)
echo "Count of weak primes below 10_000_000: ", weakPrimes.count(10_000_000)</syntaxhighlight>
 
{{out}}
<pre>First 36 strong primes:
11 17 29 37 41 59 67 71 79 97 101 107 127 137 149 163 179 191 197 223 227 239 251 269 277 281 307 311 331 347 367 379 397 419 431 439
Count of strong primes below 1_000_000: 37723
Count of strong primes below 10_000_000: 320991
 
First 37 weak primes:
3 7 13 19 23 31 43 47 61 73 83 89 103 109 113 131 139 151 167 181 193 199 229 233 241 271 283 293 313 317 337 349 353 359 383 389 401
Count of weak primes below 1_000_000: 37780
Count of weak primes below 10_000_000: 321750</pre>
 
=={{header|Pascal}}==
Line 1,172 ⟶ 1,811:
If deltaAfter < deltaBefore than a strong prime is found.
<langsyntaxhighlight lang="pascal">program WeakPrim;
{$IFNDEF FPC}
{$AppType CONSOLE}
Line 1,340 ⟶ 1,979:
WeakOut(37);
CntWeakStrong10(CntWs);
end.</langsyntaxhighlight>
{{Out}}
<pre>
Line 1,363 ⟶ 2,002:
{{trans|Raku}}
{{libheader|ntheory}}
<langsyntaxhighlight lang="perl">use ntheory qw(primes vecfirst);
 
sub comma {
Line 1,390 ⟶ 2,029:
print "Count of $type primes <= @{[comma $c1]}: " . comma below($c1,@$pr) . "\n";
print "Count of $type primes <= @{[comma $c2]}: " . comma scalar @$pr . "\n";
}</langsyntaxhighlight>
{{out}}
<pre>
Line 1,410 ⟶ 2,049:
 
=={{header|Phix}}==
<!--<syntaxhighlight lang="phix">(phixonline)-->
Using [[Extensible_prime_generator#Phix]]
<span style="color: #008080;">with</span> <span style="color: #008080;">javascript_semantics</span>
<lang Phix>while sieved<10_000_000 do add_block() end while
<span style="color: #004080;">sequence</span> <span style="color: #000000;">strong</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">{},</span> <span style="color: #000000;">weak</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">{}</span>
sequence {strong, weak} @= {}
<span style="color: #008080;">for</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">=</span><span style="color: #000000;">2</span> <span style="color: #008080;">to</span> <span style="color: #7060A8;">get_maxprime</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1e14</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">do</span> <span style="color: #000080;font-style:italic;">-- (ie idx of primes &lt; (sqrt(1e14)==1e7), bar 1st)</span>
for i=2 to abs(binary_search(10_000_000,primes))-1 do
<span style="color: #004080;">integer</span> <span style="color: #000000;">p</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">get_prime</span><span style="color: #0000FF;">(</span><span style="color: #000000;">i</span><span style="color: #0000FF;">),</span>
integer p = primes[i],
<span style="color: #000000;">c</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">compare</span><span style="color: #0000FF;">(</span><span style="color: #000000;">p</span><span style="color: #0000FF;">,(</span><span style="color: #7060A8;">get_prime</span><span style="color: #0000FF;">(</span><span style="color: #000000;">i</span><span style="color: #0000FF;">-</span><span style="color: #000000;">1</span><span style="color: #0000FF;">)+</span><span style="color: #7060A8;">get_prime</span><span style="color: #0000FF;">(</span><span style="color: #000000;">i</span><span style="color: #0000FF;">+</span><span style="color: #000000;">1</span><span style="color: #0000FF;">))/</span><span style="color: #000000;">2</span><span style="color: #0000FF;">)</span>
c = compare(p,(primes[i-1]+primes[i+1])/2)
<span style="color: #008080;">if</span> <span style="color: #000000;">c</span><span style="color: #0000FF;">=+</span><span style="color: #000000;">1</span> <span style="color: #008080;">then</span> <span style="color: #000000;">strong</span> <span style="color: #0000FF;">&=</span> <span style="color: #000000;">p</span> <span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
if c=+1 then strong &= p
<span style="color: #008080;">if</span> <span style="color: #000000;">c</span><span style="color: #0000FF;">=-</span><span style="color: #000000;">1</span> <span style="color: #008080;">then</span> <span style="color: #000000;">weak</span> <span style="color: #0000FF;">&=</span> <span style="color: #000000;">p</span> <span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
elsif c=-1 then weak &= p
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
end if
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"The first thirty six strong primes: %s\n"</span><span style="color: #0000FF;">,{</span><span style="color: #7060A8;">join</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">shorten</span><span style="color: #0000FF;">(</span><span style="color: #000000;">strong</span><span style="color: #0000FF;">[</span><span style="color: #000000;">1</span><span style="color: #0000FF;">..</span><span style="color: #000000;">36</span><span style="color: #0000FF;">],</span><span style="color: #008000;">""</span><span style="color: #0000FF;">,</span><span style="color: #000000;">4</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"%2d"</span><span style="color: #0000FF;">),</span><span style="color: #008000;">", "</span><span style="color: #0000FF;">)})</span>
end for
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"The first thirty seven weak primes: %s\n"</span><span style="color: #0000FF;">,{</span><span style="color: #7060A8;">join</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">shorten</span><span style="color: #0000FF;">(</span> <span style="color: #000000;">weak</span><span style="color: #0000FF;">[</span><span style="color: #000000;">1</span><span style="color: #0000FF;">..</span><span style="color: #000000;">37</span><span style="color: #0000FF;">],</span><span style="color: #008000;">""</span><span style="color: #0000FF;">,</span><span style="color: #000000;">4</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"%2d"</span><span style="color: #0000FF;">),</span><span style="color: #008000;">", "</span><span style="color: #0000FF;">)})</span>
printf(1,"The first 36 strong primes:") ?strong[1..36]
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"There are %,d strong primes below %,d and %,d below %,d\n"</span><span style="color: #0000FF;">,{</span><span style="color: #7060A8;">abs</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">binary_search</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1e6</span><span style="color: #0000FF;">,</span><span style="color: #000000;">strong</span><span style="color: #0000FF;">))-</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #000000;">1e6</span><span style="color: #0000FF;">,</span><span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">strong</span><span style="color: #0000FF;">),</span><span style="color: #000000;">1e7</span><span style="color: #0000FF;">})</span>
printf(1,"The first 37 weak primes:") ?weak[1..37]
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"There are %,d weak primes below %,d and %,d below %,d\n"</span><span style="color: #0000FF;">,{</span><span style="color: #7060A8;">abs</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">binary_search</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1e6</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">weak</span><span style="color: #0000FF;">))-</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #000000;">1e6</span><span style="color: #0000FF;">,</span><span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span> <span style="color: #000000;">weak</span><span style="color: #0000FF;">),</span><span style="color: #000000;">1e7</span><span style="color: #0000FF;">})</span>
printf(1,"%,7d strong primes below 1,000,000\n",abs(binary_search(1_000_000,strong))-1)
<!--</syntaxhighlight>-->
printf(1,"%,7d strong primes below 10,000,000\n",length(strong))
printf(1,"%,7d weak primes below 1,000,000\n",abs(binary_search(1_000_000,weak))-1)
printf(1,"%,7d weak primes below 10,000,000\n",length(weak))</lang>
{{out}}
<pre>
<pre style="font-size: 11px">
The first 36thirty six strong primes:{ 11, 17, 29, 37,41,59,67,71,79,97,101,107,127,137,149,163,179,191,197,223,227,239,251,269,277,281,307,311,331,347,367,379 ..., 397, 419, 431, 439}
The first 37thirty seven weak primes:{ 3, 7, 13, 19,23,31,43,47,61,73,83,89,103,109,113,131,139,151,167,181,193,199,229,233,241,271,283,293,313,317,337,349,353 ..., 359, 383, 389, 401}
There are 37,723 strong primes below 1,000,000 and 320,991 below 10,000,000
320There are 37,991780 strong weak primes below 1,000,000 and 321,750 below 10,000,000
</pre>
37,780 weak primes below 1,000,000
 
321,750 weak primes below 10,000,000
=={{header|PureBasic}}==
<syntaxhighlight lang="purebasic">#MAX=10000000+20
Global Dim P.b(#MAX) : FillMemory(@P(),#MAX,1,#PB_Byte)
Global NewList Primes.i()
Global NewList Strong.i()
Global NewList Weak.i()
 
For n=2 To Sqr(#MAX)+1 : If P(n) : m=n*n : While m<=#MAX : P(m)=0 : m+n : Wend : EndIf : Next
For i=2 To #MAX : If p(i) : AddElement(Primes()) : Primes()=i : EndIf : Next
 
If FirstElement(Primes())
pp=Primes()
While NextElement(Primes())
ap=Primes()
If NextElement(Primes()) : np=Primes() : Else : Break : EndIf
If ap>(pp+np)/2.0 : AddElement(Strong()) : Strong()=ap : If ap<1000000 : c1+1 : EndIf : EndIf
If ap<(pp+np)/2.0 : AddElement(Weak()) : Weak()=ap : If ap<1000000 : c2+1 : EndIf : EndIf
PreviousElement(Primes()) : pp=Primes()
Wend
EndIf
 
OpenConsole()
If FirstElement(Strong())
PrintN("First 36 strong primes:")
Print(Str(Strong())+" ")
For i=2 To 36 : If NextElement(Strong()) : Print(Str(Strong())+" ") : Else : Break : EndIf : Next
PrintN("")
EndIf
PrintN("Number of strong primes below 1'000'000 = "+FormatNumber(c1,0,".","'"))
PrintN("Number of strong primes below 10'000'000 = "+FormatNumber(ListSize(Strong()),0,".","'"))
If FirstElement(Weak())
PrintN("First 37 weak primes:")
Print(Str(Weak())+" ")
For i=2 To 37 : If NextElement(Weak()) : Print(Str(Weak())+" ") : Else : Break : EndIf : Next
PrintN("")
EndIf
PrintN("Number of weak primes below 1'000'000 = "+FormatNumber(c2,0,".","'"))
PrintN("Number of weak primes below 10'000'000 = "+FormatNumber(ListSize(Weak()),0,".","'"))
Input()</syntaxhighlight>
{{out}}
<pre>First 36 strong primes:
11 17 29 37 41 59 67 71 79 97 101 107 127 137 149 163 179 191 197 223 227 239 251 269 277 281 307 311 331 347 367 379 397 419 431 439
Number of strong primes below 1'000'000 = 37'723
Number of strong primes below 10'000'000 = 320'991
First 37 weak primes:
3 7 13 19 23 31 43 47 61 73 83 89 103 109 113 131 139 151 167 181 193 199 229 233 241 271 283 293 313 317 337 349 353 359 383 389 401
Number of weak primes below 1'000'000 = 37'780
Number of weak primes below 10'000'000 = 321'750
</pre>
 
Line 1,440 ⟶ 2,125:
 
COmputes and shows the requested output then adds similar output for the "balanced" case where <code>prime(p) == [prime(p-1) + prime(p+1)] ÷ 2</code>.
<langsyntaxhighlight lang="python">import numpy as np
 
def primesfrom2to(n):
Line 1,476 ⟶ 2,161:
print('\nTOTAL primes below 1,000,000:',
sum(1 for pr in p if pr < 1_000_000))
print('TOTAL primes below 10,000,000:', len(p))</langsyntaxhighlight>
 
{{out}}
Line 1,499 ⟶ 2,184:
{{works with|Rakudo|2018.11}}
 
<syntaxhighlight lang="raku" perl6line>sub comma { $^i.flip.comb(3).join(',').flip }
 
use Math::Primesieve;
Line 1,524 ⟶ 2,209:
say "Count of $type primes <= {comma 1e6}: ", comma +@pr[^(@pr.first: * > 1e6,:k)];
say "Count of $type primes <= {comma 1e7}: ", comma +@pr;
}</langsyntaxhighlight>
{{out}}
<pre>First 36 strong primes:
Line 1,542 ⟶ 2,227:
 
=={{header|REXX}}==
<langsyntaxhighlight lang="rexx">/*REXX program lists a sequence (or a count) of ──strong── or ──weak── primes. */
parse arg N kind _ . 1 . okind; upper kind /*obtain optional arguments from the CL*/
if N=='' | N=="," then N= 36 /*Not specified? Then assume default.*/
Line 1,591 ⟶ 2,276:
else return 0 /*not " " " */
else if y>s then return add() /*is an strong prime.*/
return 0 /*not " " " */</langsyntaxhighlight>
This REXX program makes use of &nbsp; '''LINESIZE''' &nbsp; REXX program (or
BIF) which is used to determine the screen width (or linesize) of the
Line 1,630 ⟶ 2,315:
 
=={{header|Ring}}==
<langsyntaxhighlight lang="ring">
load "stdlib.ring"
 
Line 1,735 ⟶ 2,420:
see "weak primes below 1,000,000: " + primes2 + nl
see "weak primes below 10,000,000: " + primes3 + nl
</syntaxhighlight>
</lang>
Output:
<pre>
Line 1,749 ⟶ 2,434:
 
=={{header|Ruby}}==
<langsyntaxhighlight lang="ruby">require 'prime'
 
strong_gen = Enumerator.new{|y| Prime.each_cons(3){|a,b,c|y << b if a+c-b<b} }
Line 1,768 ⟶ 2,453:
puts "#{strongs} strong primes and #{weaks} weak primes below #{limit}."
end
</syntaxhighlight>
</lang>
{{out}}
<pre>First 36 strong primes:
Line 1,778 ⟶ 2,463:
37723 strong primes and 37780 weak primes below 1000000.
320991 strong primes and 321750 weak primes below 10000000.
</pre>
 
=={{header|Rust}}==
<syntaxhighlight lang="rust">fn is_prime(n: i32) -> bool {
for i in 2..n {
if i * i > n {
return true;
}
if n % i == 0 {
return false;
}
}
n > 1
}
 
fn next_prime(n: i32) -> i32 {
for i in (n+1).. {
if is_prime(i) {
return i;
}
}
0
}
 
fn main() {
let mut n = 0;
let mut prime_q = 5;
let mut prime_p = 3;
let mut prime_o = 2;
 
print!("First 36 strong primes: ");
while n < 36 {
if prime_p > (prime_o + prime_q) / 2 {
print!("{} ",prime_p);
n += 1;
}
prime_o = prime_p;
prime_p = prime_q;
prime_q = next_prime(prime_q);
}
println!("");
 
while prime_p < 1000000 {
if prime_p > (prime_o + prime_q) / 2 {
n += 1;
}
prime_o = prime_p;
prime_p = prime_q;
prime_q = next_prime(prime_q);
}
println!("strong primes below 1,000,000: {}", n);
 
while prime_p < 10000000 {
if prime_p > (prime_o + prime_q) / 2 {
n += 1;
}
prime_o = prime_p;
prime_p = prime_q;
prime_q = next_prime(prime_q);
}
println!("strong primes below 10,000,000: {}", n);
 
n = 0;
prime_q = 5;
prime_p = 3;
prime_o = 2;
 
print!("First 36 weak primes: ");
while n < 36 {
if prime_p < (prime_o + prime_q) / 2 {
print!("{} ",prime_p);
n += 1;
}
prime_o = prime_p;
prime_p = prime_q;
prime_q = next_prime(prime_q);
}
println!("");
 
while prime_p < 1000000 {
if prime_p < (prime_o + prime_q) / 2 {
n += 1;
}
prime_o = prime_p;
prime_p = prime_q;
prime_q = next_prime(prime_q);
}
println!("weak primes below 1,000,000: {}", n);
 
while prime_p < 10000000 {
if prime_p < (prime_o + prime_q) / 2 {
n += 1;
}
prime_o = prime_p;
prime_p = prime_q;
prime_q = next_prime(prime_q);
}
println!("weak primes below 10,000,000: {}", n);
}</syntaxhighlight>
<pre>
First 36 strong primes: 11 17 29 37 41 59 67 71 79 97 101 107 127 137 149 163 179 191 197 223 227 239 251 269 277 281 307 311 331 347 367 379 397 419 431 439
strong primes below 1,000,000: 37723
strong primes below 10,000,000: 320991
First 36 weak primes: 7 13 19 23 31 43 47 61 73 83 89 103 109 113 131 139 151 167 181 193 199 229 233 241 271 283 293 313 317 337 349 353 359 383 389 401
weak primes below 1,000,000: 37779
weak primes below 10,000,000: 321749
</pre>
 
=={{header|Scala}}==
This example works entirely with lazily evaluated lists. It starts with a list of primes, and generates a sliding iterator that looks at each triplet of primes. Lists of strong and weak primes are built by applying the given filters then selecting the middle term from each triplet.
<langsyntaxhighlight lang="scala">object StrongWeakPrimes {
def main(args: Array[String]): Unit = {
val bnd = 1000000
Line 1,799 ⟶ 2,590:
def primeTrips: Iterator[LazyList[Int]] = primes.sliding(3)
def primes: LazyList[Int] = 2 #:: LazyList.from(3, 2).filter(n => !Iterator.range(3, math.sqrt(n).toInt + 1, 2).exists(n%_ == 0))
}</langsyntaxhighlight>
 
{{out}}
Line 1,812 ⟶ 2,603:
=={{header|Sidef}}==
{{trans|Raku}}
<langsyntaxhighlight lang="ruby">var primes = 10_000_019.primes
 
var (*strong, *weak, *balanced)
Line 1,834 ⟶ 2,625:
say ("Count of #{type} primes <= #{c1.commify}: ", pr.first_index { _ > 1e6 }.commify)
say ("Count of #{type} primes <= #{c2.commify}: " , pr.len.commify)
}</langsyntaxhighlight>
{{out}}
<pre>
Line 1,854 ⟶ 2,645:
 
=={{header|Swift}}==
<langsyntaxhighlight lang="swift">import Foundation
 
class PrimeSieve {
Line 1,945 ⟶ 2,736:
 
strongPrimes.printInfo(name: "strong")
weakPrimes.printInfo(name: "weak")</langsyntaxhighlight>
 
{{out}}
Line 1,960 ⟶ 2,751:
{{libheader|Wren-math}}
{{libheader|Wren-fmt}}
<langsyntaxhighlight ecmascriptlang="wren">import "./math" for Int
import "./fmt" for Fmt
 
var primes = Int.primeSieve(1e7 + 19) // next prime above 10 million
Line 1,982 ⟶ 2,773:
Fmt.print("$d", weak.take(37))
Fmt.print("\nThe count of the weak primes below $,d is $,d.", 1e6, weak.count{ |n| n < 1e6 })
Fmt.print("\nThe count of the weak primes below $,d is $,d.", 1e7, weak.count{ |n| n < 1e7 })</langsyntaxhighlight>
 
{{out}}
Line 1,999 ⟶ 2,790:
 
The count of the weak primes below 10,000,000 is 321,750.
</pre>
 
=={{header|XPL0}}==
<syntaxhighlight lang="xpl0">proc NumOut(Num); \Output positive integer with commas
int Num, Dig, Cnt;
[Cnt:= [0];
Num:= Num/10;
Dig:= rem(0);
Cnt(0):= Cnt(0)+1;
if Num then NumOut(Num);
Cnt(0):= Cnt(0)-1;
ChOut(0, Dig+^0);
if rem(Cnt(0)/3)=0 & Cnt(0) then ChOut(0, ^,);
];
 
func IsPrime(N); \Return 'true' if odd N > 2 is prime
int N, I;
[for I:= 3 to sqrt(N) do
[if rem(N/I) = 0 then return false;
I:= I+1;
];
return true;
];
 
int StrongCnt, WeakCnt, StrongCnt0, WeakCnt0, Strongs(36), Weaks(37);
int N, P0, P1, P2, T;
[StrongCnt:= 0; WeakCnt:= 1;
Weaks(0):= 3;
N:= 7; P1:= 3; P2:= 5; \handles unique case where (2+5)/2 = 3.5
repeat if IsPrime(N) then
[P0:= P1; P1:= P2; P2:= N;
T:= (P0+P2)/2;
if P1 > T then
[if StrongCnt < 36 then Strongs(StrongCnt):= P1;
StrongCnt:= StrongCnt+1;
];
if P1 < T then
[if WeakCnt < 37 then Weaks(WeakCnt):= P1;
WeakCnt:= WeakCnt+1;
];
];
if P1 < 1_000_000 then
[StrongCnt0:= StrongCnt; WeakCnt0:= WeakCnt];
N:= N+2;
until P1 >= 10_000_000;
 
Text(0, "First 36 strong primes:^M^J");
for N:= 0 to 36-1 do
[NumOut(Strongs(N)); ChOut(0, ^ )];
Text(0, "^M^JStrong primes below 1,000,000: ");
NumOut(StrongCnt0);
Text(0, "^M^JStrong primes below 10,000,000: ");
NumOut(StrongCnt);
Text(0, "^M^JFirst 37 weak primes:^M^J");
for N:= 0 to 37-1 do
[NumOut(Weaks(N)); ChOut(0, ^ )];
Text(0, "^M^JWeak primes below 1,000,000: ");
NumOut(WeakCnt0);
Text(0, "^M^JWeak primes below 10,000,000: ");
NumOut(WeakCnt);
CrLf(0);
]</syntaxhighlight>
 
{{out}}
<pre>
First 36 strong primes:
11 17 29 37 41 59 67 71 79 97 101 107 127 137 149 163 179 191 197 223 227 239 251 269 277 281 307 311 331 347 367 379 397 419 431 439
Strong primes below 1,000,000: 37,723
Strong primes below 10,000,000: 320,991
First 37 weak primes:
3 7 13 19 23 31 43 47 61 73 83 89 103 109 113 131 139 151 167 181 193 199 229 233 241 271 283 293 313 317 337 349 353 359 383 389 401
Weak primes below 1,000,000: 37,780
Weak primes below 10,000,000: 321,751
</pre>
 
Line 2,006 ⟶ 2,870:
 
[[Extensible prime generator#zkl]] could be used instead.
<langsyntaxhighlight lang="zkl">var [const] BI=Import("zklBigNum"); // libGMP
const N=1e7;
 
Line 2,018 ⟶ 2,882:
}
ps.pop(0); ps.append(pw.nextPrime().toInt());
}while(pn<=N);</langsyntaxhighlight>
<langsyntaxhighlight lang="zkl">foreach nm,list,psz in (T(T("strong",strong,36), T("weak",weak,37))){
println("First %d %s primes:\n%s".fmt(psz,nm,list[0,psz].concat(" ")));
println("Count of %s primes <= %,10d: %,8d"
.fmt(nm,1e6,list.reduce('wrap(s,p){ s + (p<=1e6) },0)));
println("Count of %s primes <= %,10d: %,8d\n".fmt(nm,1e7,list.len()));
}</langsyntaxhighlight>
{{out}}
<pre>
2,046

edits