Resistor mesh: Difference between revisions

m
→‎{{header|Wren}}: Changed to Wren S/H
m (→‎{{header|REXX}}: changed wording of the output, allowed specification of decimal digits used; adding verbiage to the REXX section header, optimized the inner DO loop.)
m (→‎{{header|Wren}}: Changed to Wren S/H)
 
(39 intermediate revisions by 17 users not shown)
Line 4:
;Task:
Given &nbsp; <big> 10&times;10 </big> &nbsp; grid nodes &nbsp; (as shown in the image) &nbsp; interconnected by &nbsp; <big> 1Ω </big> &nbsp; resistors as shown,
<br>find the resistance between pointpoints &nbsp; '''A''' &nbsp; and &nbsp; '''B'''.
 
 
;See also:
* &nbsp; (humor, nerd sniping) &nbsp; [http://xkcd.com/356/ xkcd.com cartoon] (you can solve that for extra credits)
* &nbsp; [https://www.paulinternet.nl/?page=resistors An article on how to calculate this and an implementation in Mathematica]
<br><br>
 
 
=={{header|11l}}==
{{trans|Python}}
 
<syntaxhighlight lang="11l">-V DIFF_THRESHOLD = 1e-40
 
T.enum Fixed
FREE
A
B
 
T Node
Float voltage
Fixed fixed
F (v = 0.0, f = Fixed.FREE)
.voltage = v
.fixed = f
 
F set_boundary(&m)
m[1][1] = Node( 1.0, Fixed.A)
m[6][7] = Node(-1.0, Fixed.B)
 
F calc_difference(m, &d)
V h = m.len
V w = m[0].len
V total = 0.0
 
L(i) 0 .< h
L(j) 0 .< w
V v = 0.0
V n = 0
I i != 0 {v += m[i - 1][j].voltage; n++}
I j != 0 {v += m[i][j - 1].voltage; n++}
I i < h-1 {v += m[i + 1][j].voltage; n++}
I j < w-1 {v += m[i][j + 1].voltage; n++}
v = m[i][j].voltage - v / n
d[i][j].voltage = v
I m[i][j].fixed == FREE
total += v ^ 2
R total
 
F iter(&m)
V h = m.len
V w = m[0].len
V difference = [[Node()] * w] * h
 
L
set_boundary(&m)
I calc_difference(m, &difference) < :DIFF_THRESHOLD
L.break
L(di) difference
V i = L.index
L(dij) di
V j = L.index
m[i][j].voltage -= dij.voltage
 
V cur = [0.0] * 3
L(di) difference
V i = L.index
L(dij) di
V j = L.index
cur[Int(m[i][j].fixed)] += (dij.voltage *
(Int(i != 0) + Int(j != 0) + (i < h - 1) + (j < w - 1)))
 
R (cur[Int(Fixed.A)] - cur[Int(Fixed.B)]) / 2.0
 
V w = 10
V h = 10
V mesh = [[Node()] * w] * h
print(‘R = #.16’.format(2 / iter(&mesh)))</syntaxhighlight>
 
{{out}}
<pre>R = 1.6089912417307285</pre>
 
=={{header|Ada}}==
{{trans|C}}
<langsyntaxhighlight Adalang="ada">with Ada.Text_IO; use Ada.Text_IO;
procedure ResistMesh is
H, W : constant Positive := 10;
Line 81 ⟶ 156:
diff := 4.0 / (curA - curB);
IIO.Put (diff, Exp => 0); New_Line;
end ResistMesh;</langsyntaxhighlight>
{{out}}<pre> 1.60899124173073</pre>
 
Line 87 ⟶ 162:
{{trans|Maxima}}
{{works with|BBC BASIC for Windows}}
<langsyntaxhighlight lang="bbcbasic"> INSTALL @lib$+"ARRAYLIB"
*FLOAT 64
@% = &F0F
Line 117 ⟶ 192:
PROC_invert(A())
B() = A().B()
= B(k%, 0)</langsyntaxhighlight>
{{out}}
<pre>Resistance = 1.60899124173071 ohms</pre>
 
=={{header|C}}==
<langsyntaxhighlight lang="c">#include <stdio.h>
#include <stdlib.h>
Line 186 ⟶ 261:
printf("R = %g\n", 2 / iter(mesh, S, S));
return 0;
}</langsyntaxhighlight>
 
=={{header|C sharp|C#}}==
{{trans|Java}}
<syntaxhighlight lang="csharp">using System;
using System.Collections.Generic;
 
namespace ResistorMesh {
class Node {
public Node(double v, int fixed_) {
V = v;
Fixed = fixed_;
}
 
public double V { get; set; }
public int Fixed { get; set; }
}
 
class Program {
static void SetBoundary(List<List<Node>> m) {
m[1][1].V = 1.0;
m[1][1].Fixed = 1;
 
m[6][7].V = -1.0;
m[6][7].Fixed = -1;
}
 
static double CalcuateDifference(List<List<Node>> m, List<List<Node>> d, int w, int h) {
double total = 0.0;
for (int i = 0; i < h; i++) {
for (int j = 0; j < w; j++) {
double v = 0.0;
int n = 0;
if (i > 0) {
v += m[i - 1][j].V;
n++;
}
if (j > 0) {
v += m[i][j - 1].V;
n++;
}
if (i + 1 < h) {
v += m[i + 1][j].V;
n++;
}
if (j + 1 < w) {
v += m[i][j + 1].V;
n++;
}
v = m[i][j].V - v / n;
d[i][j].V = v;
if (m[i][j].Fixed == 0) {
total += v * v;
}
}
}
return total;
}
 
static double Iter(List<List<Node>> m, int w, int h) {
List<List<Node>> d = new List<List<Node>>(h);
for (int i = 0; i < h; i++) {
List<Node> t = new List<Node>(w);
for (int j = 0; j < w; j++) {
t.Add(new Node(0.0, 0));
}
d.Add(t);
}
 
double[] curr = new double[3];
double diff = 1e10;
 
while (diff > 1e-24) {
SetBoundary(m);
diff = CalcuateDifference(m, d, w, h);
for (int i = 0; i < h; i++) {
for (int j = 0; j < w; j++) {
m[i][j].V -= d[i][j].V;
}
}
}
 
for (int i = 0; i < h; i++) {
for (int j = 0; j < w; j++) {
int k = 0;
if (i != 0) k++;
if (j != 0) k++;
if (i < h - 1) k++;
if (j < w - 1) k++;
curr[m[i][j].Fixed + 1] += d[i][j].V * k;
}
}
 
return (curr[2] - curr[0]) / 2.0;
}
 
const int S = 10;
static void Main(string[] args) {
List<List<Node>> mesh = new List<List<Node>>(S);
for (int i = 0; i < S; i++) {
List<Node> t = new List<Node>(S);
for (int j = 0; j < S; j++) {
t.Add(new Node(0.0, 0));
}
mesh.Add(t);
}
 
double r = 2.0 / Iter(mesh, S, S);
Console.WriteLine("R = {0:F15}", r);
}
}
}</syntaxhighlight>
{{out}}
<pre>R = 1.608991241729890</pre>
 
=={{header|C++}}==
{{trans|C#}}
<syntaxhighlight lang="cpp">#include <iomanip>
#include <iostream>
#include <vector>
 
class Node {
private:
double v;
int fixed;
 
public:
Node() : v(0.0), fixed(0) {
// empty
}
 
Node(double v, int fixed) : v(v), fixed(fixed) {
// empty
}
 
double getV() const {
return v;
}
 
void setV(double nv) {
v = nv;
}
 
int getFixed() const {
return fixed;
}
 
void setFixed(int nf) {
fixed = nf;
}
};
 
void setBoundary(std::vector<std::vector<Node>>& m) {
m[1][1].setV(1.0);
m[1][1].setFixed(1);
 
m[6][7].setV(-1.0);
m[6][7].setFixed(-1);
}
 
double calculateDifference(const std::vector<std::vector<Node>>& m, std::vector<std::vector<Node>>& d, const int w, const int h) {
double total = 0.0;
for (int i = 0; i < h; ++i) {
for (int j = 0; j < w; ++j) {
double v = 0.0;
int n = 0;
if (i > 0) {
v += m[i - 1][j].getV();
n++;
}
if (j > 0) {
v += m[i][j - 1].getV();
n++;
}
if (i + 1 < h) {
v += m[i + 1][j].getV();
n++;
}
if (j + 1 < w) {
v += m[i][j + 1].getV();
n++;
}
v = m[i][j].getV() - v / n;
d[i][j].setV(v);
if (m[i][j].getFixed() == 0) {
total += v * v;
}
}
}
return total;
}
 
double iter(std::vector<std::vector<Node>>& m, const int w, const int h) {
using namespace std;
vector<vector<Node>> d;
for (int i = 0; i < h; ++i) {
vector<Node> t(w);
d.push_back(t);
}
 
double curr[] = { 0.0, 0.0, 0.0 };
double diff = 1e10;
 
while (diff > 1e-24) {
setBoundary(m);
diff = calculateDifference(m, d, w, h);
for (int i = 0; i < h; ++i) {
for (int j = 0; j < w; ++j) {
m[i][j].setV(m[i][j].getV() - d[i][j].getV());
}
}
}
 
for (int i = 0; i < h; ++i) {
for (int j = 0; j < w; ++j) {
int k = 0;
if (i != 0) ++k;
if (j != 0) ++k;
if (i < h - 1) ++k;
if (j < w - 1) ++k;
curr[m[i][j].getFixed() + 1] += d[i][j].getV()*k;
}
}
 
return (curr[2] - curr[0]) / 2.0;
}
 
const int S = 10;
int main() {
using namespace std;
vector<vector<Node>> mesh;
 
for (int i = 0; i < S; ++i) {
vector<Node> t(S);
mesh.push_back(t);
}
 
double r = 2.0 / iter(mesh, S, S);
cout << "R = " << setprecision(15) << r << '\n';
 
return 0;
}</syntaxhighlight>
{{out}}
<pre>R = 1.60899124172989</pre>
 
=={{header|D}}==
{{trans|C}}
<langsyntaxhighlight lang="d">import std.stdio, std.traits;
 
enum Node.FP differenceThreshold = 1e-40;
Line 267 ⟶ 585:
 
writefln("R = %.19f", 2 / mesh.iter);
}</langsyntaxhighlight>
{{out}}
<pre>R = 1.6089912417307296556</pre>
 
 
=={{header|ERRE}}==
We'll solve the linear system. We'll write [[wp:Kirchhoff's circuit laws|Kirchhoff's circuit laws]] at each node and search for a voltage distribution that creates a 1A current coming from A exiting in B. The difference of voltage between B and A is then the resistance.
<syntaxhighlight lang="erre">
<lang ERRE>
PROGRAM RESISTENCE_MESH
Line 351 ⟶ 668:
PRINT("Resistence=";ABS(A[A,NN+1]-A[B,NN+1]))
END PROGRAM
</syntaxhighlight>
</lang>
{{out}}
<pre>Nodes 12 68
Line 360 ⟶ 677:
The functions for this have been implemented in Euler already. Thus the following commands solve this problem.
 
<syntaxhighlight lang="euler math toolbox">
<lang Euler Math Toolbox>
>load incidence;
>{u,r}=solvePotentialX(makeRectangleX(10,10),12,68); r,
1.60899124173
</syntaxhighlight>
</lang>
 
The necessary functions in the file incidence.e are as follows. There are versions with full matrices. But the functions listed here use compressed matrices and the conjugate gradient method.
 
<syntaxhighlight lang="text">
function makeRectangleX (n:index,m:index)
## Make the incidence matrix of a rectangle grid in compact form.
Line 413 ⟶ 730:
return {u,2/f}
endfunction
</syntaxhighlight>
</lang>
 
Here is the code for the conjugate gradient method for compressed, sparse matrices from cpx.e.
 
<syntaxhighlight lang="text">
function cgX (H:cpx, b:real column, x0:real column=none, f:index=10)
## Conjugate gradient method to solve Hx=b for compressed H.
Line 457 ⟶ 774:
return x;
endfunction
</syntaxhighlight>
</lang>
 
=={{header|FreeBASIC}}==
<syntaxhighlight lang="freebasic">' version 01-07-2018
' compile with: fbc -s console
 
#Define n 10
 
Dim As UInteger nn = n * n
Dim As Double g(-nn To nn +1, -nn To nn +1)
Dim As UInteger node, row, col
 
For row = 1 To n
For col = 1 To n
node += 1
If row > 1 Then
g(node, node) += 1
g(node, node - n) = -1
End If
If row < n Then
g(node, node) += 1
g(node, node + n) = -1
End If
If col > 1 Then
g(node, node) += 1
g(node, node -1) = -1
End If
If col < n Then
g(node, node) += 1
g(node, node +1) = -1
End If
Next
Next
 
Dim As UInteger ar = 2, ac = 2
Dim As UInteger br = 7, bc = 8
Dim As UInteger a = ac + n * (ar -1)
Dim As UInteger b = bc + n * (br -1)
 
g(a, nn +1) = -1
g(b, nn +1) = 1
 
Print : Print "Nodes a: "; a, " b: "; b
 
' solve linear system using Gauss-Seidel method with pivoting
Dim As UInteger i, j, k
Dim As Double y
 
Do
For j = 1 To nn
For i = j To nn
If g(i, j) <> 0 Then Exit For
Next
If i = nn +1 Then
Print : Print "No solution"
Exit Do
End If
For k = 1 To nn +1
Swap g(j, k), g(i, k)
Next
y = g(j, j)
For k = 1 To nn +1
g(j, k) = g(j, k) / y
Next
For i = 1 To nn
If i <> j Then
y = -g(i, j)
For k = 1 To nn +1
g(i, k) = g(i, k) + y * g(j, k)
Next
End If
Next
Next
 
Print
Print "Resistance ="; Abs(g(a, nn +1) - g(b, nn +1)); " Ohm"
Exit Do
Loop
 
' empty keyboard buffer
While Inkey <> "" : Wend
Print : Print "hit any key to end program"
Sleep
End</syntaxhighlight>
{{out}}
<pre>Nodes a: 12 b: 68
 
Resistance = 1.60899124173073 Ohm</pre>
 
=={{header|Go}}==
{{trans|C}}
<langsyntaxhighlight lang="go">package main
 
import "fmt"
Line 563 ⟶ 967:
fmt.Printf("R = %g\n", 2/iter(mesh, S, S))
}
</syntaxhighlight>
</lang>
 
=={{header|Haskell}}==
{{trans|Octave}} All mutations are expressed as monoidal operations.
<langsyntaxhighlight lang="haskell">{-# LANGUAGE ParallelListComp #-}
import Numeric.LinearAlgebra (linearSolve, toDense, (!), flatten)
import Data.Monoid ((<>), Sum(..))
Line 597 ⟶ 1,001:
x `when` p = if p then x else mempty
 
current = toDense [ ((a, 0), -1) , ((b, 0), 1) , ((n^2-1, 0), 0) ]</langsyntaxhighlight>
 
{{Out}}
Line 607 ⟶ 1,011:
We represent the mesh as a [[wp:Ybus matrix|Ybus matrix]] with B as the reference node and A as the first node and invert it to find the Z bus (which represents resistance). The first element of the first row of this Z matrix is the resistance between nodes A and B. (It has to be the first element because A was the first node. And we can "ignore" B because we made everything be relative to B.) Most of the work is defining <code>Y</code> which represents the Ybus.
 
<langsyntaxhighlight Jlang="j">nodes=: 10 10 #: i. 100
nodeA=: 1 1
nodeB=: 6 7
Line 618 ⟶ 1,022:
Yii=: (* =@i.@#) #/.~ {."1 wiring NB. diagonal of Y represents connections to B
Yij=: -1:`(<"1@[)`]}&(+/~ 0*i.1+#ref) wiring NB. off diagonal of Y represents wiring
Y=: _1 _1 }. Yii+Yij</langsyntaxhighlight>
 
Here, the result of <code>nodes conn offset</code> represents all pairs of nodes where we can connect the argument nodes to neighboring nodes at the specified offset, and <code>wiring</code> is a list of index pairs representing all connections made by all resistors (note that each connection is represented twice -- node e is connected to node f AND node f is connected to node e). Yii contains the values for the diagonal elements of the Y bus while Yij contains the values for the off diagonal elements of the Y bus.
Line 624 ⟶ 1,028:
So:
 
<langsyntaxhighlight Jlang="j"> {.{. %. Y
1.60899</langsyntaxhighlight>
 
Or, if we want an exact answer (this is slow), we can assume our resistors are perfect:
 
<langsyntaxhighlight Jlang="j"> {.{.%. x:Y
455859137025721r283319837425200</langsyntaxhighlight>
 
(here, the letter 'r' separates the numerator from the denominator)
Line 636 ⟶ 1,040:
To get a better feel for what the <code>conn</code> operation is doing, here is a small illustration:
 
<langsyntaxhighlight Jlang="j"> 3 3 #: i.9
0 0
0 1
Line 663 ⟶ 1,067:
 
2 1
2 2</langsyntaxhighlight>
 
In other words, each coordinate pair is matched up with the coordinate pair that you would get by adding the offset to the first of the pair. In actual use, we use this four times, with four offsets (two horizontal and two vertical) to get our complete mesh.
 
=={{header|Java}}==
{{trans|Kotlin}}
<syntaxhighlight lang="java">import java.util.ArrayList;
import java.util.List;
 
public class ResistorMesh {
private static final int S = 10;
 
private static class Node {
double v;
int fixed;
 
Node(double v, int fixed) {
this.v = v;
this.fixed = fixed;
}
}
 
private static void setBoundary(List<List<Node>> m) {
m.get(1).get(1).v = 1.0;
m.get(1).get(1).fixed = 1;
 
m.get(6).get(7).v = -1.0;
m.get(6).get(7).fixed = -1;
}
 
private static double calcDiff(List<List<Node>> m, List<List<Node>> d, int w, int h) {
double total = 0.0;
for (int i = 0; i < h; ++i) {
for (int j = 0; j < w; ++j) {
double v = 0.0;
int n = 0;
if (i > 0) {
v += m.get(i - 1).get(j).v;
n++;
}
if (j > 0) {
v += m.get(i).get(j - 1).v;
n++;
}
if (i + 1 < h) {
v += m.get(i + 1).get(j).v;
n++;
}
if (j + 1 < w) {
v += m.get(i).get(j + 1).v;
n++;
}
v = m.get(i).get(j).v - v / n;
d.get(i).get(j).v = v;
if (m.get(i).get(j).fixed == 0) {
total += v * v;
}
}
}
return total;
}
 
private static double iter(List<List<Node>> m, int w, int h) {
List<List<Node>> d = new ArrayList<>(h);
for (int i = 0; i < h; ++i) {
List<Node> t = new ArrayList<>(w);
for (int j = 0; j < w; ++j) {
t.add(new Node(0.0, 0));
}
d.add(t);
}
 
double[] cur = new double[3];
double diff = 1e10;
 
while (diff > 1e-24) {
setBoundary(m);
diff = calcDiff(m, d, w, h);
for (int i = 0; i < h; ++i) {
for (int j = 0; j < w; ++j) {
m.get(i).get(j).v -= d.get(i).get(j).v;
}
}
}
 
for (int i = 0; i < h; ++i) {
for (int j = 0; j < w; ++j) {
int k = 0;
if (i != 0) k++;
if (j != 0) k++;
if (i < h - 1) k++;
if (j < w - 1) k++;
cur[m.get(i).get(j).fixed + 1] += d.get(i).get(j).v * k;
}
}
 
return (cur[2] - cur[0]) / 2.0;
}
 
public static void main(String[] args) {
List<List<Node>> mesh = new ArrayList<>(S);
for (int i = 0; i < S; ++i) {
List<Node> t = new ArrayList<>(S);
for (int j = 0; j < S; ++j) {
t.add(new Node(0.0, 0));
}
mesh.add(t);
}
 
double r = 2.0 / iter(mesh, S, S);
System.out.printf("R = %.15f", r);
}
}</syntaxhighlight>
{{out}}
<pre>R = 1.608991241729889</pre>
 
 
=={{header|JavaScript}}==
Kirchhoff's circuit laws on the resistor mesh are represented as a linear
equation system for the electric potential at each node of the grid.
The linear equation is then solved using the [https://en.wikipedia.org/wiki/Conjugate_gradient_method conjugate gradient method]:
<syntaxhighlight lang=JavaScript>
// Vector addition, scalar multiplication & dot product:
const add = (u, v) => {let i = u.length; while(i--) u[i] += v[i]; return u;};
const sub = (u, v) => {let i = u.length; while(i--) u[i] -= v[i]; return u;};
const mul = (a, u) => {let i = u.length; while(i--) u[i] *= a; return u;};
const dot = (u, v) => {let s = 0, i = u.length; while(i--) s += u[i]*v[i]; return s;};
 
const W = 10, H = 10, A = 11, B = 67;
 
function getAdjacent(node){ // Adjacency lists for square grid
let list = [], x = node % W, y = Math.floor(node / W);
if (x > 0) list.push(node - 1);
if (y > 0) list.push(node - W);
if (x < W - 1) list.push(node + 1);
if (y < H - 1) list.push(node + W);
return list;
}
 
function linOp(u){ // LHS of the linear equation
let v = new Float64Array(W * H);
for(let i = 0; i < v.length; i++){
if ( i === A || i === B ) {
v[i] = u[i];
continue;
}
// For each node other then A, B calculate the net current flow:
for(let j of getAdjacent(i)){
v[i] += (j === A || j === B) ? u[i] : u[i] - u[j];
}
}
return v;
}
 
function getRHS(phiA = 1, phiB = 0){ // RHS of the linear equation
let b = new Float64Array(W * H);
// Setting boundary conditions (electric potential at A and B):
b[A] = phiA;
b[B] = phiB;
for(let j of getAdjacent(A)) b[j] = phiA;
for(let j of getAdjacent(B)) b[j] = phiB;
return b;
}
 
function init(phiA = 1, phiB = 0){ // initialize unknown vector
let u = new Float64Array(W * H);
u[A] = phiA;
u[B] = phiB;
return u;
}
 
function solveLinearSystem(err = 1e-20){ // conjugate gradient solver
 
let b = getRHS();
let u = init();
let r = sub(linOp(u), b);
let p = r;
let e = dot(r,r);
 
while(true){
let Ap = linOp(p);
let alpha = e / dot(p, Ap);
u = sub(u, mul(alpha, p.slice()));
r = sub(linOp(u), b);
let e_new = dot(r,r);
let beta = e_new / e;
 
if(e_new < err) return u;
 
e = e_new;
p = add(r, mul(beta, p));
}
}
 
function getResistance(u){
let curr = 0;
for(let j of getAdjacent(A)) curr += u[A] - u[j];
return 1 / curr;
}
 
let phi = solveLinearSystem();
let res = getResistance(phi);
console.log(`R = ${res} Ohm`);
</syntaxhighlight>
{{out}}
<pre>R = 1.608991241730955 Ohm</pre>
 
=={{header|jq}}==
'''Works with jq and gojq, that is, the C and Go implementations of jq.'''
 
'''Adapted from [[#Wren|Wren]]'''
<syntaxhighlight lang=jq>
# Create a $rows * $columns matrix initialized with the input value
def matrix($rows; $columns):
. as $in
| [range(0;$columns)|$in] as $row
| [range(0;$rows)|$row];
 
def Node($v; $fixed):
{$v, $fixed};
 
# input: a suitable matrix of Nodes
def setBoundary:
.[1][1].v = 1
| .[1][1].fixed = 1
| .[6][7].v = -1
| .[6][7].fixed = -1 ;
 
# input: {d, m} where
# .d and .m are matrices (as produced by matrix(h; w)) of Nodes
# output: {d, m, diff} with d updated
def calcDiff($w; $h):
def adjust($cond; action): if $cond then action | .n += 1 else . end;
 
reduce range(0; $h) as $i (.diff = 0;
reduce range(0; $w) as $j (.;
.v = 0
| .n = 0
| adjust($i > 0; .v += .m[$i-1][$j].v)
| adjust($j > 0; .v += .m[$i][$j-1].v)
| adjust($i + 1 < $h; .v += .m[$i+1][$j].v)
| adjust($j + 1 < $w; .v += .m[$i][$j+1].v)
| .v = .m[$i][$j].v - .v/.n
| .d[$i][$j].v = .v
| if (.m[$i][$j].fixed == 0) then .diff += .v * .v else . end ) ) ;
 
# input: a mesh of width w and height h, i.e. a matrix as prodcued by matrix(h;w)
def iter:
length as $h
| (.[0]|length) as $w
| { m : .,
d : (Node(0;0) | matrix($h; $w)),
cur: [0,0,0],
diff: 1e10 }
| until (.diff <= 1e-24;
.m |= setBoundary
| calcDiff($w; $h)
| reduce range(0;$h) as $i (.;
reduce range(0;$w) as $j (.;
.m[$i][$j].v += (- .d[$i][$j].v) )) )
| reduce range(0; $h) as $i (.;
reduce range(0; $w) as $j (.;
.k = 0
| if ($i != 0) then .k += 1 else . end
| if ($j != 0) then .k += 1 else . end
| if ($i < $h - 1) then .k += 1 else . end
| if ($j < $w - 1) then .k += 1 else . end
| .cur[.m[$i][$j].fixed + 1] += .d[$i][$j].v * .k ))
| (.cur[2] - .cur[0]) / 2 ;
 
def task($S):
def mesh: Node(0; 0) | matrix($S; $S);
(2 / (mesh | iter)) as $r
| "R = \($r) ohms";
 
task(10)
</syntaxhighlight>
{{output}}
<pre>
R = 1.608991241729889 ohms
</pre>
 
 
=={{header|Julia}}==
Line 672 ⟶ 1,355:
Because the graph is a rectangular grid, we can in turn write the incidence matrix D in terms of Kronecker products ⊗ (<code>kron</code> in Julia) of "one-dimensional" D<sub>1</sub> matrices (the incidence matrix of a 1d resistor network).
We use Julia's built-in sparse-matrix solvers (based on SuiteSparse) to solve the resulting sparse linear system efficiently
<langsyntaxhighlight lang="julia">N = 10
D1 = speye(N-1,N) - spdiagm(ones(N-1),1,N-1,N)
D = [ kron(D1, speye(N)); kron(speye(N), D1) ]
Line 678 ⟶ 1,361:
b = zeros(N^2); b[i], b[j] = 1, -1
v = (D' * D) \ b
v[i] - v[j]</langsyntaxhighlight>
{{out}}
<pre>
Line 688 ⟶ 1,371:
=={{header|Kotlin}}==
{{trans|C}}
<langsyntaxhighlight lang="scala">// version 1.1.4-3
 
typealias List2D<T> = List<List<T>>
Line 749 ⟶ 1,432:
val r = 2.0 / iter(mesh, S, S)
println("R = $r")
}</langsyntaxhighlight>
 
{{out}}
Line 755 ⟶ 1,438:
R = 1.608991241729889
</pre>
 
=={{header|Mathematica}}/{{header|Wolfram Language}}==
 
{{works with|Mathematica|13.0}}
Use <b>KirchhoffMatrix</b> and <b>DrazinInverse</b> to compute the effective resistance matrix of a graph:
 
<syntaxhighlight lang="mathematica">ResistanceMatrix[g_Graph] := With[{n = VertexCount[g], km = KirchhoffMatrix[g]},
Table[ ReplacePart[ Diagonal[ DrazinInverse[ ReplacePart[km, k -> UnitVector[n, k]]]], k -> 0],
{k, n}]
]
 
rm = ResistanceMatrix[GridGraph[{10, 10}]];
 
N[rm[[12, 68]], 40]</syntaxhighlight>
{{Out}}
<pre>1.608991241730729655954495520510088761201</pre>
 
{{works with|Mathematica|8.0}}
Use <b>KirchhoffMatrix</b> and <b>PseudoInverse</b> to compute the effective resistance matrix of a graph to the desired precision:
<syntaxhighlight lang="mathematica">ResistanceMatrix[g_, prec_:$MachinePrecision]:= With[{m = PseudoInverse[N[KirchhoffMatrix[g], prec]]},
Outer[Plus, Diagonal[m], Diagonal[m]] - m - Transpose[m]
]
 
rm = ResistanceMatrix[GridGraph[{10, 10}], 40];
 
rm[[12, 68]]</syntaxhighlight>
{{Out}}
<pre>1.608991241730729655954495520510088761201</pre>
 
=={{header|Maxima}}==
<langsyntaxhighlight lang="maxima">/* Place a current souce between A and B, providing 1 A. Then we are really looking
for the potential at A and B, since I = R (V(B) - V(A)) where I is given and we want R.
Atually, we will compute potential at each node, except A where we assume it's 0.
Without withthis assumption, there would be infinitely many solutions since potential
is known up to a constant. For A we will simply write the equation V(A) = 0, to
keep the program simple.
Line 818 ⟶ 1,529:
 
bfloat(%), fpprec = 40;
3.89226554090400912102670691601064387507b0</langsyntaxhighlight>
 
=={{header|MathematicaModula-2}}==
<syntaxhighlight lang="modula2">MODULE ResistorMesh;
{{trans|Maxima}}
FROM RConversions IMPORT RealToStringFixed;
<lang mathematica>gridresistor[p_, q_, ai_, aj_, bi_, bj_] :=
FROM Terminal IMPORT WriteString,WriteLn,ReadChar;
Block[{A, B, k, c, V}, A = ConstantArray[0, {p*q, p*q}];
Do[k = (i - 1) q + j;
If[{i, j} == {ai, aj}, A[[k, k]] = 1, c = 0;
If[1 <= i + 1 <= p && 1 <= j <= q, c++; A[[k, k + q]] = -1];
If[1 <= i - 1 <= p && 1 <= j <= q, c++; A[[k, k - q]] = -1];
If[1 <= i <= p && 1 <= j + 1 <= q, c++; A[[k, k + 1]] = -1];
If[1 <= i <= p && 1 <= j - 1 <= q, c++; A[[k, k - 1]] = -1];
A[[k, k]] = c], {i, p}, {j, q}];
B = SparseArray[(k = (bi - 1) q + bj) -> 1, p*q];
LinearSolve[A, B][[k]]];
N[gridresistor[10, 10, 2, 2, 8, 7], 40]</lang>
{{Out}}
<pre>1.608991241730729655954495520510088761201</pre>
 
CONST S = 10;
 
TYPE Node = RECORD
{{works with|Mathematica|9.0}}
v : LONGREAL;
<lang mathematica>graphresistor[g_, a_, b_] :=
fixed : INTEGER;
LinearSolve[
END;
SparseArray[{{a, a} -> 1, {i_, i_} :> Length@AdjacencyList[g, i],
 
Alternatives @@ Join[#, Reverse /@ #] &[
PROCEDURE SetBoundary(VAR m : ARRAY OF ARRAY OF Node);
List @@@ EdgeList[VertexDelete[g, a]]] -> -1}, {VertexCount[
BEGIN
g], VertexCount[g]}], SparseArray[b -> 1, VertexCount[g]]][[b]];
m[1][1].v := 1.0;
N[graphresistor[GridGraph[{10, 10}], 12, 77], 40]</lang>
m[1][1].fixed := 1;
{{Out}}
 
<pre>1.608991241730729655954495520510088761201</pre>
m[6][7].v := -1.0;
m[6][7].fixed := -1;
END SetBoundary;
 
PROCEDURE CalcDiff(VAR m,d : ARRAY OF ARRAY OF Node) : LONGREAL;
VAR
total,v : LONGREAL;
i,j,n : INTEGER;
BEGIN
total := 0.0;
FOR i:=0 TO S DO
FOR j:=0 TO S DO
v := 0.0;
n := 0;
IF i>0 THEN
v := v + m[i-1][j].v;
INC(n);
END;
IF j>0 THEN
v := v + m[i][j-1].v;
INC(n);
END;
IF i+1<S THEN
v := v + m[i+1][j].v;
INC(n);
END;
IF j+1<S THEN
v := v + m[i][j+1].v;
INC(n);
END;
v := m[i][j].v - v / LFLOAT(n);
d[i][j].v := v;
IF m[i][j].fixed=0 THEN
total := total + v*v;
END;
END;
END;
RETURN total;
END CalcDiff;
 
PROCEDURE Iter(m : ARRAY OF ARRAY OF Node) : LONGREAL;
VAR
d : ARRAY[0..S] OF ARRAY[0..S] OF Node;
i,j,k : INTEGER;
cur : ARRAY[0..2] OF LONGREAL;
diff : LONGREAL;
BEGIN
FOR i:=0 TO S DO
FOR j:=0 TO S DO
d[i][j] := Node{0.0,0};
END;
END;
 
diff := 1.0E10;
WHILE diff>1.0E-24 DO
SetBoundary(m);
diff := CalcDiff(m,d);
FOR i:=0 TO S DO
FOR j:=0 TO S DO
m[i][j].v := m[i][j].v - d[i][j].v;
END;
END;
END;
 
FOR i:=0 TO S DO
FOR j:=0 TO S DO
k:=0;
IF i#0 THEN INC(k) END;
IF j#0 THEN INC(k) END;
IF i<S-1 THEN INC(k) END;
IF j<S-1 THEN INC(k) END;
cur[m[i][j].fixed+1] := cur[m[i][j].fixed+1] + d[i][j].v*LFLOAT(k);
END;
END;
 
RETURN (cur[2]-cur[0]) / 2.0;
END Iter;
 
VAR
mesh : ARRAY[0..S] OF ARRAY[0..S] OF Node;
buf : ARRAY[0..32] OF CHAR;
r : LONGREAL;
pos : CARDINAL;
ok : BOOLEAN;
BEGIN
pos := 0;
r := 2.0 / Iter(mesh);
WriteString("R = ");
RealToStringFixed(r, 15,0, buf, pos, ok);
WriteString(buf);
WriteString(" ohms");
WriteLn;
 
ReadChar;
END ResistorMesh.</syntaxhighlight>
 
=={{header|Nim}}==
{{trans|Kotlin}}
<syntaxhighlight lang="nim">const S = 10
 
type
 
NodeKind = enum nodeFree, nodeA, nodeB
 
Node = object
v: float
fixed: NodeKind
 
Mesh[H, W: static int] = array[H, array[W, Node]]
 
 
func setBoundary(m: var Mesh) =
m[1][1].v = 1.0
m[1][1].fixed = nodeA
m[6][7].v = -1.0
m[6][7].fixed = nodeB
 
 
func calcDiff[H, W: static int](m,: Mesh[H, W]; d: var Mesh[H, W]): float =
for i in 0..<H:
for j in 0..<W:
var v = 0.0
var n = 0
if i > 0:
v += m[i - 1][j].v
inc n
if j > 0:
v += m[i][j - 1].v
inc n
if i + 1 < m.H:
v += m[i + 1][j].v
inc n
if j + 1 < m.W:
v += m[i][j + 1].v
inc n
v = m[i][j].v - v / n.toFloat
d[i][j].v = v
if m[i][j].fixed == nodeFree:
result += v * v
 
 
func iter[H, W: static int](m: var Mesh[H, W]): float =
var
d: Mesh[H, W]
cur: array[NodeKind, float]
diff = 1e10
 
while diff > 1e-24:
m.setBoundary()
diff = calcDiff(m, d)
for i in 0..<H:
for j in 0..<W:
m[i][j].v -= d[i][j].v
 
for i in 0..<H:
for j in 0..<W:
var k = 0
if i != 0: inc k
if j != 0: inc k
if i < m.H - 1: inc k
if j < m.W - 1: inc k
cur[m[i][j].fixed] += d[i][j].v * k.toFloat
 
result = (cur[nodeA] - cur[nodeB]) / 2
 
 
when isMainModule:
 
var mesh: Mesh[S, S]
let r = 2 / mesh.iter()
echo "R = ", r</syntaxhighlight>
 
{{out}}
<pre>R = 1.608991241729889</pre>
 
=={{header|Octave}}==
We'll solve the linear system. We'll write [[wp:Kirchhoff's circuit laws|Kirchhoff's circuit laws]] at each node and search for a voltage distribution that creates a 1A current coming from A exiting in B. The difference of voltage between B and A is then the resistance.
 
<langsyntaxhighlight lang="octave">N = 10;
NN = N*N;
G = sparse(NN, NN);
Line 891 ⟶ 1,765:
VB = voltage( B );
 
full( abs( VA - VB ) )</langsyntaxhighlight>
{{out}}
<pre>ans = 1.6090</pre>
Line 897 ⟶ 1,771:
=={{header|Perl}}==
{{trans|C}}
<langsyntaxhighlight lang="perl">use strict;
use warnings;
 
my ($w, $h) = (9, 9);
Line 934 ⟶ 1,809:
sub iter {
my $diff = 1;
while ($diff > 1e-2415) { # 1e-24 is overkill (12 digits of precision)
set_boundary();
$diff = calc_diff();
#print "error^2: $diff\rn"; # un-comment to see slow convergence
for my $i (0 .. $h) {
for my $j (0 .. $w) {
Line 944 ⟶ 1,819:
}
}
print "\n";
 
my @current = (0) x 3;
Line 956 ⟶ 1,830:
}
 
printprintf "R = @{[%.6f\n", 2 / iter()]}\n";</langsyntaxhighlight>
{{out}}
<pre>R = 1.608991</pre>
 
=={{header|Perl 6Phix}}==
{{trans|cBBC_BASIC}}
uses inverse() from [[Gauss-Jordan_matrix_inversion#Phix]]
<lang perl6>my $S = 10;
and matrix_mul() from [[Matrix_multiplication#Phix]]
 
<!--<syntaxhighlight lang="phix">-->
my @fixed;
<span style="color: #008080;">function</span> <span style="color: #000000;">resistormesh</span><span style="color: #0000FF;">(</span><span style="color: #004080;">integer</span> <span style="color: #000000;">ni</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">nj</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">ai</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">aj</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">bi</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">bj</span><span style="color: #0000FF;">)</span>
 
<span style="color: #004080;">integer</span> <span style="color: #000000;">n</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">ni</span><span style="color: #0000FF;">*</span><span style="color: #000000;">nj</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">k</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">c</span>
sub allocmesh ($w, $h) {
<span style="color: #004080;">sequence</span> <span style="color: #000000;">A</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">repeat</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">repeat</span><span style="color: #0000FF;">(</span><span style="color: #000000;">0</span><span style="color: #0000FF;">,</span><span style="color: #000000;">n</span><span style="color: #0000FF;">),</span><span style="color: #000000;">n</span><span style="color: #0000FF;">),</span>
gather for ^$h {
<span style="color: #000000;">B</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">repeat</span><span style="color: #0000FF;">({</span><span style="color: #000000;">0</span><span style="color: #0000FF;">},</span><span style="color: #000000;">n</span><span style="color: #0000FF;">)</span>
take [0 xx $w];
<span style="color: #008080;">for</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span> <span style="color: #008080;">to</span> <span style="color: #000000;">ni</span> <span style="color: #008080;">do</span>
}
<span style="color: #008080;">for</span> <span style="color: #000000;">j</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span> <span style="color: #008080;">to</span> <span style="color: #000000;">nj</span> <span style="color: #008080;">do</span>
}
<span style="color: #000000;">k</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">(</span><span style="color: #000000;">i</span><span style="color: #0000FF;">-</span><span style="color: #000000;">1</span><span style="color: #0000FF;">)*</span><span style="color: #000000;">nj</span> <span style="color: #0000FF;">+</span> <span style="color: #000000;">j</span><span style="color: #000080;font-style:italic;">--1</span>
 
<span style="color: #008080;">if</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">=</span><span style="color: #000000;">ai</span> <span style="color: #008080;">and</span> <span style="color: #000000;">j</span><span style="color: #0000FF;">=</span><span style="color: #000000;">aj</span> <span style="color: #008080;">then</span>
sub force-fixed(@f) {
<span style="color: #000000;">A</span><span style="color: #0000FF;">[</span><span style="color: #000000;">k</span><span style="color: #0000FF;">,</span><span style="color: #000000;">k</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">1</span>
@f[1][1] = 1;
<span style="color: #008080;">else</span>
@f[6][7] = -1;
<span style="color: #000000;">c</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">0</span>
}
<span style="color: #008080;">if</span> <span style="color: #000000;">i</span><span style="color: #0000FF;"><</span><span style="color: #000000;">ni</span> <span style="color: #008080;">then</span> <span style="color: #000000;">c</span> <span style="color: #0000FF;">+=</span> <span style="color: #000000;">1</span><span style="color: #0000FF;">;</span> <span style="color: #000000;">A</span><span style="color: #0000FF;">[</span><span style="color: #000000;">k</span><span style="color: #0000FF;">,</span><span style="color: #000000;">k</span><span style="color: #0000FF;">+</span><span style="color: #000000;">nj</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">-</span><span style="color: #000000;">1</span> <span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
 
<span style="color: #008080;">if</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">></span><span style="color: #000000;">1</span> <span style="color: #008080;">then</span> <span style="color: #000000;">c</span> <span style="color: #0000FF;">+=</span> <span style="color: #000000;">1</span><span style="color: #0000FF;">;</span> <span style="color: #000000;">A</span><span style="color: #0000FF;">[</span><span style="color: #000000;">k</span><span style="color: #0000FF;">,</span><span style="color: #000000;">k</span><span style="color: #0000FF;">-</span><span style="color: #000000;">nj</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">-</span><span style="color: #000000;">1</span> <span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
sub force-v(@v) {
<span style="color: #008080;">if</span> <span style="color: #000000;">j</span><span style="color: #0000FF;"><</span><span style="color: #000000;">nj</span> <span style="color: #008080;">then</span> <span style="color: #000000;">c</span> <span style="color: #0000FF;">+=</span> <span style="color: #000000;">1</span><span style="color: #0000FF;">;</span> <span style="color: #000000;">A</span><span style="color: #0000FF;">[</span><span style="color: #000000;">k</span><span style="color: #0000FF;">,</span><span style="color: #000000;">k</span><span style="color: #0000FF;">+</span><span style="color: #000000;">1</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">-</span><span style="color: #000000;">1</span> <span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
@v[1][1] = 1;
<span style="color: #008080;">if</span> <span style="color: #000000;">j</span><span style="color: #0000FF;">></span><span style="color: #000000;">1</span> <span style="color: #008080;">then</span> <span style="color: #000000;">c</span> <span style="color: #0000FF;">+=</span> <span style="color: #000000;">1</span><span style="color: #0000FF;">;</span> <span style="color: #000000;">A</span><span style="color: #0000FF;">[</span><span style="color: #000000;">k</span><span style="color: #0000FF;">,</span><span style="color: #000000;">k</span><span style="color: #0000FF;">-</span><span style="color: #000000;">1</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">-</span><span style="color: #000000;">1</span> <span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
@v[6][7] = -1;
<span style="color: #000000;">A</span><span style="color: #0000FF;">[</span><span style="color: #000000;">k</span><span style="color: #0000FF;">,</span><span style="color: #000000;">k</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">c</span>
}
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
sub calc_diff(@v, @d, Int $w, Int $h) {
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
my $total = 0;
<span style="color: #000000;">k</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">(</span><span style="color: #000000;">bi</span><span style="color: #0000FF;">-</span><span style="color: #000000;">1</span><span style="color: #0000FF;">)*</span><span style="color: #000000;">nj</span> <span style="color: #0000FF;">+</span><span style="color: #000000;">bj</span>
for (flat ^$h X ^$w) -> $i, $j {
<span style="color: #000000;">B</span><span style="color: #0000FF;">[</span><span style="color: #000000;">k</span><span style="color: #0000FF;">,</span><span style="color: #000000;">1</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">1</span>
my @neighbors = grep *.defined, @v[$i-1][$j], @v[$i][$j-1], @v[$i+1][$j], @v[$i][$j+1];
<span style="color: #000000;">A</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">inverse</span><span style="color: #0000FF;">(</span><span style="color: #000000;">A</span><span style="color: #0000FF;">)</span>
my $v = [+] @neighbors;
<span style="color: #000000;">B</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">matrix_mul</span><span style="color: #0000FF;">(</span><span style="color: #000000;">A</span><span style="color: #0000FF;">,</span><span style="color: #000000;">B</span><span style="color: #0000FF;">)</span>
@d[$i][$j] = $v = @v[$i][$j] - $v / +@neighbors;
<span style="color: #008080;">return</span> <span style="color: #000000;">B</span><span style="color: #0000FF;">[</span><span style="color: #000000;">k</span><span style="color: #0000FF;">,</span><span style="color: #000000;">1</span><span style="color: #0000FF;">]</span>
$total += $v * $v unless @fixed[$i][$j];
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
}
return $total;
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"Resistance = %.13f ohms\n"</span><span style="color: #0000FF;">,</span><span style="color: #000000;">resistormesh</span><span style="color: #0000FF;">(</span><span style="color: #000000;">10</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">10</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">2</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">2</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">8</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">7</span><span style="color: #0000FF;">))</span>
}
<!--</syntaxhighlight>-->
sub iter(@v, Int $w, Int $h) {
my @d = allocmesh($w, $h);
my $diff = 1e10;
my @cur = 0, 0, 0;
 
while $diff > 1e-24 {
force-v(@v);
$diff = calc_diff(@v, @d, $w, $h);
for (flat ^$h X ^$w) -> $i, $j {
@v[$i][$j] -= @d[$i][$j];
}
}
 
for (flat ^$h X ^$w) -> $i, $j {
@cur[ @fixed[$i][$j] + 1 ]
+= @d[$i][$j] * (?$i + ?$j + ($i < $h - 1) + ($j < $w - 1));
}
 
return (@cur[2] - @cur[0]) / 2;
}
my @mesh = allocmesh($S, $S);
 
@fixed = allocmesh($S, $S);
force-fixed(@fixed);
 
say 2 / iter(@mesh, $S, $S);</lang>
{{out}}
<pre>
<pre>1.60899124172989</pre>
Resistance = 1.6089912417307 ohms
</pre>
 
=={{header|Python}}==
{{trans|D}}
<langsyntaxhighlight lang="python">DIFF_THRESHOLD = 1e-40
 
class Fixed:
Line 1,086 ⟶ 1,937:
print "R = %.16f" % (2 / iter(mesh))
 
main()</langsyntaxhighlight>
{{out}}
<pre>R = 1.6089912417307286</pre>
Line 1,092 ⟶ 1,943:
{{trans|Maxima}}
 
<langsyntaxhighlight lang="python">import sys, copy
from fractions import Fraction
 
Line 1,162 ⟶ 2,013:
# python grid.py 10 10 1 1 7 6
# 455859137025721/283319837425200
# 1.6089912417307297</langsyntaxhighlight>
 
=={{header|Racket}}==
Line 1,169 ⟶ 2,020:
This version avoids mutation... possibly a little more costly than C, but more functional.
 
<langsyntaxhighlight lang="racket">#lang racket
(require racket/flonum)
 
Line 1,238 ⟶ 2,089:
 
(module+ main
(printf "R = ~a~%" (mesh-R '((1 1) (6 7)) 10 10)))</langsyntaxhighlight>
 
{{out}}
<pre>R = 1.6089912417301238</pre>
 
=={{header|Raku}}==
(formerly Perl 6)
{{trans|C}}
<syntaxhighlight lang="raku" line>my $*TOLERANCE = 1e-12;
 
sub set-boundary(@mesh,@p1,@p2) {
@mesh[ @p1[0] ; @p1[1] ] = 1;
@mesh[ @p2[0] ; @p2[1] ] = -1;
}
 
sub solve(@p1, @p2, Int \w, Int \h) {
my @d = [0 xx w] xx h;
my @V = [0 xx w] xx h;
my @fixed = [0 xx w] xx h;
set-boundary(@fixed,@p1,@p2);
 
loop {
set-boundary(@V,@p1,@p2);
my $diff = 0;
for (flat ^h X ^w) -> \i, \j {
my @neighbors = (@V[i-1;j], @V[i;j-1], @V[i+1;j], @V[i;j+1]).grep: *.defined;
@d[i;j] = my \v = @V[i;j] - @neighbors.sum / @neighbors;
$diff += v × v unless @fixed[i;j];
}
last if $diff =~= 0;
 
for (flat ^h X ^w) -> \i, \j {
@V[i;j] -= @d[i;j];
}
}
 
my @current;
for (flat ^h X ^w) -> \i, \j {
@current[ @fixed[i;j]+1 ] += @d[i;j] × (?i + ?j + (i < h-1) + (j < w-1) );
}
(@current[2] - @current[0]) / 2
}
 
say 2 / solve (1,1), (6,7), 10, 10;
</syntaxhighlight>
{{out}}
<pre>1.60899124172989</pre>
 
=={{header|REXX}}==
Line 1,247 ⟶ 2,141:
This version allows specification of the grid size, &nbsp; the locations of the &nbsp; '''A''' &nbsp; and &nbsp; '''B''' &nbsp; points, &nbsp; and the number of decimal digits precision.
 
Dropping the decimal digits precision &nbsp; ('''numeric digits''') &nbsp; to &nbsp; '''10''' &nbsp; will makemakes the execution &nbsp; '''3''' &nbsp; times faster.
<langsyntaxhighlight lang="rexx">/*REXX program calculates the resistance between any two points on a resisterresistor grid.*/
if 2=='f2'x then ohms = "ohms" /*EBCDIC machine? Then use 'ohms'. */
else ohms = "Ω" /* ASCII " " " Greek Ω.*/
parse arg high wide Arow Acol Brow Bcol digs . /*obtain optional arguments from the CL*/
if high=='' | high=="," then high=10 10 /*Not specified? Then use the default.*/
if wide=='' | wide=="," then wide=10 10 /* " " " " " " */
if Arow=='' | Arow=="," then Arow= 2 2 /* " " " " " " */
if Acol=='' | Acol=="," then Acol= 2 2 /* " " " " " " */
if Brow=='' | Brow=="," then Brow= 7 7 /* " " " " " " */
if Bcol=='' | Bcol=="," then Bcol= 8 8 /* " " " " " " */
if digs=='' | digs=="," then digs=20 20 /* " " " " " " */
numeric digits digs /*use moderate decimal digs (precision)*/
minVal = 1'e-' || (digs*2) /*calculate the threshold minimulminimal value*/
say ' minimum value is ' format(minVal,,,,0) " using " digs ' decimal digits'; say
say ' resistor mesh size is: ' wide "wide, " high 'high' ; say
say ' point A is at (row,col): ' Arow"," Acol
say ' point B is at (row,col): ' Brow"," Bcol
@.=0; cell.= 1
do until $<=minVal; v= 0
@.Arow.Acol= 1 ; cell.Arow.Acol= 0
@.Brow.Bcol= '-1' ; cell.Brow.Bcol= 0
$=0
do i=1 for high; im= i-1; ip= i+1
do j=1 for wide; n= 0; v= 0
if i\==1 then do; v= v + @.im.j; n= n+1; end
if j\==1 then do; jm= j-1; v= v + @.i.jm; n= n+1; end
if i<high then do; v= v + @.ip.j; n= n+1; end
if j<wide then do; jp= j+1; v= v + @.i.jp; n= n+1; end
v= @.i.j - v / n; #.i.j= v; if cell.i.j then $= $ + v*v
end /*j*/
end /*i*/
do r=1 for High
do c=1 for Wide; @.r.c= @.r.c - #.r.c
end /*c*/
end /*r*/
end /*until*/
say
Acur= #.Arow.Acol * sides(Arow, Acol)
Bcur= #.Brow.Bcol * sides(Brow, Bcol)
say ' resistance between point A and point B is: ' 4 / (Acur - Bcur) ohms
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
sides: parse arg row,col; z=0; if row\==1 & row\==high then z= z+2; else z= z+1
if col\==1 & col\==wide then z= z+2; else z= z+1
return z</langsyntaxhighlight>
{{out|output|text=&nbsp; when using the default inputs:}}
<pre>
Line 1,307 ⟶ 2,201:
=={{header|Sidef}}==
{{trans|Perl}}
<langsyntaxhighlight lang="ruby">var (w, h) = (10, 10)
 
var v = h.of { w.of(0) } # voltage
Line 1,356 ⟶ 2,250:
}
 
say "R = #{2 / iter()}"</langsyntaxhighlight>
{{out}}
<pre>
Line 1,364 ⟶ 2,258:
=={{header|Tcl}}==
{{trans|C}}
<langsyntaxhighlight lang="tcl">package require Tcl 8.6; # Or 8.5 with the TclOO package
 
# This code is structured as a class with a little trivial DSL parser
Line 1,458 ⟶ 2,352:
expr {$voltageDifference / [my FindCurrentFixpoint $epsilon]}
}
}</langsyntaxhighlight>
Setting up and solving this particular problem:
<langsyntaxhighlight lang="tcl">ResistorMesh create mesh {
size {10 10}
fixed {1 1 1.0}
fixed {6 7 -1.0}
}
puts [format "R = %.12g" [mesh solveForResistance]]</langsyntaxhighlight>
{{out}}
<pre>
R = 1.60899124173
</pre>
 
=={{header|Wren}}==
{{trans|Kotlin}}
<syntaxhighlight lang="wren">class Node {
construct new(v, fixed) {
_v = v
_fixed = fixed
}
 
v { _v }
v=(value) { _v = value }
 
fixed { _fixed }
fixed=(value) { _fixed = value }
}
 
var setBoundary = Fn.new { |m|
m[1][1].v = 1
m[1][1].fixed = 1
m[6][7].v = -1
m[6][7].fixed = -1
}
 
var calcDiff = Fn.new { |m, d, w, h|
var total = 0
for (i in 0...h) {
for (j in 0...w) {
var v = 0
var n = 0
if (i > 0) {
v = v + m[i-1][j].v
n = n + 1
}
if (j > 0) {
v = v + m[i][j-1].v
n = n + 1
}
if (i + 1 < h) {
v = v + m[i+1][j].v
n = n + 1
}
if (j + 1 < w) {
v = v + m[i][j+1].v
n = n + 1
}
v = m[i][j].v - v/n
d[i][j].v = v
if (m[i][j].fixed == 0) total = total + v*v
}
}
return total
}
 
var iter = Fn.new { |m, w, h|
var d = List.filled(h, null)
for (i in 0...h) {
d[i] = List.filled(w, null)
for (j in 0...w) d[i][j] = Node.new(0, 0)
}
var cur = [0] * 3
var diff = 1e10
while (diff > 1e-24) {
setBoundary.call(m)
diff = calcDiff.call(m, d, w, h)
for (i in 0...h) {
for (j in 0...w) m[i][j].v = m[i][j].v - d[i][j].v
}
}
for (i in 0...h) {
for (j in 0...w) {
var k = 0
if (i != 0) k = k + 1
if (j != 0) k = k + 1
if (i < h - 1) k = k + 1
if (j < w - 1) k = k + 1
cur[m[i][j].fixed + 1] = cur[m[i][j].fixed + 1] + d[i][j].v * k
}
}
return (cur[2] - cur[0]) / 2
}
 
var S = 10
var mesh = List.filled(S, null)
for (i in 0...S) {
mesh[i] = List.filled(S, null)
for (j in 0...S) mesh[i][j] = Node.new(0, 0)
}
var r = 2 / iter.call(mesh, S, S)
System.print("R = %(r)")</syntaxhighlight>
 
{{out}}
<pre>
R = 1.6089912417299
</pre>
 
=={{header|XPL0}}==
{{trans|C}}
<langsyntaxhighlight XPL0lang="xpl0">code real RlRes=46, RlOut=48;
def S = 10;
 
Line 1,521 ⟶ 2,509:
real MeshV(S,S); int MeshF(S,S);
RlOut(0, 2.0 / Iter(MeshV, MeshF, S, S))</langsyntaxhighlight>
 
{{out}}
Line 1,527 ⟶ 2,515:
1.60899
</pre>
 
=={{header|Yabasic}}==
{{trans|ERRE}}
<syntaxhighlight lang="yabasic"> N=10
NN=N*N
DIM A(NN,NN+1)
NODE=0
FOR ROW=1 TO N
FOR COL=1 TO N
NODE=NODE+1
IF ROW>1 THEN
A(NODE,NODE)=A(NODE,NODE)+1
A(NODE,NODE-N)=-1
END IF
IF ROW<N THEN
A(NODE,NODE)=A(NODE,NODE)+1
A(NODE,NODE+N)=-1
END IF
IF COL>1 THEN
A(NODE,NODE)=A(NODE,NODE)+1
A(NODE,NODE-1)=-1
END IF
IF COL<N THEN
A(NODE,NODE)=A(NODE,NODE)+1
A(NODE,NODE+1)=-1
END IF
NEXT
NEXT
AR=2 : AC=2 : A=AC+N*(AR-1)
BR=7 : BC=8 : B=BC+N*(BR-1)
A(A,NN+1)=-1
A(B,NN+1)=1
PRINT "Nodes ",A,B
// solve linear system
// using Gauss-Seidel method
// with pivoting
R=NN
FOR J=1 TO R
FOR I=J TO R
IF A(I,J)<>0 BREAK
NEXT
IF I=R+1 THEN
PRINT "No solution!"
END
END IF
FOR K=1 TO R+1
T = A(J,K)
A(J,K) = A(I,K)
A(I,K) = T
NEXT
Y=1/A(J,J)
FOR K=1 TO R+1
A(J,K)=Y*A(J,K)
NEXT
FOR I=1 TO R
IF I<>J THEN
Y=-A(I,J)
FOR K=1 TO R+1
A(I,K)=A(I,K)+Y*A(J,K)
NEXT
END IF
NEXT
NEXT
PRINT "Resistence = "; : PRINT ABS(A(A,NN+1)-A(B,NN+1)) USING "%1.13f"</syntaxhighlight>
 
=={{header|zkl}}==
{{trans|Maxima}}
Uses the GNU Scientific Library.
<langsyntaxhighlight lang="zkl">var [const] GSL=Import("zklGSL"); // libGSL (GNU Scientific Library)
fcn onGrid(i,j,p,q){ ((0<=i<p) and (0<=j<q)) }
fcn gridResistor(p,q, ai,aj, bi,bj){
Line 1,550 ⟶ 2,607:
b[k:=bi*q + bj]=1;
A.AxEQb(b)[k];
}</langsyntaxhighlight>
<langsyntaxhighlight lang="zkl">gridResistor(10,10, 1,1, 7,6).println();</langsyntaxhighlight>
{{out}}
<pre>
9,476

edits