Remote agent/Agent logic
In Remote agent, a game is described where an agent interacts with a simple world of walls, balls and squares, and a component is described that marshals commands between the simulation environment and the logic code behind the agent.
The goal conditions for the game are to get all balls in squares of matching colors, in as few turns as possible.
Using an interface for your language write a program that attempts to reach these goals. The exact agent behavior within the simulated environment is unspecified.
C
Go
package agent
import (
"log"
"math/rand"
"time"
"ra/ifc"
)
// The agent's awareness is quite limited. It has no representation of the
// maze, which direction it is facing, or what it did last. It notices and
// remembers just three things: The color of the sector just entered, the
// presense and color of any ball there, and the presense and color of any
// ball it is holding.
var sectorColor, sectorBall, agentBall byte
// Package level variable to simplify function calls.
var stream ifc.Streamer
func Agent(s ifc.Streamer) {
stream = s
// randomness used for movement
rand.Seed(time.Now().Unix())
// handshake
hs := stream.Rec()
if hs != ifc.Handshake {
log.Fatal("agent: thats no handshake")
}
stream.Send(ifc.Handshake)
// agent behavior main loop
for gameOver := false; !gameOver; {
findMisplaced()
get()
findMatching()
gameOver = drop()
}
}
// noColor is not part of the interface or the world's representation.
// It is used by the agent as a test for receipt of a color-based event.
const noColor byte = '-'
// Move moves one sector in a random direction.
// It retries on bumps and doesn't return until a forward command succeeds.
// It expects a color event on a successful move and terminates if it doesn't
// get one.
func move() {
for {
// Randomness: 50/50 chance of turning or attempting move.
// For turns, equal chance of turning right or left.
switch rand.Intn(4) {
case 0:
stream.Send(ifc.CmdLeft)
for stream.Rec() != ifc.EvStop {
}
continue
case 1:
stream.Send(ifc.CmdRight)
for stream.Rec() != ifc.EvStop {
}
continue
}
stream.Send(ifc.CmdForward)
bump := false
sectorColor = noColor
sectorBall = noColor
events:
for {
switch ev := stream.Rec(); ev {
case ifc.EvBump:
bump = true
case ifc.EvColorRed, ifc.EvColorGreen,
ifc.EvColorYellow, ifc.EvColorBlue:
sectorColor = ev
case ifc.EvBallRed, ifc.EvBallGreen,
ifc.EvBallYellow, ifc.EvBallBlue:
sectorBall = ev
case ifc.EvStop:
break events
}
}
if bump {
continue
}
if sectorColor == noColor {
log.Fatal("agent: expected color event after move")
}
return
}
}
// FindMisplaced wanders the maze looking for a ball on the wrong sector.
func findMisplaced() {
for {
move()
// get ball from current sector if meaningful
switch sectorBall {
case ifc.EvBallRed, ifc.EvBallGreen,
ifc.EvBallYellow, ifc.EvBallBlue:
if sectorBall != sectorColor+32 {
return
}
}
}
}
// Get is only called when get is possible.
func get() {
stream.Send(ifc.CmdGet)
for {
switch stream.Rec() {
case ifc.EvStop:
// agent notes ball color, and that sector is now empty
agentBall = sectorBall
sectorBall = noColor
return
case ifc.EvNoBallInSector, ifc.EvAgentFull:
log.Fatal("agent: expected get to succeed")
}
}
}
// There's a little heuristic built in to findMatching and drop.
// Ideally, findMatching finds an empty sector matching the ball that the
// agent is holding and then drop drops it there. FindMatching returns
// with partial success however, if it finds a sector matching the ball
// where the sector is not empty, but contains a ball of the wrong color.
// In this case, drop will drop the ball on the nearest empty sector,
// in hopes that it has at least moved the ball near a sector where it
// might ultimately go.
// FindMatching is only called when agent has a ball.
// FindMatching finds a sector where the color matches the ball the agent
// is holding and which does not already contain a matching ball.
// It does not necessarily find an empty matching sector.
func findMatching() {
for sectorColor+32 != agentBall || agentBall == sectorBall {
move()
}
}
// Drop is only called when the agent has a ball. Unlike get() however,
// drop() can be called whether the sector is empty or not. drop() means
// drop as soon as possible, so if the sector is full, drop() will wander
// at random looking for an empty sector.
func drop() (gameOver bool) {
for sectorBall != noColor {
move()
}
// expected to work
stream.Send(ifc.CmdDrop)
ev:
for {
switch stream.Rec() {
case ifc.EvGameOver:
gameOver = true
case ifc.EvStop:
break ev
case ifc.EvNoBallInAgent, ifc.EvSectorFull:
log.Fatal("expected drop to succeed")
}
}
sectorBall = agentBall
agentBall = noColor
return
}
Julia
See Remote agent/Agent_logic/Julia
Perl
This is the agent. It talks over tcp. Start it with an argument of "host:port". With no argument it will default to "localhost:3141". It should be run in a terminal that understand ANSI escape sequences, because it shows the world it has found as it looks for all sectors first and then goes around cleaning up the mismatches second. Empty sectors are shown in blue, sectors with a matching ball are shown in green, and sectors with a mismatching ball are shown in red.
#!/usr/bin/perl
use strict; # https://rosettacode.org/wiki/Remote_agent
use warnings;
use IO::Socket;
use List::Util qw( shuffle first );
use Time::HiRes qw( sleep time );
$SIG{__WARN__} = sub { die @_ };
$/ = '.';
$| = 1;
my $delay = 0;
my $show = 1;
my $server = shift // 'localhost:3141';
my $socket = IO::Socket::INET->new($server) or die $@;
getc $socket eq 'A' ? print $socket 'A' : die "no handshake";
my $start = time;
my ($wide, $high) = (3, 3);
my $grid = (' ' x $wide . " \n") x $high;
my $gap = $wide * 2 + 2;
my %gap = ( N => -$gap, E => 2, S => $gap, W => -2 );
my $dir = 'N';
my $agent = $gap * ($high >> 1) + 2 * ($wide >> 1);
my @wrong = map { my $f = $_;
map { $f eq $_ ? () : "$f\l$_" } qw(R G B Y) } qw(R G B Y);
my $wrong = qr/(?:@{[ join '|', @wrong ]})/;
my $success = '';
my $turns = 0;
$show and print "\e[H\e[J";
sub show
{
$show and print "\e[H$grid\n" =~ s/([RGBY])([rgby])/ $1 eq uc $2 ?
"\e[92m$1$2\e[m" : "\e[91m$1$2\e[m" /ger =~ s/[RGBY] /\e[94m$&\e[m/gr;
}
sub out { substr $grid, $agent, 2, shift }
sub at { substr $grid, shift, 2 }
sub command
{
$turns += print $socket @_;
local $_ = <$socket>;
/\|/ or $turns++;
$_;
}
sub set # sends command to rotate from current dir to requested dir
{
my $want = shift;
$want =~ /^[NESW]$/ or die "bad dir $want";
$want eq $dir and return;
command $_ for split //,
'NESWN' =~ /$dir$want/ ? '>' : 'NWSEN' =~ /$dir$want/ ? '<' : '>>';
$dir = $want;
}
sub expand # the grid if color sector on edge
{
if( $grid =~ /\w.*$/ )
{
$grid .= ' ' x $wide . " \n";
$high += 1;
}
elsif( $grid =~ /^.*\w/ )
{
$grid = ' ' x $wide . " \n" . $grid;
$agent += 2 * ($wide + 1);
$high += 1;
}
elsif( $grid =~ /^\w/m )
{
my $lines = $` =~ tr/\n//;
$grid =~ s/^/ /gm;
$agent += 2 * (1 + $lines);
$wide++;
}
elsif( $grid =~ /\w. \n/ )
{
my $lines = $` =~ tr/\n//;
$grid =~ s/\n/ \n/g;
$agent += 2 * $lines;
$wide++;
}
$gap = 2 * ($wide + 1); # if changed vertical step
%gap = ( N => -$gap, E => 2, S => $gap, W => -2 );
}
sub moveto
{
my ($to) = @_;
$agent == $to and return;
my $bloc = $agent >> 1;
local $_ = $grid =~ s/(.).| (\n)/$+/gr;
tr/RGBY |/ -/;
substr $_, $to >> 1, 1, 'd';
my $gap = /\n/ && $-[0];
substr $_, $bloc, 1, ' ';
while( ' ' eq substr $_, $bloc, 1 )
{
my $west = ((tr/-/ /r =~ s/(.*)./ $1/gr | $_) &
tr/dnesw / \xff/r) =~ tr/a-\x7f/w/r;
my $east = ((tr/-/ /r =~ s/.(.*)/$1 /gr | $_) &
tr/dnesw / \xff/r) =~ tr/a-\x7f/ e/r;
my $south = ((substr($_, $gap + 1) =~ tr/-/ /r | $_) &
tr/dnesw / \xff/r) =~ tr/a-\x7f/ s/r;
my $north = (((' ' x $gap . "\n" . substr($_, 0, -$gap - 1)) =~
tr/-/ /r | $_) & tr/dnesw / \xff/r) =~ tr/a-\x7f/ n/r;
$_ = ($_ & $south =~ tr/ w/\xff\0/r) | $south;
$_ = ($_ & $north =~ tr/ w/\xff\0/r) | $north;
$_ = ($_ & $west =~ tr/ w/\xff\0/r) | $west;
$_ = ($_ & $east =~ tr/ w/\xff\0/r) | $east;
"$east$west$north$south" =~ /\w/ or die "d not found";
}
my $path = '';
my %gap = (N => -$gap - 1, S => $gap + 1, E => 1, W => -1);
while( 1 )
{
my $dir = uc substr $_, $bloc, 1;
$dir =~ /[NESW]/ or last;
$path .= $dir;
$bloc += $gap{$dir};
}
set($_), $_ = command( '^' ), /[|]/ && die "wall during moveto"
for split //, $path; # walk agent along path
$agent = $to; # arrived
}
while( $grid =~ / / ) ############################################ main
{
show;
$delay and sleep $delay;
$agent % 2 and die "$agent is odd";
my $v = qr/(?:..){$wide}/s;
if( $grid =~ /[RGBY]/ )
{
my ($in, $face) =
at( $agent - 2 ) eq ' ' ? ($agent, 'W') :
at( $agent + $gap{'N'} ) eq ' ' ? ($agent, 'N') :
at( $agent + $gap{'S'} ) eq ' ' ? ($agent, 'S') :
at( $agent + 2 ) eq ' ' ? ($agent, 'E') :
$grid =~ / ([RGBY].)/ ? ($-[1], 'W') :
$grid =~ /([RGBY].) / ? ($-[1], 'E') :
$grid =~ / $v([RGBY].)/ ? ($-[1], 'N') :
$grid =~ /([RGBY].)$v / ? ($-[1], 'S') : last;
moveto($in);
set($face);
$_ = command '^';
if( /\|/ ) { substr $grid, $agent + $gap{$dir}, 2, '||'; }
else
{
$agent += $gap{$dir};
out tr/RGBY//cdr . (tr/rgby//cdr || ' ');
expand();
}
}
else
{
substr($grid, $agent + $gap{$dir}, 2, '||'),
set('NESWN' =~ /$dir(.)/ ? $1 : die "bad dir")
while $_ = command('^'), /\|/;
$agent += $gap{$dir};
out tr/RGBY//cdr . (tr/rgby//cdr || ' ');
expand();
}
}
show;
tr/R// >= tr/r// && tr/G// >= tr/g// && tr/B// >= tr/b// && tr/Y// >= tr/y//
&& tr/RGBY// > tr/rgby// or die "invalid ball counts" for $grid;
#$grid =~ /$wrong/ ? print "swapping\n" : print "no swapping needed";
sub any
{
my ($qr) = @_;
my @any;
push @any, $-[0] while $grid =~ /$qr/g;
$any[rand @any];
}
sub dist
{
my ($x, $y) = map $_ >> 1, @_;
my $w = $wide + 1;
abs($x % $w - $y % $w) + abs(int($x / $w) - int($y / $w));
}
sub nearest
{
my ($qr, $from) = @_;
my @dist;
$dist[dist( $from, $-[0] )] = $-[0] while $grid =~ /$qr/g;
first {defined} @dist;
}
while( 1 )
{
show;
my $from = nearest( qr/$wrong/, $agent ) or last;
my $ball = substr $grid, $from + 1, 1;
$grid =~ /\u$ball / or $from = any( qr/$wrong/ ),
$ball = substr $grid, $from + 1, 1;
my $to = nearest( qr/\u$ball /, $from ) || any( qr/[RGBY] / );
# my $to = ( $grid =~ /\u$ball / && $-[0] ) || any( qr/[RGBY] / );
moveto($from);
$_ = command '@';
/[as]/i and die "ERROR $_ on get";
substr $grid, $from + 1, 1, ' ';
moveto($to);
$_ = command '!';
/[as]/i and die "ERROR $_ on drop";
substr $grid, $to + 1, 1, $ball;
/\+/ and $success = "\e[JSUCCESS ", last;
$delay and sleep $delay;
}
show;
print $success, "\n";
printf "\n$turns turns took %.3f seconds %d usec/turn\n", time - $start,
(time - $start) / $turns * 1e6;
Phix
-- -- demo\rosetta\Remote_Agent_Agent_Logic.exw -- ========================================= -- include Remote_Agent_Interface.exw -- -- Initially just four unknowns in all four directions: -- slowly poulated with WRGYB (Wall/Red/Green/Yellow/Blue) -- note the board can be extended in all four directions -- aside: it should not actually matter if the server -- initially points agent in a random direction. -- sequence board = {"???", "???", "???"}, balls = {"...", -- (meaningless while the "...", -- equivalent board[y][x] "..."} -- is still set to a '?') integer x = 2, y = 2, face = North, ball = '.', last_command, -- (for sanity checks only) pickup = 0, -- (once started keep going) putdown = 0 -- (for cases such as RyG Yr, -- force a drop onto G, and -- *not* y/r back onto R/Y.) function go(integer dn) -- common code to get the correct turn/forward command -- '<' if dn=face+1 mod 4, '^' if dn==face, else '>': -- both face and dn are 1..4 aka NESW, in that order integer command = "<>>^<>>"[face+4-dn] -- (tee hee) if command!='^' then -- 1..4 (ie NESW) ==> first four for '<', -- last four for '>': face = {4,1,2,3,4,1}[face+command-'<'] end if return command end function bool handshake = true function get_command() if handshake then handshake = false return 'A' end if integer command = 0, height = length(board), width = length(board[1]) -- -- Playing strategy: -- Use a (marking) breadth-first search to determine the next action. -- Candidate actions are explore further, and pick up or drop a ball. -- Do not pick up balls until you know somewhere they can be dropped. -- Favour "explore first" and forget any "travelling salesman" ideas, -- ie: jumping hoops to save a few moves is not the name of the game. -- Lastly a case such as RyG Yr, which requires moving either to the -- G first must be handled, that is, when no better move is possible. -- Another case to watch out for: Gb..gB, initially you find that Gg -- and set off to pick up the g, but then find bB first, and turn to -- go pick up the b and repeat that forever, so once you decide what -- to do, stick with it, using those pickup and putdown variables. -- if find(ball,{lower(board[y][x]),putdown}) -- (right or needed wrong) and balls[y][x] = '.' then command = '!' -- drop balls[y][x] = ball ball = '.' putdown = 0 else sequence todo = {{x,y,0}}, next = {}, seen = repeat(repeat(false,width),height), been = seen, -- already in todo/next found = {}, -- balls in wrong sector empty = {} -- empty sectors been[y][x] = true while command=0 do if length(todo)=0 then if command=0 and ball='.' then -- look for pair in found/empty (ie rR, gG, yY or bB) for i=1 to length(found) do integer {fb,fy,fx,fd} = found[i] for j=1 to length(empty) do if fb=empty[j][1] then if fd=0 then if fx!=x or fy!=y or balls[y][x]!=fb then die("d=0 not right?") end if command = '@' -- get ball = fb balls[y][x] = '.' pickup = 0 exit end if pickup = fb command = go(fd) exit end if end for if command!=0 then exit end if end for end if if command!=0 then exit end if if length(next)=0 then -- unsolveable or eg RyG Yr case (ie the y blocks -- a r->R move, and the r is blocking a y->Y move): if putdown=0 then -- pick up the nearest wrong'n (which we may be on) integer {fb,fy,fx,fd} = found[1] if fy=y and fx=x then assert(ball=='.') assert(balls[y][x]!='.') command = '@' -- get ball = fb balls[y][x] = '.' pickup = 0 -- ... and fix the drop cell colour now putdown = empty[1][1] else command = go(fd) end if else integer {eb,ey,ex,ed} = empty[1] assert(eb==putdown) -- (shd only collect such) -- drop, or move to where it should be dropped if ey=y and ex=x then assert(ball!='.') assert(lower(board[y][x])==putdown) assert(balls[y][x]=='.') command = '!' -- drop balls[y][x] = ball ball = '.' putdown = 0 else command = go(ed) end if end if exit end if todo = next next = {} end if integer {cx,cy,d0} = todo[1] todo = todo[2..$] if not seen[cy][cx] then integer cell = board[cy][cx], lowc = lower(cell), bcyx = balls[cy][cx] if cell!='?' then -- add to found/empty if bcyx='.' then if ball=lowc then -- sanity: imm drop shd have happened assert(cx!=x or cy!=y,"not imm?") command = go(d0) exit end if if putdown=0 or putdown=lowc then empty = append(empty,{lowc,cy,cx,d0}) end if elsif bcyx!=lowc then if pickup=0 or pickup=bcyx then found = append(found,{bcyx,cy,cx,d0}) end if end if seen[cy][cx] = true end if end if for d=North to West do -- (1..4) integer {dx,dy} = dxy[d], wall = board[cy+dy][cx+dx], {nx,ny} = {cx+dx*2,cy+dy*2}, dn = iff(d0=0?d:d0) if wall='?' or (wall=' ' and board[ny][nx]='?') then command = go(dn) exit elsif wall=' ' and not been[ny][nx] then next = append(next,{nx,ny,dn}) been[ny][nx] = true end if end for end while end if last_command = command -- (for sanity checks only) return command end function procedure extend_if_needed(integer cell_colour) -- (also sets x and y and the new cell colour) integer {dx,dy} = dxy[face], {fx,fy} = {x+dx*2,y+dy*2}, height = length(board), width = length(board[1]) board[y+dy][x+dx] = ' ' -- (not a wall) if fx=0 then -- extend board left (and leave x set to 2) for i=1 to height do board[i] = "??"&board[i] balls[i] = ".."&balls[i] end for else x = fx if x>=width then -- extend board right for i=1 to length(board) do board[i] &= "??" balls[i] &= ".." end for end if end if if fy=0 then -- extend board up (and leave y set to 2) board = repeat(repeat('?',width),2)&board balls = repeat(repeat('.',width),2)&balls else y = fy if y>=height then -- extend board down board &= repeat(repeat('?',width),2) balls &= repeat(repeat('.',width),2) end if end if board[y][x] = cell_colour end procedure procedure accept_event(integer event) -- Note: the logic above does not attempt to pick up a ball -- when it already has one, or when in an empty cell, -- or drop one it does not have, or drop one into an -- occupied cell, and hence this does /not/ trigger -- or handle any "SAsa" events, not yet anyway. -- (Fairly obviously this would then have to undo a -- few things, or defer updates to the stop event.) assert(last_command=='^' or event=='.') -- (optional/deletable) integer {fx,fy} = sq_add({x,y},dxy[face]), wall = iff(odd(fy)?'-':'|') switch event do case '!': board[fy][fx] = wall -- bump case '.': last_command = '.' -- stop case 'R','G','Y','B': extend_if_needed(event) -- cell colour case 'r','g','y','b': balls[y][x] = event -- ball colour default: ?9/0 -- (unknown/unhandled event) end switch end procedure function get_agent() -- (for display only) -- it does not hurt any to do this... for i=1 to length(board) by 2 do for j=1 to length(board[i]) by 2 do board[i][j] = '+' end for end for return {{board,balls},{x,y,face,ball}} end function register_agent(get_command, accept_event, get_agent)
For example output see Remote_agent/Simulation#Phix
PicoLisp
Tcl
Sample agent (not a good or smart player of the game; just to show how to program to the interface).
package require Tcl 8.6
package require RC::RemoteAgent
oo::class create Agent {
superclass AgentAPI
variable sectorColor ballColor
forward Behavior my MoveBehavior
# How to move around
method MoveBehavior {} {
set ball ""
while 1 {
try {
while {rand() < 0.5} {
my ForwardStep
my BallBehavior
}
} trap bumpedWall {} {}
if {rand() < 0.5} {
my TurnLeft
} else {
my TurnRight
}
}
set ::wonGame ok
}
# How to handle the ball once we've arrived in a square
method BallBehavior {} {
upvar 1 ball ball anywhere anywhere
if {
$ball eq ""
&& $ballColor ne ""
&& $ballColor ne $sectorColor
} then {
set ball [set ballTarget $ballColor]
set anywhere 0
my GetBall
} elseif {
$ball ne ""
&& ($ball eq $sectorColor || $anywhere)
} {
try {
if {[my DropBall]} {
return -code break
}
set ball ""
} trap sectorFull {} {
# Target square full; drop this ball anywhere
set anywhere 1
}
}
}
}
Agent new "localhost" 12345
vwait wonGame
Wren
/* agent.wren */
import "random" for Random
import "./ifc" for Ifc, Log
import "./str" for Char
// The agent's awareness is quite limited. It has no representation of the
// maze, which direction it is facing, or what it did last. It notices and
// remembers just three things: The color of the sector just entered, the
// presence and color of any ball there, and the presence and color of any
// ball it is holding.
var sectorColor = " "
var sectorBall = " "
var agentBall = " "
var stream = null
var noColor = "-"
var rand = Random.new()
// Move moves one sector in a random direction.
// It retries on bumps and doesn't return until a forward command succeeds.
// It expects a color event on a successful move and terminates if it doesn't
// get one.
var move = Fn.new {
while (true) {
// Randomness: 50/50 chance of turning or attempting move.
// For turns, equal chance of turning right or left.
var t = rand.int(4)
if (t == 0) {
stream.send(Ifc.cmdLeft)
Fiber.yield()
while (stream.rec() != Ifc.evStop) { Fiber.yield() }
continue
} else if (t == 1) {
stream.send(Ifc.cmdRight)
Fiber.yield()
while (stream.rec() != Ifc.evStop) { Fiber.yield() }
continue
}
stream.send(Ifc.cmdForward)
var bump = false
sectorColor = noColor
sectorBall = noColor
while (true) {
Fiber.yield()
var ev = stream.rec()
if (ev == Ifc.evBump) {
bump = true
} else if ([Ifc.evColorRed, Ifc.evColorGreen, Ifc.evColorYellow, Ifc.evColorBlue].contains(ev)) {
sectorColor = ev
} else if ([Ifc.evBallRed, Ifc.evBallGreen, Ifc.evBallYellow, Ifc.evBallBlue].contains(ev)) {
sectorBall = ev
} else if (ev == Ifc.evStop) {
break
}
}
if (bump) continue
if (sectorColor == noColor) Log.fatal("agent: expected color event after move")
return
}
}
// Get is only called when get is possible.
var get = Fn.new {
stream.send(Ifc.cmdGet)
while (true) {
Fiber.yield()
var ch = stream.rec()
if (ch == Ifc.evStop) {
// agent notes ball color, and that sector is now empty
agentBall = sectorBall
sectorBall = noColor
return
} else if (ch == Ifc.evNoBallInSector || ch == Ifc.evAgentFull) {
Log.fatal("agent:expected get to succeed")
}
}
}
// FindMatching is only called when agent has a ball.
// FindMatching finds a sector where the color matches the ball the agent
// is holding and which does not already contain a matching ball.
// It does not necessarily find an empty matching sector.
var findMatching = Fn.new {
while (Char.lower(sectorColor) != agentBall || agentBall == sectorBall) move.call()
}
// FindMisplaced wanders the maze looking for a ball on the wrong sector.
var findMisplaced = Fn.new {
while (true) {
move.call()
// get ball from current sector if meaningful
if ([Ifc.evBallRed, Ifc.evBallGreen, Ifc.evBallYellow, Ifc.evBallBlue].contains(sectorBall)) {
if (sectorBall != Char.lower(sectorColor)) return
}
}
}
// Drop is only called when the agent has a ball. Unlike get() however,
// drop() can be called whether the sector is empty or not. drop() means
// drop as soon as possible, so if the sector is full, drop() will wander
// at random looking for an empty sector.
var drop = Fn.new {
var gameOver = false
while (sectorBall != noColor) move.call()
// expected to work
stream.send(Ifc.cmdDrop)
while(true) {
Fiber.yield()
var ch = stream.rec()
if (ch == Ifc.evGameOver) {
gameOver = true
} else if (ch == Ifc.evStop) {
break
} else if (ch == Ifc.evNoBallInAgent || ch == Ifc.evSectorFull) {
Log.fatal("expected drop to succeed")
}
}
sectorBall = agentBall
agentBall = noColor
return gameOver
}
var Agent = Fn.new { |s|
stream = s
// handshake
var hs = stream.rec()
if (hs != Ifc.handshake) Log.fatal("agent: that's no handshake")
stream.send(Ifc.handshake)
Fiber.yield()
// agent behavior main loop
var gameOver = false
while (!gameOver) {
findMisplaced.call()
get.call()
findMatching.call()
gameOver = drop.call()
}
}