Real constants and functions: Difference between revisions

Content added Content deleted
No edit summary
(Undo revision 324747 by Drkameleon (talk))
Line 1: Line 1:
{{task|Basic language learning}}
[[Category:Arithmetic operations]]
[[Category:Simple]]

;Task:
Show how to use the following math constants and functions in your language   (if not available, note it):
:* &nbsp; <big>''e''</big> &nbsp; (base of the natural logarithm)
:* &nbsp; <big><math>\pi</math></big>
:* &nbsp; square root
:* &nbsp; logarithm &nbsp; (any base allowed)
:* &nbsp; exponential &nbsp; (<big>''e''<sup>''x''</sup></big> )
:* &nbsp; absolute value &nbsp; (a.k.a. "magnitude")
:* &nbsp; floor &nbsp; (largest integer less than or equal to this number--not the same as truncate or int)
:* &nbsp; ceiling &nbsp; (smallest integer not less than this number--not the same as round up)
:* &nbsp; power &nbsp; (<big>''x''<sup>''y''</sup></big> )


;Related task:
* &nbsp; [[Trigonometric Functions]]
<br><br>

=={{header|11l}}==
{{trans|Python}}

<lang 11l>math:e // e
math:pi // pi
sqrt(x) // square root
log(x) // natural logarithm
log10(x) // base 10 logarithm
exp(x) // e raised to the power of x
abs(x) // absolute value
floor(x) // floor
ceil(x) // ceiling
x ^ y // exponentiation</lang>

=={{header|ACL2}}==
Only the last three are available as built in functions.

<lang Lisp>(floor 15 2) ;; This is the floor of 15/2
(ceiling 15 2)
(expt 15 2) ;; 15 squared</lang> =={{header|ACL2}}==
Only the last three are available as built in functions.

loor and ceiling are not provided, one can
define them using integer part:

<lang pop11>define floor(x);
if x < 0 then
-intof(x);
else
intof(x);
endif;
enddefine;

define ceiling(x);
-floor(-x);
enddefine;</lang>

=={{header|ActionScript}}==
Actionscript has all the functions and constants mentioned in the task, available in the Math class.
<lang ActionScript>Math.E; //e
Math.PI; //pi
Math.sqrt(u); //square root of u
Math.log(u); //natural logarithm of u
Math.exp(u); //e to the power of u
Math.abs(u); //absolute value of u
Math.floor(u);//floor of u
Math.ceil(u); //ceiling of u
Math.pow(u,v);//u to the power of v</lang>
The Math class also contains several other constants.
<lang ActionScript>Math.LN10; // natural logarithm of 10
Math.LN2; // natural logarithm of 2
Math.LOG10E; // base-10 logarithm of e
Math.LOG2E; // base-2 logarithm of e
Math.SQRT1_2;// square root of 1/2
Math.SQRT2; //square root of 2</lang>

=={{header|Ada}}==
Most of the constants and functions used in this task are defined in the pre-defined Ada package Ada.Numerics.Elementary_Functions.
<lang ada>Ada.Numerics.e -- Euler's number
Ada.Numerics.pi -- pi
sqrt(x) -- square root
log(x, base) -- logarithm to any specified base
exp(x) -- exponential
abs(x) -- absolute value
S'floor(x) -- Produces the floor of an instance of subtype S
S'ceiling(x) -- Produces the ceiling of an instance of subtype S
x**y -- x raised to the y power</lang>

=={{header|Aime}}==
<lang aime># e
exp(1);
# pi
2 * asin(1);

sqrt(x);
log(x);
exp(x);
fabs(x);
floor(x);
ceil(x);
pow(x, y);</lang>

=={{header|ALGOL 68}}==
<lang algol68>REAL x:=exp(1), y:=4*atan(1);
printf(($g(-8,5)"; "$,
exp(1), # e #
pi, # pi #
sqrt(x), # square root #
log(x), # logarithm base 10 #
ln(x), # natural logarithm #
exp(x), # exponential #
ABS x, # absolute value #
ENTIER x, # floor #
-ENTIER -x, # ceiling #
x ** y # power #
))</lang>
{{out}}
<pre> 2.71828; 3.14159; 1.64872; 0.43429; 1.00000; 15.15426; 2.71828; 2.00000; 3.00000; 23.14069; </pre>

''ALGOL 68'' also includes assorted long, short and complex versions of the above, eg: ''long exp'', ''long long exp'', ''short exp'', ''complex exp'' etc.

And assorted trig functions: ''sin(x)'', ''arcsin(x)'', ''cos(x)'', ''arccos(x)'', ''tan(x)'', ''arctan(x)'', ''arctan2(x,y)'', ''sinh(x)'', ''arcsinh(x)'', ''cosh(x)'', ''arccosh(x)'', ''tanh(x)'' AND ''arctanh(x)''.

=={{header|ALGOL W}}==
<lang algolw>begin
real t, u;
t := 10;
u := -2.3;
i_w := 4; s_w := 0; r_format := "A"; r_d := 4; r_w := 9; % set output format %
write( " e: ", exp( 1 ) ); % e %
write( " pi: ", pi ); % pi %
write( " root t: ", sqrt( t ) ); % square root %
write( " log t: ", log( t ) ); % log base 10 %
write( " ln t: ", ln( t ) ); % log base e %
write( " exp u: ", exp( u ) ); % exponential %
write( " abs u: ", abs u ); % absolute value %
write( " floor pi: ", entier( pi ) ); % floor %
write( "ceiling pi: ", - entier( - pi ) ); % ceiling %
% the raise-to-the-power operator is "**" - it only allows integers for the power %
write( " pi cubed: ", pi ** 3 ) % use exp( ln( x ) * y ) for general x^y %
end.</lang>

=={{header|ARM Assembly}}==

{{omit from|ARM Assembly}}
<lang>
/* functions not availables */
</lang>

=={{header|Arturo}}==
=={{header|Arturo}}==
<lang rebol>print ["Euler:" epsilon]
<lang rebol>print ["Euler:" epsilon]
Line 24: Line 174:
ceil 23.536: 24
ceil 23.536: 24
2 ^ 8: 256</pre>
2 ^ 8: 256</pre>

=={{header|AutoHotkey}}==
The following math functions are built into AutoHotkey:
<lang autohotkey>Sqrt(Number) ; square root
Log(Number) ; logarithm (base 10)
Ln(Number) ; natural logarithm (base e)
Exp(N) ; e to the power N
Abs(Number) ; absolute value
Floor(Number) ; floor
Ceil(Number) ; ceiling
x**y ; x to the power y</lang>
No mathematical constants are built-in, but they can all be calculated:
<lang autohotkey>e:=exp(1)
pi:=2*asin(1)</lang>
The following are additional trigonometric functions that are built into the AutoHotkey language:
<lang autohotkey>Sin(Number) ; sine
Cos(Number) ; cosine
Tan(Number) ; tangent
ASin(Number) ; arcsine
ACos(Number) ; arccosine
ATan(Number) ; arctangent</lang>

=={{header|AWK}}==
Awk has square root, logarithm, exponential and power.

<lang awk>BEGIN {
print sqrt(2) # square root
print log(2) # logarithm base e
print exp(2) # exponential
print 2 ^ -3.4 # power
}
# outputs 1.41421, 0.693147, 7.38906, 0.0947323</lang>

<blockquote style="font-size: smaller;">'''Power's note:'''
With [[nawk]] or [[gawk]], <code>2 ** -3.4</code> acts like <code>2 ^ -3.4</code>.
With [[mawk]], <code>2 ** -3.4</code> is a syntax error.
Nawk allows <code>**</code>, but its manual page only has <code>^</code>.
Gawk's manual warns, ''"The POSIX standard only specifies the use of `^' for exponentiation.
For maximum portability, do not use the `**' operator."''</blockquote>

Awk misses e, pi, absolute value, floor and ceiling; but these are all easy to implement:

<lang awk>BEGIN {
E = exp(1)
PI = atan2(0, -1)
}

function abs(x) {
return x < 0 ? -x : x
}

function floor(x) {
y = int(x)
return y > x ? y - 1 : y
}

function ceil(x) {
y = int(x)
return y < x ? y + 1 : y
}

BEGIN {
print E
print PI
print abs(-3.4) # absolute value
print floor(-3.4) # floor
print ceil(-3.4) # ceiling
}
# outputs 2.71828, 3.14159, 3.4, -4, -3</lang>

=={{header|Axe}}==
In general, Axe does not support many operations on real numbers.
However, there are a few special cases that it does support.

To take the square root of an integer X:
<lang axe>√(X)</lang>

To take the square root of an 8.8 fixed-point number Y:
<lang axe>√(Y)ʳ</lang>

To take the base-2 logarithm of an integer X:
<lang axe>ln(X)</lang>

To take 2 raised to an integer X: (Note that the base is not Euler's number)
<lang axe>e^(X)</lang>

To take the absolute value of a signed integer X:
<lang axe>abs(X)</lang>

=={{header|BASIC}}==
{{works with|QuickBasic|4.5}}
<lang qbasic>abs(x) 'absolute value
sqr(x) 'square root
exp(x) 'exponential
log(x) 'natural logarithm
x ^ y 'power
'floor, ceiling, e, and pi not available</lang>

==={{header|IS-BASIC}}===
<lang IS-BASIC>100 LET X=2:LET Y=5
110 PRINT EXP(1) ! value of e
120 PRINT PI ! value of Pi
130 PRINT ROUND(PI,3) ! rounds Pi to 3 decimal places
140 PRINT TRUNCATE(PI,3) ! cuts 3 decimal places from Pi
150 PRINT SQR(X) ! square root of x
160 PRINT LOG(X) ! the natural logarithm of number x
170 PRINT LOG2(X) ! logarithm of x to base 2
180 PRINT LOG10(X) ! logarithm of x to base 10
190 PRINT EXP(X) ! exponential
200 PRINT ABS(X) ! the absolute value of a number
210 PRINT INT(X) ! the largest whole number not bigger than x
220 PRINT IP(X) ! the integer part of x
230 PRINT FP(X) ! stands for fractorial part
240 PRINT CEIL(X) ! ceiling: gives the smallest whole number not less than x
250 PRINT X^Y ! power
260 PRINT MIN(X,Y) ! the smaller number of x and y
270 PRINT MAX(X,Y) ! the bigger number of x and y
280 PRINT EPS(X) ! the smallest quantity that can be added to or subtracted from x to make the interpreter register a change in the value of x
290 PRINT INF ! The largest positive number the tinterpreter can handle. This number is 9.999999999*10^62</lang>

==={{header|Sinclair ZX81 BASIC}}===
Arguments to built-in functions may be placed in parentheses, but are not required to be.

Base of the natural logarithm:
<lang basic>EXP 1</lang>

<math>\pi</math>:
<lang basic>PI</lang>

Square root:
<lang basic>SQR X</lang>

Natural logarithm:
<lang basic>LN X</lang>

Exponential:
<lang basic>EXP X</lang>

Absolute value:
<lang basic>ABS X</lang>

Floor:
<lang basic>INT X</lang>
(NB. Although this function is called <code>INT</code>, it corresponds to <code>floor</code>: e.g. <code>INT -3.1</code> returns -4 not -3.)

Ceiling:<br>
not provided as a built-in function.

Power:
<lang basic>X**Y</lang>
NB. Both <math>x</math> and <math>y</math> can be real numbers.

==={{header|BBC BASIC}}===
<lang bbcbasic> e = EXP(1)
Pi = PI
Sqr2 = SQR(2)
Ln2 = LN(2)
Log2 = LOG(2) : REM Base 10
Exp2 = EXP(2)
Abs2 = ABS(-2)
Floor = INT(1.234)
Ceil = FNceil(1.234)
Power = 1.23^4
END
DEF FNceil(n) = INT(n) - (INT(n) <> n)
</lang>

=={{header|bc}}==
The language has square root and power, but power only works if the exponent is an integer.

<lang bc>scale = 6
sqrt(2) /* 1.414213 square root */
4.3 ^ -2 /* .054083 power (integer exponent) */</lang>

The standard library has natural logarithm and exponential functions. It can calculate e and pi: e comes from the exponential function, while pi is four times the arctangent of one. The usual formulas can calculate the powers with fractional exponents, and the logarithms with any base.

{{libheader|bc -l}}
<lang bc>scale = 6
l(2) /* .693147 natural logarithm */
e(2) /* 7.389056 exponential */

p = 4 * a(1)
e = e(1)
p /* 3.141592 pi to 6 fractional digits */
e /* 2.178281 e to 6 fractional digits */

e(l(2) * -3.4) /* .094734 2 to the power of -3.4 */
l(1024) / l(2) /* 10.000001 logarithm base 2 of 1024 */</lang>

The missing functions are absolute value, floor and ceiling. You can implement these functions, if you know what to do.

{{trans|AWK}}
<lang bc>/* absolute value */
define v(x) {
if (x < 0) return (-x)
return (x)
}

/* floor */
define f(x) {
auto s, y

s = scale
scale = 0
y = x / 1
scale = s

if (y > x) return (y - 1)
return (y)
}

/* ceiling */
define g(x) {
auto s, y

s = scale
scale = 0
y = x / 1
scale = s

if (y < x) return (y + 1)
return (y)
}

v(-3.4) /* 3.4 absolute value */
f(-3.4) /* -4 floor */
g(-3.4) /* -3 ceiling */</lang>

=={{header|blz}}==
The constant e
<lang blz>{e}</lang>

The constant pi
<lang blz>{pi}</lang>

Square root
<lang blz>x ** 0.5</lang>

Logarithm (base n)
<lang blz>x __ n</lang>

Exponential
<lang blz>{e} ** x</lang>

Absolute Value
<lang blz>abs(x)</lang>

Floor
<lang blz>floor(x)</lang>

Ceiling
<lang blz>ceil(x)</lang>

Power x to the y
<lang blz>x ** y</lang>

=={{header|Bracmat}}==
Bracmat has no real number type, but the constants <code>e</code> and <code>pi</code>, together with <code>i</code> can be used as symbols with the intended mathematical meaning in exponential functions.
For example, differentiation <code>10^x</code> to <code>x</code>
<lang bracmat>x \D (10^x) { \D is the differentiation operator }</lang>
has the result
<lang bracmat>10^x*e\L10 { \L is the logarithm operator }</lang>
Likewise <code>e^(i*pi)</code> evaluates to <code>-1</code> and <code>e^(1/2*i*pi)</code> evaluates to <code>i</code>.

When taking the square root of a (rational) number, and nominator and denominator are not too big (convertible to 32 or 64 bit integers, depending on platform), Bracmat resolves the number in prime factors and halves the exponents of each of the prime factors.

Bracmat handles logarithms in any base, except real numbers that are not rational. Example: <code>24/7 \L 119/9</code> evaluates to <code>2+24/7\L5831/5184</code>.

Bracmat does not attempt to compute the numerical value of the exponential function, except for a the special case where the result is a rational number.
Thus <code>e^0</code> evaluates to <code>1</code>.

Bracmat has no built-in functions for computing the absolute value,
floor or ceiling. For real numbers that are rational such functions can be written.

If the result of taking the power of a rational number to another rational number is rational, Bracmat can in many compute it, if needed using prime factorization. See root above. Example:
<code> 243/1024^2/5</code> evaluates to <code>9/16</code>.

=={{header|C}}==
Most of the following functions take a double.
<lang c>#include <math.h>

M_E; /* e - not standard but offered by most implementations */
M_PI; /* pi - not standard but offered by most implementations */
sqrt(x); /* square root--cube root also available in C99 (cbrt) */
log(x); /* natural logarithm--log base 10 also available (log10) */
exp(x); /* exponential */
abs(x); /* absolute value (for integers) */
fabs(x); /* absolute value (for doubles) */
floor(x); /* floor */
ceil(x); /* ceiling */
pow(x,y); /* power */</lang>

To access the M_PI, etc. constants in Visual Studio, you may need to add the line <code>#define _USE_MATH_DEFINES</code> before the <code>#include <math.h></code>.

=={{header|C sharp}}==
<lang csharp>using System;

class Program {
static void Main(string[] args) {
Console.WriteLine(Math.E); //E
Console.WriteLine(Math.PI); //PI
Console.WriteLine(Math.Sqrt(10)); //Square Root
Console.WriteLine(Math.Log(10)); // Logarithm
Console.WriteLine(Math.Log10(10)); // Base 10 Logarithm
Console.WriteLine(Math.Exp(10)); // Exponential
Console.WriteLine(Math.Abs(10)); //Absolute value
Console.WriteLine(Math.Floor(10.0)); //Floor
Console.WriteLine(Math.Ceiling(10.0)); //Ceiling
Console.WriteLine(Math.Pow(2, 5)); // Exponentiation
}
}</lang>

=={{header|C++}}==
=== using Math macros ===
<lang cpp>#include <iostream>
#include <cmath>

#ifdef M_E
static double euler_e = M_E;
#else
static double euler_e = std::exp(1); // standard fallback
#endif

#ifdef M_PI
static double pi = M_PI;
#else
static double pi = std::acos(-1);
#endif

int main()
{
std::cout << "e = " << euler_e
<< "\npi = " << pi
<< "\nsqrt(2) = " << std::sqrt(2.0)
<< "\nln(e) = " << std::log(euler_e)
<< "\nlg(100) = " << std::log10(100.0)
<< "\nexp(3) = " << std::exp(3.0)
<< "\n|-4.5| = " << std::abs(-4.5) // or std::fabs(-4.5); both work in C++
<< "\nfloor(4.5) = " << std::floor(4.5)
<< "\nceiling(4.5) = " << std::ceil(4.5)
<< "\npi^2 = " << std::pow(pi,2.0) << std::endl;
}</lang>
=== using Boost ===
{{libheader|Boost}}
<lang cpp>#include <iostream>
#include <iomanip>
#include <cmath>
#include <boost/math/constants/constants.hpp>

int main()
{
using namespace boost::math::double_constants;
std::cout << "e = " << std::setprecision(18) << e
<< "\ne³ = " << std::exp(3.0)
<< "\nπ = " << pi
<< "\nπ² = " << pi_sqr
<< "\n√2 = " << root_two
<< "\nln(e) = " << std::log(e)
<< "\nlg(100) = " << std::log10(100.0)
<< "\n|-4.5| = " << std::abs(-4.5)
<< "\nfloor(4.5) = " << std::floor(4.5)
<< "\nceiling(4.5) = " << std::ceil(4.5) << std::endl;
}</lang>
{{out}}
<pre>e = 2.71828182845904509
e³ = 20.0855369231876679
π = 3.14159265358979312
π² = 9.86960440108935799
√2 = 1.41421356237309515
ln(e) = 1
lg(100) = 2
|-4.5| = 4.5
floor(4.5) = 4
ceiling(4.5) = 5</pre>

=={{header|Chef}}==
See [[Basic integer arithmetic#Chef]] for powers.

=={{header|Clojure}}==
{{trans|Java}} which is directly available.
<lang lisp>(Math/E); //e
(Math/PI); //pi
(Math/sqrt x); //square root--cube root also available (cbrt)
(Math/log x); //natural logarithm--log base 10 also available (log10)
(Math/exp x); //exponential
(Math/abs x); //absolute value
(Math/floor x); //floor
(Math/ceil x); //ceiling
(Math/pow x y); //power</lang>

Clojure does provide arbitrary precision versions as well:

<lang lisp>(ns user (:require [clojure.contrib.math :as math]))
(math/sqrt x)
(math/abs x)
(math/floor x)
(math/ceil x)
(math/expt x y) </lang>

.. and as multimethods that can be defined for any type (e.g. complex numbers).

<lang lisp>(ns user (:require [clojure.contrib.generic.math-functions :as generic]))
(generic/sqrt x)
(generic/log x)
(generic/exp x)
(generic/abs x)
(generic/floor x)
(generic/ceil x)
(generic/pow x y)</lang>

=={{header|COBOL}}==
Everything that follows can take any number (except for <code>SQRT</code> which expects a non-negative number).
The task constants and (intrinsic) functions:
<lang cobol>E *> e
PI *> Pi
SQRT(n) *> Sqaure root
LOG(n) *> Natural logarithm
LOG10(n) *> Logarithm (base 10)
EXP(n) *> e to the nth power
ABS(n) *> Absolute value
INTEGER(n) *> While not a proper floor function, it is implemented in the same way.
*> There is no ceiling function. However, it could be implemented like so:
ADD 1 TO N
MOVE INTEGER(N) TO Result
*> There is no pow function, although the COMPUTE verb does have an exponention operator.
COMPUTE Result = N ** 2 </lang>
COBOL also has the following extra mathematical functions:
<lang cobol>FACTORIAL(n) *> Factorial
EXP10(n) *> 10 to the nth power
*> Trigonometric functions, including inverse ones, named as would be expected.</lang>

=={{header|Common Lisp}}==
In Lisp we should really be talking about numbers rather than the type <code>real</code>. The types <code>real</code> and <code>complex</code> are subtypes of <code>number</code>. Math operations that accept or produce complex numbers generally do.
<lang lisp>
(exp 1) ; e (Euler's number)
pi ; pi constant
(sqrt x) ; square root: works for negative reals and complex
(log x) ; natural logarithm: works for negative reals and complex
(log x 10) ; logarithm base 10
(exp x) ; exponential
(abs x) ; absolute value: result exact if input exact: (abs -1/3) -> 1/3.
(floor x) ; floor: restricted to real, two valued (second value gives residue)
(ceiling x) ; ceiling: restricted to real, two valued (second value gives residue)
(expt x y) ; power
</lang>

=={{header|Crystal}}==
<lang ruby>x = 3.25
y = 4

puts x.abs # absolute value
puts x.floor # floor
puts x.ceil # ceiling
puts x ** y # power
puts

include Math # without including

puts E # puts Math::E -- exponential constant
puts PI # puts Math::PI -- Archimedes circle constant
puts TAU # puts Math::TAU -- the correct circle constant, >= version 0.36
puts sqrt(x) # puts Math.sqrt(x) -- real square root
puts log(x) # puts Math.log(x) -- natural logarithm
puts log10(x) # puts Math.log10(x) -- base 10 logarithm
puts log(x, y) # puts Math.log(x, y) -- logarithm x base y
puts exp(x) # puts Math.exp(x) -- exponential
puts E**x # puts Math::E**x -- same
</lang>

{{0ut}}<pre>
3.25
3.0
4.0
111.56640625

2.718281828459045
3.141592653589793
6.283185307179586
1.8027756377319946
1.1786549963416462
0.5118833609788744
0.8502198590705461
25.790339917193062
25.79033991719306
</pre>

=={{header|D}}==
<lang d>import std.math ; // need to import this module
E // Euler's number
PI // pi constant
sqrt(x) // square root
log(x) // natural logarithm
log10(x) // logarithm base 10
log2(x) // logarithm base 2
exp(x) // exponential
abs(x) // absolute value (= magnitude for complex)
floor(x) // floor
ceil(x) // ceiling
pow(x,y) // power</lang>

=={{header|Delphi}}==
Log, Floor, Ceil and Power functions defined in Math.pas.

<lang Delphi>Exp(1); // e (Euler's number)
Pi; // π (Pi)
Sqrt(x); // square root
LogN(BASE, x) // log of x for a specified base
Log2(x) // log of x for base 2
Log10(x) // log of x for base 10
Ln(x); // natural logarithm (for good measure)
Exp(x); // exponential
Abs(x); // absolute value (a.k.a. "magnitude")
Floor(x); // floor
Ceil(x); // ceiling
Power(x, y); // power</lang>

=={{header|DWScript}}==

See [[Real_constants_and_functions#Delphi|Delphi]].

=={{header|E}}==
<lang e>? 1.0.exp()
# value: 2.7182818284590455

? 0.0.acos() * 2
# value: 3.141592653589793

? 2.0.sqrt()
# value: 1.4142135623730951

? 2.0.log()
# value: 0.6931471805599453

? 5.0.exp()
# value: 148.4131591025766

? (-5).abs()
# value: 5

? 1.2.floor()
# value: 1

? 1.2.ceil()
# value: 2

? 10 ** 6
# value: 1000000</lang>

=={{header|Elena}}==
ELENA 4.x :
<lang elena>import system'math;
import extensions;
public program()
{
console.printLine(E_value); //E
console.printLine(Pi_value); //PI
console.printLine(10.sqrt()); //Square Root
console.printLine(10.ln()); //Logarithm
console.printLine(10.log10()); // Base 10 Logarithm
console.printLine(10.exp()); //Exponential
console.printLine(10.Absolute); //Absolute value
console.printLine(10.0r.floor()); //Floor
console.printLine(10.0r.ceil()); //Ceiling
console.printLine(2.power(5)); //Exponentiation
}</lang>

=={{header|Elixir}}==
<lang elixir>defmodule Real_constants_and_functions do
def main do
IO.puts :math.exp(1) # e
IO.puts :math.pi # pi
IO.puts :math.sqrt(16) # square root
IO.puts :math.log(10) # natural logarithm
IO.puts :math.log10(10) # base 10 logarithm
IO.puts :math.exp(2) # e raised to the power of x
IO.puts abs(-2.24) # absolute value
IO.puts Float.floor(3.1423) # floor
IO.puts Float.ceil(20.125) # ceiling
IO.puts :math.pow(3,2) # exponentiation
end
end

Real_constants_and_functions.main</lang>

=={{header|Elm}}==
The following are all in the Basics module, which is imported by default:
<lang elm>e -- e
pi -- pi
sqrt x -- square root
logBase 3 9 -- logarithm (any base)
e^x -- exponential
abs x -- absolute value
floor x -- floor
ceiling x -- ceiling
2 ^ 3 -- power</lang>

=={{header|Erlang}}==
<lang erlang>% Implemented by Arjun Sunel
-module(math_constants).
-export([main/0]).
main() ->
io:format("~p~n", [math:exp(1)] ), % e
io:format("~p~n", [math:pi()] ), % pi
io:format("~p~n", [math:sqrt(16)] ), % square root
io:format("~p~n", [math:log(10)] ), % natural logarithm
io:format("~p~n", [math:log10(10)] ), % base 10 logarithm
io:format("~p~n", [math:exp(2)] ), % e raised to the power of x
io:format("~p~n", [abs(-2.24)] ), % absolute value
io:format("~p~n", [floor(3.1423)] ), % floor
io:format("~p~n", [ceil(20.125)] ), % ceiling
io:format("~p~n", [math:pow(3,2)] ). % exponentiation

floor(X) when X < 0 ->
T = trunc(X),
case X - T == 0 of
true -> T;
false -> T - 1
end;

floor(X) ->
trunc(X).


ceil(X) when X < 0 ->
trunc(X);

ceil(X) ->
T = trunc(X),
case X - T == 0 of
true -> T;
false -> T + 1
end.
</lang>
{{out}}
<pre>2.718281828459045
3.141592653589793
4.0
2.302585092994046
1.0
7.38905609893065
2.24
3
21
9.0
ok

</pre>

=={{header|ERRE}}==
<lang ERRE>PROGRAM R_C_F

FUNCTION CEILING(X)
CEILING=INT(X)-(X-INT(X)>0)
END FUNCTION

FUNCTION FLOOR(X)
FLOOR=INT(X)
END FUNCTION

BEGIN
PRINT(EXP(1)) ! e not available
PRINT(π) ! pi is available or ....
PRINT(4*ATN(1)) ! .... equal to

X=12.345
Y=1.23

PRINT(SQR(X),X^0.5) ! square root
PRINT(LOG(X)) ! natural logarithm base e
PRINT(LOG(X)/LOG(10)) ! base 10 logarithm
PRINT(LOG(X)/LOG(Y)) ! arbitrary base logarithm (y>0)
PRINT(EXP(X)) ! exponential
PRINT(ABS(X)) ! absolute value
PRINT(FLOOR(X)) ! floor
PRINT(CEILING(X)) ! ceiling
PRINT(X^Y) ! power
END PROGRAM</lang>
{{out}}
<pre> 2.718282
3.141592653589793
3.141593
3.513545 3.513545
2.513251
1.091491
12.14048
229808.1
12.345
12
13
22.00564</pre>

=={{header|F Sharp|F#}}==
{{trans|C#|C sharp}}
<lang fsharp>open System

let main _ =
Console.WriteLine(Math.E); // e
Console.WriteLine(Math.PI); // Pi
Console.WriteLine(Math.Sqrt(10.0)); // Square Root
Console.WriteLine(Math.Log(10.0)); // Logarithm
Console.WriteLine(Math.Log10(10.0)); // Base 10 Logarithm
Console.WriteLine(Math.Exp(10.0)); // Exponential
Console.WriteLine(Math.Abs(10)); // Absolute value
Console.WriteLine(Math.Floor(10.0)); // Floor
Console.WriteLine(Math.Ceiling(10.0)); // Ceiling
Console.WriteLine(Math.Pow(2.0, 5.0)); // Exponentiation

0</lang>

=={{header|Factor}}==
<lang factor>e ! e
pi ! π
sqrt ! square root
log ! natural logarithm
exp ! exponentiation
abs ! absolute value
floor ! greatest whole number smaller than or equal
ceiling ! smallest whole number greater than or equal
truncate ! remove the fractional part (i.e. round towards 0)
round ! round to next whole number
^ ! power</lang>

=={{header|Fantom}}==

The <code>Float</code> class holds 64-bit floating point numbers, and contains most of the useful mathematical functions. A floating point number must be specified when entered with the suffix 'f', e.g. <code>9f</code>

<lang fantom>
Float.e
Float.pi
9f.sqrt
9f.log // natural logarithm
9f.log10 // logarithm to base 10
9f.exp // exponentiation
(-3f).abs // absolute value, note bracket
3.2f.floor // nearest Int smaller than this number
3.2f.ceil // nearest Int bigger than this number
3.2f.round // nearest Int
3f.pow(2f) // power
</lang>

Note, . binds more tightly than -, so use brackets around negative numbers:

<pre>
> -3f.pow(2f)
-9
> (-3f).pow(2f)
9
</pre>

=={{header|Forth}}==
<lang forth>1e fexp fconstant e
0e facos 2e f* fconstant pi \ predefined in gforth
fsqrt ( f -- f )
fln ( f -- f ) \ flog for base 10
fexp ( f -- f )
fabs ( f -- f )
floor ( f -- f ) \ round towards -inf
: ceil ( f -- f ) fnegate floor fnegate ; \ not standard, though fround is available
f** ( f e -- f^e )</lang>

=={{header|Fortran}}==
<lang fortran> e ! Not available. Can be calculated EXP(1.0)
pi ! Not available. Can be calculated 4.0*ATAN(1.0)
SQRT(x) ! square root
LOG(x) ! natural logarithm
LOG10(x) ! logarithm to base 10
EXP(x) ! exponential
ABS(x) ! absolute value
FLOOR(x) ! floor - Fortran 90 or later only
CEILING(x) ! ceiling - Fortran 90 or later only
x**y ! x raised to the y power</lang>

4*ATAN(1.0) will be calculated in single precision, likewise EXP(1.0) (not EXP(1), because 1 is an integer) and although double precision functions can be named explicitly, 4*DATAN(1.0) will be rejected because 1.0 is in single precision and DATAN expects double. Thus, 4*DATAN(1.0D0) or 4*DATAN(1D0) will do, as the D in the exponent form specifies double precision. Whereupon, the generic names can be returned to: 4*ATAN(1D0). Some systems go further and offer quadruple precision. Others allow that all constants will be deemed double precision as a compiler option.

The 4 need not be named as 4.0, or 4D0, as 4 the integer will be converted by the compiler to double precision, because it is to meet a known double precision value in simple multiplication and so will be promoted. Hopefully, at compile time.

=={{header|FreeBASIC}}==
<lang freebasic>' FB 1.05.0 Win64

#Include "crt/math.bi"

Print M_E '' constant "e" from C runtime library
Print M_PI '' constant "pi" from C runtime library
Print Sqr(2) '' square root function built into FB
Print Log(M_E) '' log to base "e" built into FB
Print log10(10) '' log to base 10 from C runtime library
Print Exp(1) '' exponential function built into FB
Print Abs(-1) '' absolute value function (integers or floats) built into FB
Print Int(-2.5) '' floor function built into FB
Print ceil(-2.5) '' ceiling function from C runtime library
Print 2.5 ^ 3.5 '' exponentiation operator built into FB
Sleep </lang>

{{out}}
<pre>
2.718281828459045
3.141592653589793
1.414213562373095
1
1
2.718281828459045
1
-3
-2
24.70529422006547
</pre>

=={{header|Frink}}==
All of the following operations work for any numerical type, including rational numbers, complex numbers and intervals of real numbers.
<lang frink>
e
pi, π // Unicode can also be written in ASCII programs as \u03C0
sqrt[x]
ln[x] // Natural log
log[x] // Log to base 10
exp[x], e^x
abs[x]
floor[x] // Except for complex numbers where there's no good interpretation.
ceil[x] // Except for complex numbers where there's no good interpretation.
x^y
</lang>

=={{header|FutureBasic}}==
<lang futurebasic>
include "ConsoleWindow"

// Set width of tab
def tab 8

print "exp:", exp(1)
print "pi:", pi
print "sqr:", sqr(2)
print "log:", log(2)
print "log2:", log2(2)
print "log10", log10(2)
print "abs:", abs(-2)
print "floor:", int(1.534)
print "ceil:", val( using"###"; 1.534 )
print "power:", 1.23 ^ 4
</lang>
Output:
<pre>
exp: 2.7182818285
pi: 3.1415926536
sqr: 1.4142135624
log: 0.6931471806
log2: 1
log10 0.3010299957
abs: 2
floor: 2
ceil: 2
power: 2.28886641
</pre>

=={{header|Go}}==
<lang go>package main

import (
"fmt"
"math"
"math/big"
)

func main() {
// e and pi defined as constants.
// In Go, that means they are not of a specific data type and can be used
// as float32 or float64. Println takes the float64 values.
fmt.Println("float64 values:")
fmt.Println("e:", math.E)
fmt.Println("π:", math.Pi)

// The following functions all take and return the float64 data type.

// square root. cube root also available (math.Cbrt)
fmt.Println("square root(1.44):", math.Sqrt(1.44))
// natural logarithm--log base 10, 2 also available (math.Log10, math.Log2)
// also available is log1p, the log of 1+x. (using log1p can be more
// accurate when x is near zero.)
fmt.Println("ln(e):", math.Log(math.E))
// exponential. also available are exp base 10, 2 (math.Pow10, math.Exp2)
fmt.Println("exponential(1):", math.Exp(1))
fmt.Println("absolute value(-1.2):", math.Abs(-1.2))
fmt.Println("floor(-1.2):", math.Floor(-1.2))
fmt.Println("ceiling(-1.2):", math.Ceil(-1.2))
fmt.Println("power(1.44, .5):", math.Pow(1.44, .5))

// Equivalent functions for the float32 type are not in the standard
// library. Here are the constants e and π as float32s however.
fmt.Println("\nfloat32 values:")
fmt.Println("e:", float32(math.E))
fmt.Println("π:", float32(math.Pi))

// The standard library has an arbitrary precision floating point type but
// provides only the most basic methods. Also while the constants math.E
// and math.Pi are provided to over 80 decimal places, there is no
// convenient way of loading these numbers (with their full precision)
// into a big.Float. A hack is cutting and pasting into a string, but
// of course if you're going to do that you are free to cut and paste from
// any other source. (The documentation cites OEIS as its source.)
pi := "3.141592653589793238462643383279502884197169399375105820974944"
π, _, _ := big.ParseFloat(pi, 10, 200, 0)
fmt.Println("\nbig.Float values:")
fmt.Println("π:", π)
// Of functions requested by the task, only absolute value is provided.
x := new(big.Float).Neg(π)
y := new(big.Float)
fmt.Println("x:", x)
fmt.Println("abs(x):", y.Abs(x))
}</lang>
{{out}}
<pre>
float64 values:
e: 2.718281828459045
π: 3.141592653589793
square root(1.44): 1.2
ln(e): 1
exponential(1): 2.718281828459045
absolute value(-1.2): 1.2
floor(-1.2): -2
ceiling(-1.2): -1
power(1.44, .5): 1.2

float32 values:
e: 2.7182817
π: 3.1415927

big.Float values:
π: 3.141592653589793238462643383279502884197169399375105820974944
x: -3.141592653589793238462643383279502884197169399375105820974944
abs(x): 3.141592653589793238462643383279502884197169399375105820974944
</pre>

=={{header|Groovy}}==
Math constants and functions are as outlined in the [[#Java|Java]] example, except as follows:

'''Absolute Value'''

In addition to the java.lang.Math.abs() method, each numeric type has an abs() method, which can be invoked directly on the number:
<lang groovy>println ((-22).abs())</lang>
{{out}}
<pre>22</pre>

'''Power'''

In addition to the java.lang.Math.pow() method, each numeric type works with the power operator (**), which can be invoked as an in-fix operator between two numbers:
<lang groovy>println 22**3.5</lang>
{{out}}
<pre>49943.547010599876</pre>

Power results are not defined for all possible pairs of operands.
Any power operation that does not have a result returns a 64-bit IEEE NaN (Not a Number) value.
<lang groovy>println ((-22)**3.5)</lang>
{{out}}
<pre>NaN</pre>

Also note that at the moment (07:00, 19 March 2011 (UTC)) Groovy (1.7.7) gives a mathematically incorrect result for "0**0".
The correct result should be "NaN", but the Groovy operation result is "1".

=={{header|Haskell}}==
The operations are defined for the various numeric typeclasses, as defined in their type signature.
<lang haskell>exp 1 -- Euler number
pi -- pi
sqrt x -- square root
log x -- natural logarithm
exp x -- exponential
abs x -- absolute value
floor x -- floor
ceiling x -- ceiling
x ** y -- power (e.g. floating-point exponentiation)
x ^ y -- power (e.g. integer exponentiation, nonnegative y only)
x ^^ y -- power (e.g. integer exponentiation of rationals, also negative y)</lang>

=={{header|HicEst}}==
Except for x^y, this is identical to Fortran:
<lang HicEst>e ! Not available. Can be calculated EXP(1)
pi ! Not available. Can be calculated 4.0*ATAN(1.0)
x^0.5 ! square root
LOG(x) ! natural logarithm
LOG(x, 10) ! logarithm to base 10
EXP(x) ! exponential
ABS(x) ! absolute value
FLOOR(x) ! floor
CEILING(x) ! ceiling
x**y ! x raised to the y power
x^y ! same as x**y</lang>

=={{header|Icon}} and {{header|Unicon}}==
<lang Icon>link numbers # for floor and ceil

procedure main()
write("e=",&e)
write("pi=",&pi)
write("phi=",&phi)
write("sqrt(2)=",sqrt(2.0))
write("log(e)=",log(&e))
write("log(100.,10)=",log(100,10))
write("exp(1)=",exp(1.0))
write("abs(-2)=",abs(-2))
write("floor(-2.2)=",floor(-2.2))
write("ceil(-2.2)=",ceil(-2.2))
write("power: 3^3=",3^3)
end</lang>
{{libheader|Icon Programming Library}}
[http://www.cs.arizona.edu/icon/library/src/procs/numbers.icn numbers provides floor and ceiling]

{{out}}
<pre>e=2.718281828459045
pi=3.141592653589793
phi=1.618033988749895
sqrt(2)=1.414213562373095
log(e)=1.0
log(100.,10)=2.0
exp(1)=2.718281828459045
abs(-2)=2
floor(-2.2)=-2
ceil(-2.2)=-3</pre>

=={{header|J}}==
The examples below require arguments (x and y) to be numeric nouns.
<lang j>e =. 1x1 NB. Euler's number, specified as a numeric literal.
e =. ^ 1 NB. Euler's number, computed by exponentiation.
pi=. 1p1 NB. pi, specified as a numeric literal.
pi=. o.1 NB. pi, computed trigonometrically.
magnitude_of_x =. |x
floor_of_x =. <.x
ceiling_of_x =. >.x
natural_log_of_x =. ^.x
base_x_log_of_y =. x^.y
x_squared =. *:x NB. special form
x_squared =. x^2 NB. exponential form
square_root_of_x =. %:x NB. special form
square_root_of_x =. x^0.5 NB. exponential form
x_to_the_y_power =. x^y</lang>

=={{header|Java}}==
All of these functions are in Java's <tt>Math</tt> class which, does not require any imports:
<lang java>Math.E; //e
Math.PI; //pi
Math.sqrt(x); //square root--cube root also available (cbrt)
Math.log(x); //natural logarithm--log base 10 also available (log10)
Math.exp(x); //exponential
Math.abs(x); //absolute value
Math.floor(x); //floor
Math.ceil(x); //ceiling
Math.pow(x,y); //power</lang>

=={{header|JavaScript}}==
<lang javascript>Math.E
Math.PI
Math.sqrt(x)
Math.log(x)
Math.exp(x)
Math.abs(x)
Math.floor(x)
Math.ceil(x)
Math.pow(x,y)</lang>

=={{header|jq}}==
The mathematical functions available in jq are defined as 0-arity filters, so to evaluate the sqrt of 4, one writes <tt>4|sqrt</tt>.
In jq, "." refers to the output coming from the left in the pipeline.

In the following, comments appear after the "#":<lang jq>
1 | exp # i.e. e
1 | atan * 4 # i.e. π
sqrt
log # Naperian log
exp
if . < 0 then -. else . end # absolute value
floor
# jq does not currently have a ceiling function
# jq does not currently have a function to compute x^y</lang>

=={{header|Jsish}}==
<lang javascript>/* real constants and functions, in JSI */
var x, y;

;Math.E;
;Math.PI;

;x = 100.0;
;Math.sqrt(x);
;Math.log(x);

;x = 2.0;
;Math.exp(x);

;x = -x;
;Math.abs(x);

;x = 42.42;
;Math.floor(x);
;Math.ceil(x);

;x = 10.0;
;y = 5;
;Math.pow(x,y);

/*
=!EXPECTSTART!=
Math.E ==> 2.718281828459045
Math.PI ==> 3.141592653589793
x = 100.0 ==> 100
Math.sqrt(x) ==> 10
Math.log(x) ==> 4.605170185988092
x = 2.0 ==> 2
Math.exp(x) ==> 7.38905609893065
x = -x ==> -2
Math.abs(x) ==> 2
x = 42.42 ==> 42.42
Math.floor(x) ==> 42
Math.ceil(x) ==> 43
x = 10.0 ==> 10
y = 5 ==> 5
Math.pow(x,y) ==> 100000
=!EXPECTEND!=
*/</lang>

{{out}}
<pre>prompt$ jsish --U real-constants.jsi
Math.E ==> 2.718281828459045
Math.PI ==> 3.141592653589793
x = 100.0 ==> 100
Math.sqrt(x) ==> 10
Math.log(x) ==> 4.605170185988092
x = 2.0 ==> 2
Math.exp(x) ==> 7.38905609893065
x = -x ==> -2
Math.abs(x) ==> 2
x = 42.42 ==> 42.42
Math.floor(x) ==> 42
Math.ceil(x) ==> 43
x = 10.0 ==> 10
y = 5 ==> 5
Math.pow(x,y) ==> 100000

# Run the unit tests
prompt$ jsish -u real-constants.jsi
[PASS] real-constants.jsi</pre>

=={{header|Julia}}==
<lang julia>e
π, pi
sqrt(x)
log(x)
exp(x)
abs(x)
floor(x)
ceil(x)
x^y</lang>
Note that Julia supports Unicode identifiers, and allows either <code>π</code> or <code>pi</code> for that constant.

Also, mathematical constants like <i>e</i> and π in Julia are of a special type that is automatically converted to the correct precision when used in aritmetic operations. So, for example, <code>BigFloat(2) * π</code> computes 2π in arbitrary precision arithmetic.

=={{header|Kotlin}}==
<lang scala>// version 1.0.6

fun main(args: Array<String>) {
println(Math.E) // e
println(Math.PI) // pi
println(Math.sqrt(2.0)) // square root
println(Math.log(Math.E)) // log to base e
println(Math.log10(10.0)) // log to base 10
println(Math.exp(1.0)) // exponential
println(Math.abs(-1)) // absolute value
println(Math.floor(-2.5)) // floor
println(Math.ceil(-2.5)) // ceiling
println(Math.pow(2.5, 3.5)) // power
}</lang>

{{out}}
<pre>
2.718281828459045
3.141592653589793
1.4142135623730951
1.0
1.0
2.718281828459045
1
-3.0
-2.0
24.705294220065465
</pre>

=={{header|Lambdatalk}}==
<lang scheme>
{E} -> 2.718281828459045
{PI} -> 3.141592653589793
{sqrt 2} -> 1.4142135623730951
{log {E}} -> 1
{exp 1} -> 2.718281828459045
{abs -1} -> 1
{floor -2.5} -> -3
{ceil -2.5} -> -2
{pow 2.5 3.5} -> 24.705294220065465
</lang>

=={{header|Lasso}}==
<lang Lasso>//e
define e => 2.7182818284590452

//π
define pi => 3.141592653589793

e
pi
9.0->sqrt
1.64->log
1.64->log10
1.64->exp
1.64->abs
1.64->floor
1.64->ceil
1.64->pow(10.0)</lang>

=={{header|Liberty BASIC}}==
Ceiling and floor easily implemented as functions.
<br>
sqr( is the LB function for square root.
<br>
e & pi not available- calculate as shown.
<lang lb>
print exp( 1) ' e not available
print 4 *atn( 1) ' pi not available

x =12.345: y =1.23

print sqr( x), x^0.5 ' square root- NB the unusual name
print log( x) ' natural logarithm base e
print log( x) /2.303 ' base 10 logarithm
print log( x) /log( y) ' arbitrary base logarithm
print exp( x) ' exponential
print abs( x) ' absolute value
print floor( x) ' floor
print ceiling( x) ' ceiling
print x^y ' power

end

function floor( x)
if x >0 then
floor =int( x)
else
if x <>int( x) then floor =int( x) -1 else floor =int( x)
end if
end function

function ceiling( x)
if x <0 then
ceiling =int( x)
else
ceiling =int( x) +1
end if
end function
</lang>

=={{header|Lingo}}==
<lang lingo>the floatPrecision = 8

-- e (base of the natural logarithm)
put exp(1)
-- 2.71828183

-- pi
put PI
-- 3.14159265

-- square root
put sqrt(2.0)
-- 1.41421356

-- logarithm (any base allowed)
x = 100

put log(x) -- calculate log for base e
-- 4.60517019

put log(x)/log(10) -- calculate log for base 10
-- 2.00000000

-- exponential (ex)
put exp(3)
-- 20.08553692

-- absolute value (a.k.a. "magnitude")
put abs(-1)
-- 1

-- floor (largest integer less than or equal to this number--not the same as truncate or int)
n = 23.536
put bitOr(n, 0) -- calculates floor
-- 23

-- ceiling (smallest integer not less than this number--not the same as round up)
n = 23.536
-- calculates ceil
floor = bitOr(n, 0)
if (floor >= n) then put floor
else put floor+1
-- 24

-- power
put power(2, 8)
-- 256.00000000</lang>

=={{header|LiveCode}}==
LC 7.1+, prior to this floor & ceil were not built-in.
<lang LiveCode>e‬: exp(1)
pi: pi
square root: sqrt(x)
logarithm: log(x)
exponential (‪ex‬): exp(x)
absolute value: abs(x)
floor: floor(x)
ceiling: ceil(x)
power: x^y</lang>

=={{header|Logo}}==
{{works with|UCB Logo}}
<lang logo>make "e exp 1
make "pi 2*(RADARCTAN 0 1)
sqrt :x
ln :x
exp :x
; there is no standard abs, floor, or ceiling; only INT and ROUND.
power :x :y</lang>

=={{header|Logtalk}}==
<lang logtalk>
:- object(constants_and_functions).

:- public(show/0).
show :-
write('e = '), E is e, write(E), nl,
write('pi = '), PI is pi, write(PI), nl,
write('sqrt(2) = '), SQRT is sqrt(2), write(SQRT), nl,
% only base e logorithm is avaialable as a standard built-in function
write('log(2) = '), LOG is log(2), write(LOG), nl,
write('exp(2) = '), EXP is exp(2), write(EXP), nl,
write('abs(-1) = '), ABS is abs(-1), write(ABS), nl,
write('floor(-3.4) = '), FLOOR is floor(-3.4), write(FLOOR), nl,
write('ceiling(-3.4) = '), CEILING is ceiling(-3.4), write(CEILING), nl,
write('2 ** -3.4 = '), POWER is 2 ** -3.4, write(POWER), nl.

:- end_object.
</lang>
{{out}}
<pre>
| ?- constants_and_functions::show.
e = 2.718281828459045
pi = 3.141592653589793
sqrt(2) = 1.4142135623730951
log(2) = 0.6931471805599453
exp(2) = 7.38905609893065
abs(-1) = 1
floor(-3.4) = -4
ceiling(-3.4) = -3
2 ** -3.4 = 0.09473228540689989
yes
</pre>

=={{header|Lua}}==
<lang lua>math.exp(1)
math.pi
math.sqrt(x)
math.log(x)
math.log10(x)
math.exp(x)
math.abs(x)
math.floor(x)
math.ceil(x)
x^y</lang>

=={{header|M2000 Interpreter}}==
<lang M2000 Interpreter>
Module Checkit {
Def exp(x)= 2.71828182845905^x
Print Ln(exp(1))==1
Print Log(10^5)==5
Print Sgn(-5)=-1
Print Abs(-2.10#)=2.1#
Def exptype$(x)=type$(x)
Print exptype$(Abs(-2.1#))="Currency"
Print exptype$(Abs(-2.1~))="Single"
Print exptype$(Abs(-2.1@))="Decimal"
Print exptype$(Abs(-2&))="Long"
Print exptype$(Abs(-2%))="Integer"
Print exptype$(Abs(-2.212e34))="Double"
Print exptype$(Sgn(-2.1#))="Integer"
\\ Sgn return integer type
Print exptype$(Sgn(-2.212e34))="Integer"
\\ Log, Len return double
Print exptype$(Log(1000))="Double"
Print exptype$(exp(1%))="Double"
Print exptype$(Ln(1212%))="Double"
\\ power return type Double
Print exptype$(2&^2&)="Double"
Print exptype$(2&**2&)="Double"
Print exptype$(2&*2&)="Long"
Print 2**2=4, 2^2=4, 2^2^2=16, 2**2**2=16
\\ floor() and Int() is the same
Print Int(-2.7)=-3, Int(2.7)=2
Print Floor(-2.7)=-3, Floor(2.7)=2
Print Ceil(-2.7)=-2, Ceil(2.7)=3

Print round(-2.7, 0)=-3, round(2.7, 0)=3
Print round(-2.2, 0)=-2, round(2.2, 0)=2


Print Sqrt(4)=2
}
Checkit
</lang>

=={{header|Maple}}==
<lang Maple>> abs(ceil(floor(ln(exp(1)^sqrt(exp(Pi*I)+1)))));
0</lang>

=={{header|Mathematica}}==
<lang Mathematica>E
Pi
Sqrt[x]
Log[x]
Log[b,x]
Exp[x]
Abs[x]
Floor[x]
Ceiling[x]
Power[x, y]</lang>
Where x is the number, and b the base.
Exp[x] can also be inputted as E^x or E<sup>x</sup> and Power[x,y] can be also inputted as x^y or x<sup>y</sup>. All functions work with symbols, integers, floats and can be complex. Abs giving the modulus (|x|) if the argument is a complex number. Constant like E and Pi are kep unevaluated until someone explicitly tells it to give a numerical approximation: N[Pi,n] gives Pi to n-digit precision. Functions given an exact argument will be kept unevaluated if the answer can't be written more compact, approximate arguments will always be evaluated:
<lang Mathematica>Log[1.23] => 0.207014
Log[10] => Log[10]
Log[10,100] => 2
Log[E^4] => 4
Log[1 + I] => Log[1+I]
Log[1. + I] => 0.346574 + 0.785398 I
Ceiling[Pi] => 4
Floor[Pi] => 3
Sqrt[2] => Sqrt[2]
Sqrt[4] => 2
Sqrt[9/2] => 3/Sqrt[2]
Sqrt[3.5] => 1.87083
Sqrt[-5 + 12 I] => 2 + 3 I
Sqrt[-4] => 2I
Exp[2] => E^2
Exp[Log[4]] => 4</lang>

=={{header|MATLAB}} / {{header|Octave}}==
<lang MATLAB>exp(1) % e
pi % pi
sqrt(x) % square root
log(x) % natural logarithm
log2(x) % logarithm base 2
log10(x) % logarithm base 10
exp(x) % exponential
abs(-x) % absolute value
floor(x) % floor
ceil(x) % ceiling
x^y % power</lang>

=={{header|MAXScript}}==
<lang maxscript>e -- Euler's number
pi -- pi
log x -- natural logarithm
log10 x -- log base 10
exp x -- exponantial
abs x -- absolute value
floor x -- floor
ceil x -- ceiling
pow x y -- power</lang>

=={{header|Mercury}}==
<lang>
math.pi % Pi.
math.e % Euler's number.
math.sqrt(X) % Square root of X.
math.ln(X) % Natural logarithm of X.
math.log10(X) % Logarithm to the base 10 of X.
math.log2(X) % Logarithm to the base 2 of X.
math.log(B, X) % Logarithm to the base B of X.
math.exp(X) % e raised to the power of X.
float.abs(X) % Absolute value of X.
math.floor(X) % Floor of X.
math.ceiling(X) % Ceiling of X.
math.pow(X, Y) % X raised to the power of Y.</lang>

=={{header|Metafont}}==
<lang metafont>show mexp(256); % outputs e; since MF uses mexp(x) = exp(x/256)
show 3.14159; % no pi constant built in; of course we can define it
% in several ways... even computing
% C/2r (which would be funny since MF handles paths,
% and a circle is a path...)
show sqrt2; % 1.41422, or in general sqrt(a)
show mexp(256*x); % see e.
show abs(x); % returns |x| (the absolute value of the number x, or
% the length of the vector x); it is the same as
% length(x); plain Metafont in fact says:
% let abs = length;
show floor(x); % floor
show ceiling(x); % ceiling
show x**y; % ** is not a built in: it is defined in the basic macros
% set for Metafont (plain Metafont) as a primarydef</lang>

=={{header|min}}==
{{works with|min|0.19.3}}
<lang min>e ; e
pi ; π
sqrt ; square root
log10 ; common logarithm
log2 ; binary logarithm
; no exponential
; no absolute value
floor ; greatest whole number smaller than or equal
ceil ; smallest whole number greater than or equal
trunc ; remove the fractional part (i.e. round towards 0)
round ; round number to nth decimal place
pow ; power</lang>

=={{header|МК-61/52}}==
<lang>1 e^x С/П

пи С/П

КвКор С/П

lg С/П

e^x С/П

|x| С/П

П0 ^ [x] П1 - x=0 09 ИП0 С/П ЗН
x>=0 14 ИП1 С/П ИП1 1 - С/П

П0 ^ [x] П1 - x=0 09 ИП0 С/П ЗН
x<0 14 ИП1 С/П ИП1 1 + С/П

x^y С/П</lang>

=={{header|Modula-3}}==
Modula-3 uses a module that is a wrapper around [[C]]'s <tt>math.h</tt>.

Note that all of these procedures (except the built ins) take <tt>LONGREAL</tt>s as their argument, and return <tt>LONGREAL</tt>s.
<lang modula3>Math.E;
Math.Pi;
Math.sqrt(x);
Math.log(x);
Math.exp(x);
ABS(x); (* Built in function. *)
FLOOR(x); (* Built in function. *)
CEILING(x); (* Built in function. *)
Math.pow(x, y);</lang>

=={{header|Neko}}==
<lang ActionScript>/**
Real constants and functions, in Neko
Tectonics:
nekoc real-constants.neko
neko real-constants
*/

var euler = $loader.loadprim("std@math_exp", 1)(1)
var pi = $loader.loadprim("std@math_pi", 0)()

var math_sqrt = $loader.loadprim("std@math_sqrt", 1)
var math_log = $loader.loadprim("std@math_log", 1)
var math_exp = $loader.loadprim("std@math_exp", 1)
var math_abs = $loader.loadprim("std@math_abs", 1)
var math_floor = $loader.loadprim("std@math_floor", 1)
var math_ceil = $loader.loadprim("std@math_ceil", 1)
var math_pow = $loader.loadprim("std@math_pow", 2)

$print("Euler : ", euler, "\n")
$print("Pi : ", pi, "\n")

$print("Sqrt(2) : ", math_sqrt(2), "\n")
$print("Log(10) : ", math_log(10), "\n")
$print("Exp(1) : ", math_pow(euler, 1), "\n")
$print("Abs(-2.2) : ", math_abs(-2.2), "\n")
$print("Floor(-2.2): ", math_floor(-2.2), "\n")
$print("Ceil(-2.2) : ", math_ceil(-2.2), "\n")
$print("Pow(2, 8) : ", math_pow(2, 8), "\n")</lang>

{{out}}
<pre>prompt$ nekoc real-contstants.neko
prompt$ neko real-contstants.n
Euler : 2.71828182845905
Pi : 3.14159265358979
Sqrt(2) : 1.4142135623731
Log(10) : 2.30258509299405
Exp(1) : 2.71828182845905
Abs(-2.2) : 2.2
Floor(-2.2): -3
Ceil(-2.2) : -2
Pow(2, 8) : 256</pre>

=={{header|NetRexx}}==
All the required constants and functions (and more) are in [[Java|Java's]] <tt>Math</tt> class. NetRexx also provides a limited set of built in numeric manipulation functions for it's Rexx object.
<lang NetRexx>/* NetRexx */
options replace format comments java crossref symbols nobinary utf8

numeric digits 30

x = 2.5
y = 3
pad = 40
say
say 'Java Math constants & functions:'
say Rexx(' Euler''s number (e):').left(pad) Math.E
say Rexx(' Pi:').left(pad) Math.PI
say Rexx(' Square root of' x':').left(pad) Math.sqrt(x)
say Rexx(' Log(e) of' x':').left(pad) Math.log(x)
say Rexx(' Log(e) of e:').left(pad) Math.log(Math.E)
say Rexx(' Log(10) of' x':').left(pad) Math.log10(x)
say Rexx(' Log(10) of 10:').left(pad) Math.log10(10)
say Rexx(' Exponential (e**x) of' x':').left(pad) Math.exp(x)
say Rexx(' Exponential (e**x) of log(e)' x':').left(pad) Math.exp(Math.log(x))
say Rexx(' Abs of' x':').left(pad) Math.abs(x.todouble)
say Rexx(' Abs of' (-x)':').left(pad) Math.abs((-x).todouble)
say Rexx(' Floor of' x':').left(pad) Math.floor(x)
say Rexx(' Floor of' (-x)':').left(pad) Math.floor((-x))
say Rexx(' Ceiling of' x':').left(pad) Math.ceil(x)
say Rexx(' Ceiling of' (-x)':').left(pad) Math.ceil((-x))
say Rexx(' ' x 'to the power of' y':').left(pad) Math.pow(x, y)
say Rexx(' ' x 'to the power of' 1 / y':').left(pad) Math.pow(x, 1 / y)
say Rexx(' 10 to the power of log10' x':').left(pad) Math.pow(10, Math.log10(x))

-- Extras
say Rexx(' Cube root of' x':').left(pad) Math.cbrt(x)
say Rexx(' Hypotenuse of' 3 'x' 4 'right triangle:').left(pad) Math.hypot(3, 4)
say Rexx(' Max of' (-x) '&' x':').left(pad) Math.max((-x).todouble, x)
say Rexx(' Min of' (-x) '&' x':').left(pad) Math.min((-x).todouble, x)
say Rexx(' Signum of' x':').left(pad) Math.signum((x).todouble)
say Rexx(' Signum of' x '-' x':').left(pad) Math.signum((x - x).todouble)
say Rexx(' Signum of' (-x)':').left(pad) Math.signum((-x).todouble)

say
say 'NetRexx built-in support for numeric data:'
say Rexx(' Abs of' x':').left(pad) x.abs()
say Rexx(' Abs of' (-x)':').left(pad) (-x).abs()
say Rexx(' Sign of' x':').left(pad) x.sign()
say Rexx(' Sign of' x '-' x':').left(pad) (x - x).sign()
say Rexx(' Sign of' (-x)':').left(pad) (-x).sign()
say Rexx(' Max of' (-x) '&' x':').left(pad) (-x).max(x)
say Rexx(' Min of' (-x) '&' x':').left(pad) (-x).min(x)
say Rexx(' Truncate' x 'by' y':').left(pad) x.trunc(y)
say Rexx(' Format (with rounding)' x 'by' y':').left(pad) x.format(y, 0)
</lang>

{{out}}
<pre>
Java Math constants & functions:
Euler's number (e): 2.718281828459045
Pi: 3.141592653589793
Square root of 2.5: 1.58113883008419
Log(e) of 2.5: 0.9162907318741551
Log(e) of e: 1
Log(10) of 2.5: 0.3979400086720376
Log(10) of 10: 1
Exponential (e**x) of 2.5: 12.18249396070347
Exponential (e**x) of log(e) 2.5: 2.5
Abs of 2.5: 2.5
Abs of -2.5: 2.5
Floor of 2.5: 2
Floor of -2.5: -3
Ceiling of 2.5: 3
Ceiling of -2.5: -2
2.5 to the power of 3: 15.625
2.5 to the power of 0.3333333333333333 1.357208808297453
10 to the power of log10 2.5: 2.5
Cube root of 2.5: 1.357208808297453
Hypotenuse of 3 x 4 right triangle: 5
Max of -2.5 & 2.5: 2.5
Min of -2.5 & 2.5: -2.5
Signum of 2.5: 1
Signum of 2.5 - 2.5: 0
Signum of -2.5: -1

NetRexx built-in support for numeric data:
Abs of 2.5: 2.5
Abs of -2.5: 2.5
Sign of 2.5: 1
Sign of 2.5 - 2.5: 0
Sign of -2.5: -1
Max of -2.5 & 2.5: 2.5
Min of -2.5 & 2.5: -2.5
Truncate 2.5 by 3: 2.500
Format (with rounding) 2.5 by 3: 3
</pre>

=={{header|Nim}}==
<lang nim>import math

var x, y = 12.5

echo E
echo Pii
echo sqrt(x)
echo ln(x)
echo log10(x)
echo exp(x)
echo abs(x)
echo floor(x)
echo ceil(x)
echo pow(x, y)</lang>

=={{header|Objeck}}==
<lang objeck>Float->Pi();
Float->E();
4.0->SquareRoot();
1.5->Log();
# exponential is not supported
3.99->Abs();
3.99->Floor();
3.99->Ceiling();
4.5->Ceiling(2.0);</lang>

=={{header|OCaml}}==
Unless otherwise noted, the following functions are for floats only:
<lang ocaml>Float.pi (* pi *)
sqrt x (* square root *)
log x (* natural logarithm--log base 10 also available (log10) *)
exp x (* exponential *)
abs_float x (* absolute value *)
abs x (* absolute value (for integers) *)
floor x (* floor *)
ceil x (* ceiling *)
x ** y (* power *)
-. x (* negation for floats *)</lang>

=={{header|Octave}}==
<lang octave>e % e
pi % pi
sqrt(pi) % square root
log(e) % natural logarithm
exp(pi) % exponential
abs(-e) % absolute value
floor(pi) % floor
ceil(pi) % ceiling
e**pi % power</lang>

=={{header|Oforth}}==

<lang Oforth>import: math

: testReal
E println
Pi println
9 sqrt println
2 ln println
2 exp println
-3.4 abs println
3.4 exp println

2.4 floor println
3.9 floor println
5.5 floor println
-2.4 floor println
-3.9 floor println
-5.5 floor println

2.4 ceil println
3.9 ceil println
5.5 ceil println
-2.4 ceil println
-3.9 ceil println
-5.5 ceil println ;</lang>

=={{header|ooRexx}}==
{{trans|NetRexx}}
{{uses from|OoRexx|RxMath}}
<lang ooRexx>/* Rexx */

-- MathLoadFuncs & MathDropFuncs are no longer needed and are effectively NOPs
-- but MathLoadFuncs does return its copyright statement when given a string argument
RxMathCopyright = MathLoadFuncs('')
say RxMathCopyright

numeric digits 16

x = 2.5
y = 3
pad = 40
digs = digits()
say
say 'Working with precision' digs
say 'Math constants & functions:'
say (' Euler''s number (e):')~left(pad) RxCalcExp(1, digs)
say (' Pi:')~left(pad) RxCalcPi(digs)
say (' Square root of' x':')~left(pad) RxCalcSqrt(x, digs)
say (' Log(e) of' x':')~left(pad) RxCalcLog(x, digs)
say (' Log(e) of e:')~left(pad) RxCalcLog(RxCalcExp(1, digs), digs)
say (' Log(10) of' x':')~left(pad) RxCalcLog10(x, digs)
say (' Log(10) of 10:')~left(pad) RxCalcLog10(10, digs)
say (' Exponential (e**x) of' x':')~left(pad) RxCalcExp(x, digs)
say (' Exponential (e**x) of log(e)' x':')~left(pad) RxCalcExp(RxCalcLog(x, digs), digs)
say (' ' x 'to the power of' y':')~left(pad) RxCalcPower(x, y, digs)
say (' ' x 'to the power of 1/'y':')~left(pad) RxCalcPower(x, 1 / y, digs)
say (' 10 to the power of log10' x':')~left(pad) RxCalcPower(10, RxCalcLog10(x), digs)

say
say 'Rexx built-in support for numeric data:'
say (' Abs of' x':')~left(pad) x~abs()
say (' Abs of' (-x)':')~left(pad) (-x)~abs()
say (' Sign of' x':')~left(pad) x~sign()
say (' Sign of' x '-' x':')~left(pad) (x - x)~sign()
say (' Sign of' (-x)':')~left(pad) (-x)~sign()
say (' Max of' (-x) '&' x':')~left(pad) (-x)~max(x)
say (' Min of' (-x) '&' x':')~left(pad) (-x)~min(x)
say (' Truncate' x 'by' y':')~left(pad) x~trunc(y)
say (' Format (with rounding)' x 'by' y':')~left(pad) x~format(y, 0)

say
say 'Use RYO functions for floor & ceiling:'
say (' Floor of' x':')~left(pad) floor(x)
say (' Floor of' (-x)':')~left(pad) floor((-x))
say (' Ceiling of' x':')~left(pad) ceiling(x)
say (' Ceiling of' (-x)':')~left(pad) ceiling((-x))

return

-- floor and ceiling functions are not part of ooRexx
floor: procedure
return arg(1)~trunc() - (arg(1) < 0) * (arg(1) \= arg(1)~trunc())

ceiling: procedure
return arg(1)~trunc() + (arg(1) > 0) * (arg(1) \= arg(1)~trunc())

::requires 'RxMath' library</lang>
{{out}}
<pre>
rxmath 1.1 - REXX mathematical function package
(c) Copyright RexxLanguage Association 2005.
All Rights Reserved.



Working with precision 16
Math constants & functions:
Euler's number (e): 2.718281828459045
Pi: 3.141592653589793
Square root of 2.5: 1.581138830084190
Log(e) of 2.5: 0.9162907318741551
Log(e) of e: 1
Log(10) of 2.5: 0.3979400086720376
Log(10) of 10: 1
Exponential (e**x) of 2.5: 12.18249396070347
Exponential (e**x) of log(e) 2.5: 2.5
2.5 to the power of 3: 15.625
2.5 to the power of 1/3: 1.357208808297453
10 to the power of log10 2.5: 2.5

Rexx built-in support for numeric data:
Abs of 2.5: 2.5
Abs of -2.5: 2.5
Sign of 2.5: 1
Sign of 2.5 - 2.5: 0
Sign of -2.5: -1
Max of -2.5 & 2.5: 2.5
Min of -2.5 & 2.5: -2.5
Truncate 2.5 by 3: 2.500
Format (with rounding) 2.5 by 3: 3

Use RYO functions for floor & ceiling:
Floor of 2.5: 2
Floor of -2.5: -3
Ceiling of 2.5: 3
Ceiling of -2.5: -2
</pre>

=={{header|Oz}}==
<lang oz>{ForAll
[
{Exp 1.} %% 2.7183 Euler's number: not predefined
4. * {Atan2 1. 1.} %% 3.1416 pi: not predefined
{Sqrt 81.} %% 9.0 square root; expects a float
{Log 2.7183} %% 1.0 natural logarithm
{Abs ~1} %% 1 absolute value; expects a float or an integer
{Floor 1.999} %% 1.0 floor; expects and returns a float
{Ceil 1.999} %% 2.0 ceiling; expects and returns a float
{Pow 2 3} %% 8 power; both arguments must be of the same type
]
Show}</lang>

=={{header|PARI/GP}}==
<lang parigp>[exp(1), Pi, sqrt(2), log(2), abs(2), floor(2), ceil(2), 2^3]</lang>

=={{header|Pascal}}==
See [[Real_constants_and_functions#Delphi | Delphi]]

=={{header|Perl}}==
<lang perl>use POSIX; # for floor() and ceil()

exp(1); # e
4 * atan2(1, 1); # pi
sqrt($x); # square root
log($x); # natural logarithm; log10() available in POSIX module
exp($x); # exponential
abs($x); # absolute value
floor($x); # floor
ceil($x); # ceiling
$x ** $y; # power

use Math::Trig;
pi; # alternate way to get pi

use Math::Complex;
pi; # alternate way to get pi</lang>

=={{header|Phix}}==
<lang Phix>?E -- Euler number
?PI -- pi
?log(E) -- natural logarithm
?log10(10) -- base 10 logarithm
?exp(log(5)) -- exponential
?sqrt(5) -- square root
?abs(-1.2) -- absolute value
?floor(-1.2) -- floor, -2
?ceil(-1.2) -- ceiling, -1
?round(-1.8) -- rounded, -2
?trunc(-1.8) -- truncate, -1
?power(E,log(5)) -- displays 5.0
?power(10,log10(5)) -- displays 5.0
?INVLN10 -- displays 0.434..
?exp(1/INVLN10) -- displays 10.0</lang>

=={{header|PHP}}==
<lang php>M_E; //e
M_PI; //pi
sqrt(x); //square root
log(x); //natural logarithm--log base 10 also available (log10)
exp(x); //exponential
abs(x); //absolute value
floor(x); //floor
ceil(x); //ceiling
pow(x,y); //power</lang>

=={{header|PicoLisp}}==
PicoLisp has only limited floating point support (scaled bignum arithmetics). It
can handle real numbers with as many positions after the decimal point as
desired, but is practically limited by the precision of the C-library functions
(about 16 digits). The default precision is six, and can be changed with
'[http://software-lab.de/doc/refS.html#scl scl]':
<lang PicoLisp>(scl 12) # 12 places after decimal point
(load "@lib/math.l")

(prinl (format (exp 1.0) *Scl)) # e, exp
(prinl (format pi *Scl)) # pi

(prinl (format (pow 2.0 0.5) *Scl)) # sqare root
(prinl (format (sqrt 2.0 1.0) *Scl))

(prinl (format (log 2.0) *Scl)) # logarithm
(prinl (format (exp 4.0) *Scl)) # exponential

(prinl (format (abs -7.2) *Scl)) # absolute value
(prinl (abs -123))

(prinl (format (pow 3.0 4.0) *Scl)) # power</lang>
{{out}}
<pre>2.718281828459
3.141592653590
1.414213562373
1.414213562373
0.693147180560
54.598150033144
7.200000000000
123
81.000000000000</pre>

=={{header|PL/I}}==
<lang pli>/* e not available other than by using exp(1q0).*/
/* pi not available other than by using a trig function such as: pi=4*atan(1) */
y = sqrt(x);
y = log(x);
y = log2(x);
y = log10(x);
y = exp(x);
y = abs(x);
y = floor(x);
y = ceil(x);
a = x**y; /* power */
/* extra functions: */
y = erf(x); /* the error function. */
y = erfc(x); /* the error function complemented. */
y = gamma (x);
y = loggamma (x);</lang>

=={{header|Pop11}}==
<lang pop11>pi ;;; Number Pi
sqrt(x) ;;; Square root
log(x) ;;; Natural logarithm
exp(x) ;;; Exponential function
abs(x) ;;; Absolute value
x ** y ;;; x to the power y</lang>

The number e is not provided directly, one has to compute 'exp(1)'
instead. Also, f/math>)

See also [[Trigonometric Functions]]

=={{header|PowerShell}}==
Since PowerShell has access to .NET all this can be achieved using the .NET Base Class Library:
<lang powershell>Write-Host ([Math]::E)
Write-Host ([Math]::Pi)
Write-Host ([Math]::Sqrt(2))
Write-Host ([Math]::Log(2))
Write-Host ([Math]::Exp(2))
Write-Host ([Math]::Abs(-2))
Write-Host ([Math]::Floor(3.14))
Write-Host ([Math]::Ceiling(3.14))
Write-Host ([Math]::Pow(2, 3))</lang>

=={{header|PureBasic}}==
<lang PureBasic>Debug #E
Debug #PI
Debug Sqr(f)
Debug Log(f)
Debug Exp(f)
Debug Log10(f)
Debug Abs(f)
Debug Pow(f,f)</lang>

=={{header|Python}}==
<lang python>import math

math.e # e
math.pi # pi
math.sqrt(x) # square root (Also commonly seen as x ** 0.5 to obviate importing the math module)
math.log(x) # natural logarithm
math.log10(x) # base 10 logarithm
math.exp(x) # e raised to the power of x
abs(x) # absolute value
math.floor(x) # floor
math.ceil(x) # ceiling
x ** y # exponentiation
pow(x, y[, n]) # exponentiation [, modulo n (useful in certain encryption/decryption algorithms)]

# The math module constants and functions can, of course, be imported directly by:
# from math import e, pi, sqrt, log, log10, exp, floor, ceil</lang>

=={{header|R}}==
<lang R>exp(1) # e
pi # pi
sqrt(x) # square root
log(x) # natural logarithm
log10(x) # base 10 logarithm
log(x, y) # arbitrary base logarithm
exp(x) # exponential
abs(x) # absolute value
floor(x) # floor
ceiling(x) # ceiling
x^y # power</lang>

=={{header|Racket}}==
<lang racket>(exp 1) ; e
pi ; pi
(sqrt x) ; square root
(log x) ; natural logarithm
(exp x) ; exponential
(abs x) ; absolute value
(floor x) ; floor
(ceiling x) ; ceiling
(expt x y) ; power</lang>

=={{header|Raku}}==
(formerly Perl 6)
<lang perl6>say e; # e
say π; # or pi # pi
say τ; # or tau # tau

# Common mathmatical function are availble
# as subroutines and as numeric methods.
# It is a matter of personal taste and
# programming style as to which is used.
say sqrt 2; # Square root
say 2.sqrt; # Square root

# If you omit a base, does natural logarithm
say log 2; # Natural logarithm
say 2.log; # Natural logarithm

# Specify a base if other than e
say log 4, 10; # Base 10 logarithm
say 4.log(10); # Base 10 logarithm
say 4.log10; # Convenience, base 10 only logarithm

say exp 7; # Exponentiation base e
say 7.exp; # Exponentiation base e

# Specify a base if other than e
say exp 7, 4; # Exponentiation
say 7.exp(4); # Exponentiation
say 4 ** 7; # Exponentiation

say abs -2; # Absolute value
say (-2).abs; # Absolute value

say floor -3.5; # Floor
say (-3.5).floor; # Floor

say ceiling pi; # Ceiling
say pi.ceiling; # Ceiling

say e ** π\i + 1 ≅ 0; # :-)</lang>

=={{header|REXX}}==
REXX has no built-in functions for trig functions, square root, pi, exponential ('''e''' raised to a power), logarithms and other similar functions.

REXX doesn't have any built-in (math) constants.
===abs===
<lang rexx>a=abs(y) /*takes the absolute value of y.*/</lang>
===exponentiation (**)===
<lang rexx>r=x**y /*REXX only supports integer powers.*/
/*Y may be negative, zero, positive.*/
/*X may be any real number. */</lang>

===ceiling===
A ceiling function for REXX:
<lang rexx>
ceiling: procedure; parse arg x; t=trunc(x); return t+(x>0)*(x\=t)
</lang>

===floor===
A floor function for REXX:
<lang rexx>
floor: procedure; parse arg x; t=trunc(x); return t-(x<0)-(x\=t)
</lang>

===sqrt (optimized)===
A [principal] square root (SQRT) function for REXX &nbsp; (with arbitrary precision):
<lang rexx>/*──────────────────────────────────SQRT subroutine───────────────────────────*/
sqrt: procedure; parse arg x; if x=0 then return 0 /*handle 0 case.*/
if \datatype(x,'N') then return '[n/a]' /*Not Applicable ───if not numeric.*/
i=; if x<0 then do; x=-x; i='i'; end /*handle complex numbers if X is < 0.*/
d=digits() /*get the current numeric precision. */
m.=9 /*technique uses just enough digits. */
h=d+6 /*use extra decimal digits for accuracy*/
numeric digits 9 /*use "small" precision at first. */
numeric form /*force scientific form of the number. */
if fuzz()\==0 then numeric fuzz 0 /*just in case invoker has a FUZZ set.*/
parse value format(x,2,1,,0) 'E0' with g 'E' _ . /*get the X's exponent.*/
g=(g * .5) || 'e' || (_ % 2) /*1st guesstimate for the square root. */
/* g= g * .5 'e' (_ % 2) */ /*a shorter & concise version of above.*/
/*Note: to insure enough accuracy for */
/* the result, the precision during */
/* the SQRT calculations is increased */
/* by two extra decimal digits. */
do j=0 while h>9; m.j=h; h=h%2+1 /*compute the sizes (digs) of precision*/
end /*j*/ /* [↑] precisions are stored in M. */
/*now, we start to do the heavy lifting*/
do k=j+5 to 0 by -1 /*compute the √ with increasing digs.*/
numeric digits m.k /*each iteration, increase the digits. */
g=(g+x/g) * .5 /*perform the nitty-gritty calculations*/
end /*k*/ /* [↑] * .5 is faster than / 2 */
/* [↓] normalize √ ──► original digits*/
numeric digits d /* [↓] make answer complex if X < 0. */
return (g/1)i /*normalize, and add possible I suffix.*/</lang>
<lang rexx> ╔════════════════════════════════════════════════════════════════════╗
╔═╝ __ ╚═╗
║ √ ║
║ ║
║ While the above REXX code seems like it's doing a lot of extra work, ║
║ it saves a substantial amount of processing time when the precision ║
║ (DIGITs) is a lot greater than the default (default is nine digits). ║
║ ║
║ Indeed, when computing square roots in the hundreds (even thousands) ║
║ of digits, this technique reduces the amount of CPU processing time ║
║ by keeping the length of the computations to a minimum (due to a large ║
║ precision), while the accuracy at the beginning isn't important for ║
║ calculating the (first) guesstimate (the running square root guess). ║
║ ║
║ Each iteration of K (approximately) doubles the number of digits, ║
║ but takes almost four times longer to compute (actually, around 3.8). ║
║ ║
║ The REXX code could be streamlined (pruned) by removing the ║
║ The NUMERIC FUZZ 0 statement can be removed if it is known ║
║ that it is already set to zero. (which is the default). ║
║ ║
║ Also, the NUMERIC FORM statement can be removed if it is known ║
║ that the form is SCIENTIFIC (which is the default). ║
║ __ ║
╚═╗ √ ╔═╝
╚════════════════════════════════════════════════════════════════════╝</lang>

===sqrt (simple)===
<lang rexx>/*──────────────────────────────────SQRT subroutine─────────────────────*/
sqrt: procedure; arg x /*a simplistic SQRT subroutine.*/
if x=0 then return 0 /*handle special case of zero. */
d=digits() /*get the current precision (dig)*/
numeric digits d+2 /*ensure extra precision (2 digs)*/
g=x/4 /*try get a so-so 1st guesstimate*/
old=0 /*set OLD guess to zero. */
do forever /*keep at it 'til G (guess)=old.*/
g=(g+x/g) / 2 /*do the nitty-gritty calculation*/
if g=old then leave /*if G is the same as old, quit. */
old=g /*save OLD for next iteration. */
end /*forever*/ /* [↑] ···'til we run out of digs*/
numeric digits d /*restore the original precision.*/
return g/1 /*normalize to old precision (d).*/</lang>

===other===
Other mathematical-type functions supported are:
<lang rexx>numeric digits ddd /*sets the current precision to DDD */
numeric fuzz fff /*arithmetic comparisons with FFF fuzzy*/
numeric form kkk /*exponential: scientific | engineering*/

low=min(a,b,c,d,e,f,g, ...) /*finds the min of specified arguments.*/
big=min(a,b,c,d,e,f,g, ...) /*finds the max of specified arguments.*/

rrr=random(low,high) /*gets a random integer from LOW-->HIGH*/
arr=random(low,high,seed) /* ... with a seed (to make repeatable)*/

mzp=sign(x) /*finds the sign of x (-1, 0, +1). */

fs=format(x) /*formats X with the current DIGITS() */
fb=format(x,bbb) /* BBB digs before decimal*/
fa=format(x,bbb,aaa) /* AAA digs after decimal*/
fa=format(x,,0) /* rounds X to an integer.*/
fe=format(x,,eee) /* exponent has eee places. */
ft=format(x,,eee,ttt) /*if x exceeds TTT digits, force exp. */

hh=b2x(bbb) /*converts binary/bits to hexadecimal. */
dd=c2d(ccc) /*converts character to decimal. */
hh=c2x(ccc) /*converts character to hexadecimal. */
cc=d2c(ddd) /*converts decimal to character. */
hh=d2x(ddd) /*converts decimal to hexadecimal. */
bb=x2b(hhh) /*converts hexadecimal to binary (bits)*/
cc=x2c(hhh) /*converts hexadecimal to character. */
dd=x2d(hhh) /*converts hexadecimal to decimal. */</lang>

=={{header|Ring}}==
<lang ring>
See "Mathematical Functions" + nl
See "Sin(0) = " + sin(0) + nl
See "Sin(90) radians = " + sin(90) + nl
See "Sin(90) degree = " + sin(90*3.14/180) + nl

See "Cos(0) = " + cos(0) + nl
See "Cos(90) radians = " + cos(90) + nl
See "Cos(90) degree = " + cos(90*3.14/180) + nl

See "Tan(0) = " + tan(0) + nl
See "Tan(90) radians = " + tan(90) + nl
See "Tan(90) degree = " + tan(90*3.14/180) + nl

See "asin(0) = " + asin(0) + nl
See "acos(0) = " + acos(0) + nl
See "atan(0) = " + atan(0) + nl
See "atan2(1,1) = " + atan2(1,1) + nl

See "sinh(0) = " + sinh(0) + nl
See "sinh(1) = " + sinh(1) + nl
See "cosh(0) = " + cosh(0) + nl
See "cosh(1) = " + cosh(1) + nl
See "tanh(0) = " + tanh(0) + nl
See "tanh(1) = " + tanh(1) + nl

See "exp(0) = " + exp(0) + nl
See "exp(1) = " + exp(1) + nl
See "log(1) = " + log(1) + nl
See "log(2) = " + log(2) + nl
See "log10(1) = " + log10(1) + nl
See "log10(2) = " + log10(2) + nl
See "log10(10) = " + log10(10) + nl

See "Ceil(1.12) = " + Ceil(1.12) + nl
See "Ceil(1.72) = " + Ceil(1.72) + nl

See "Floor(1.12) = " + floor(1.12) + nl
See "Floor(1.72) = " + floor(1.72) + nl

See "fabs(1.12) = " + fabs(1.12) + nl
See "fabs(1.72) = " + fabs(1.72) + nl

See "pow(2,3) = " + pow(2,3) + nl

see "sqrt(16) = " + sqrt(16) + nl
</lang>

=={{header|RLaB}}==

=== Mathematical Constants ===

RLaB has a number of mathematical constants built-in within the list ''const''. These facilities are provided through the Gnu Science Library [[http://www.gnu.org/software/gsl]].
<lang RLaB>>> const
e euler ln10 ln2 lnpi
log10e log2e pi pihalf piquarter
rpi sqrt2 sqrt2r sqrt3 sqrtpi
tworpi</lang>

=== Physical Constants ===
Another list of physical constants and unit conversion factors exists and is called ''mks''.
Here the conversion goes between that particular unit and the equivalent unit in, one and only, metric system.
<lang RLaB>>> mks
F G J L N
Na R0 Ry Tsp V0
a a0 acre alpha atm
au bar barn btu c
cal cgal cm cm2 cm3
ct cup curie day dm
dm2 dm3 dyne e eV
eps0 erg fathom floz ft
ftcan ftlam g gal gauss
gf h ha hbar hour
hp in inH2O inHg kSB
kb kcal km km2 km3
kmh knot kpf lam lb
lumen lux ly mHg mSun
me micron mil mile min
mm mm2 mm3 mmu mn
mp mph mu0 mub mue
mun mup nmi oz pal
parsec pf phot poise psi
rad roe stilb stokes tcs
therm tntton ton torr toz
tsp uam ukgal ukton uston
week yd</lang>

=== Elementary Functions ===
<lang RLaB>>> x = rand()
>> sqrt(x)
2.23606798
>> log(x)
1.60943791
>> log10(x)
0.698970004
>> exp(x)
148.413159
>> abs(x)
5
>> floor(x)
5
>> ceil(x)
5
>> x .^ 2
25</lang>

=={{header|Ruby}}==
<lang ruby>x.abs #absolute value
x.magnitude #absolute value
x.floor #floor
x.ceil #ceiling
x ** y #power
include Math
E #e
PI #pi
sqrt(x) #square root
log(x) #natural logarithm
log(x, y) #logarithm base y
log10(x) #base 10 logarithm
exp(x) #exponential
</lang>

=={{header|Run BASIC}}==
<lang runbasic>print "exp:";chr$(9); EXP(1)
print "PI:";chr$(9); 22/7
print "Sqr2:";chr$(9); SQR(2)
print "Log2:";chr$(9); LOG(2) : REM Base 10
print "Exp2:";chr$(9); EXP(2)
print "Abs2:";chr$(9); ABS(-2)
print "Floor:";chr$(9); INT(1.534)
print "ceil:";chr$(9); val(using("###",1.534))
print "Power:";chr$(9); 1.23^4</lang>
<pre>exp: 2.71828183
PI: 3.14285707
Sqr2: 1.41421356
Log2: 0.693147181
Exp2: 7.3890561
Abs2: 2
Floor: 1
ceil: 2
Power: 2.28886641</pre>

=={{header|Rust}}==
<lang rust>use std::f64::consts::*;

fn main() {
// e (base of the natural logarithm)
let mut x = E;
// π
x += PI;
// square root
x = x.sqrt();
// logarithm (any base allowed)
x = x.ln();
// ceiling (smallest integer not less than this number--not the same as round up)
x = x.ceil();
// exponential (ex)
x = x.exp();
// absolute value (a.k.a. "magnitude")
x = x.abs();
// floor (largest integer less than or equal to this number--not the same as truncate or int)
x = x.floor();
// power (xy)
x = x.powf(x);

assert_eq!(x, 4.0);
}</lang>

=={{header|Scala}}==
<lang scala>object RealConstantsFunctions extends App{
println(math.E) // e
println(math.Pi) // pi
println(math.sqrt(2.0)) // square root
println(math.log(math.E)) // log to base e
println(math.log10(10.0)) // log to base 10
println(math.exp(1.0)) // exponential
println(math.abs(-1)) // absolute value
println(math.floor(-2.5)) // floor
println(math.ceil(-2.5)) // ceiling
println(math.pow(2.5, 3.5)) // power
}</lang>

=={{header|Scheme}}==
<lang scheme>(sqrt x) ;square root
(log x) ;natural logarithm
(exp x) ;exponential
(abs x) ;absolute value
(floor x) ;floor
(ceiling x) ;ceiling
(expt x y) ;power</lang>

=={{header|Seed7}}==
The [http://seed7.sourceforge.net/libraries/math.htm math.s7i] library defines:
{| class="wikitable" style="text-align:left"
| [http://seed7.sourceforge.net/libraries/math.htm#E E] || # e (Euler's number)
|-
| [http://seed7.sourceforge.net/libraries/math.htm#PI PI] || # Pi
|-
| [http://seed7.sourceforge.net/libraries/math.htm#sqrt%28ref_float%29 sqrt(x)] || # square root
|-
| [http://seed7.sourceforge.net/libraries/math.htm#log%28ref_float%29 log(x)] || # natural logarithm - log base 10 is also available: [http://seed7.sourceforge.net/libraries/math.htm#log10%28ref_float%29 log10(x)])
|-
| [http://seed7.sourceforge.net/libraries/math.htm#exp%28ref_float%29 exp(x)] || # exponential
|-
| [http://seed7.sourceforge.net/libraries/math.htm#abs%28ref_float%29 abs(x)] || # absolute value
|-
| [http://seed7.sourceforge.net/libraries/math.htm#floor%28ref_float%29 floor(x)] || # floor
|-
| [http://seed7.sourceforge.net/libraries/math.htm#ceil%28ref_float%29 ceil(x)] || # ceiling
|}

The [http://seed7.sourceforge.net/libraries/float.htm float.s7i] library defines:
{| class="wikitable" style="text-align:left"
| [http://seed7.sourceforge.net/libraries/float.htm#%28ref_float%29**%28ref_integer%29 x ** y] || # power with [http://seed7.sourceforge.net/libraries/integer.htm integer] exponent
|-
| [http://seed7.sourceforge.net/libraries/float.htm#%28ref_float%29**%28ref_float%29 x ** y] || # power with float exponent
|}

=={{header|Sidef}}==
<lang ruby>Num.e # e
Num.pi # pi
x.sqrt # square root
x.log # natural logarithm
x.log10 # base 10 logarithm
x.exp # e raised to the power of x
x.abs # absolute value
x.floor # floor
x.ceil # ceiling
x**y # exponentiation</lang>

=={{header|Slate}}==
<lang slate>numerics E.
numerics Pi.
n sqrt.
n log10. "base 10 logarithm"
n ln. "natural logarithm"
n log: m. "arbitrary base logarithm"
n exp. "exponential"
n abs. "absolute value"
n floor.
n ceiling.
n raisedTo: anotherNumber</lang>

=={{header|Smalltalk}}==
<lang smalltalk>Float e.
Float pi.
aNumber sqrt.
aNumber log. "base 10 logarithm"
aNumber ln. "natural logarithm"
aNumber exp. "exponential"
aNumber abs. "absolute value"
aNumber floor.
aNumber ceiling.
aNumber raisedTo: anotherNumber</lang>

=={{header|Sparkling}}==
<lang sparkling>// e:
print(M_E);

// π:
print(M_PI);

// square root:
let five = sqrt(25);

// logarithm
// natural:
let one = log(M_E);
// base-2:
let six = log2(64);
// base-10
let three = log10(1000);

// exponential
let e_cubed = exp(3);

// absolute value
let ten = abs(-10);

// floor
let seven = floor(7.8);

// ceiling
let four = ceil(3.2);

// power
let eighty_one = pow(3, 4);</lang>

=={{header|Standard ML}}==
<lang sml>Math.e; (* e *)
Math.pi; (* pi *)
Math.sqrt x; (* square root *)
Math.ln x; (* natural logarithm--log base 10 also available (Math.log10) *)
Math.exp x; (* exponential *)
abs x; (* absolute value *)
floor x; (* floor *)
ceil x; (* ceiling *)
Math.pow (x, y); (* power *)
~ x; (* negation *)</lang>

=={{header|Stata}}==
<lang stata>scalar x=2
scalar y=3
di exp(1)
di _pi
di c(pi)
di sqrt(x)
di log(x)
di log10(x)
di exp(x)
di abs(x)
di floor(x)
di ceil(x)
di x^y</lang>

=={{header|Swift}}==
<lang swift>import Darwin

M_E // e
M_PI // pi
sqrt(x) // square root--cube root also available (cbrt)
log(x) // natural logarithm--log base 10 also available (log10)
exp(x) // exponential
abs(x) // absolute value
floor(x) // floor
ceil(x) // ceiling
pow(x,y) // power</lang>

=={{header|Tcl}}==
<lang tcl>expr {exp(1)} ;# e
expr {4 * atan(1)} ;# pi -- also, simpler: expr acos(-1)
expr {sqrt($x)} ;# square root
expr {log($x)} ;# natural logarithm, also log10
expr {exp($x)} ;# exponential
expr {abs($x)} ;# absolute value
expr {floor($x)} ;# floor
expr {ceil($x)} ;# ceiling
expr {$x**$y} ;# power, also pow($x,$y)</lang>
The constants <math>e</math> and <math>\pi</math> are also available with high precision in a support library.
{{tcllib|math::constants}}
<lang tcl>package require math::constants
math::constants::constants e pi
puts "e = $e, pi = $pi"</lang>

=={{header|TI-89 BASIC}}==
{|
|-
! Mathematical !! TI-89 !! Notes
|-
| <math>e </math> || <code style="font-family:'TI Uni'">ℯ </code> || (U+212F SCRIPT SMALL E)
|-
| <math>\pi </math> || <code style="font-family:'TI Uni'">π </code> || (U+03C0 GREEK SMALL LETTER PI)
|-
| <math>\sqrt{x} </math> || <code style="font-family:'TI Uni'">√(x) </code> || (U+221A SQUARE ROOT)
|-
| <math>\log_e(x) </math> || <code style="font-family:'TI Uni'">ln(x) </code>
|-
| <math>\log_{10}(x) </math> || <code style="font-family:'TI Uni'">log(x) </code>
|-
| <math>\log_b(x) </math> || <code style="font-family:'TI Uni'">log(b, x) </code> || The optional base argument comes ''first''
|-
| <math>\lfloor x\rfloor</math> || <code style="font-family:'TI Uni'">floor(x) </code>
|-
| <math>\lceil x\rceil </math> || <code style="font-family:'TI Uni'">ceiling(x)</code>
|-
| <math>x^y </math> || <code style="font-family:'TI Uni'">x^y </code>
|}

=={{header|UNIX Shell}}==
{{works with|ksh93}}
ksh93 exposes math functions from the C math library
<lang bash>echo $(( exp(1) )) # e
echo $(( acos(-1) )) # PI
x=5
echo $(( sqrt(x) )) # square root
echo $(( log(x) )) # logarithm base e
echo $(( log2(x) )) # logarithm base 2
echo $(( log10(x) )) # logarithm base 10
echo $(( exp(x) )) # exponential
x=-42
echo $(( abs(x) )) # absolute value
x=-5.5
echo $(( floor(x) )) # floor
echo $(( ceil(x) )) # ceiling
x=10 y=3
echo $(( pow(x,y) )) # power</lang>

{{out}}
<pre>2.71828182845904524
3.14159265358979324
2.2360679774997897
1.60943791243410037
2.32192809488736235
0.698970004336018805
148.413159102576603
42
-6
-5
1000</pre>

=={{header|Wren}}==
<lang ecmascript>var e = 2.718281828459045 // not in standard library

System.print("e = %(e)")
System.print("pi = %(Num.pi)")
System.print("sqrt(2) = %(2.sqrt)")
System.print("ln(3) = %(3.log)") // log base e
System.print("exp(2) = %(e.pow(2))") // exp not in standard library
System.print("abs(-e) = %(e.abs)")
System.print("floor(e) = %(e.floor)")
System.print("ceil(e) = %(e.ceil)")
System.print("pow(e, 2) = %(e.pow(2))")</lang>

{{out}}
<pre>
e = 2.718281828459
pi = 3.1415926535898
sqrt(2) = 1.4142135623731
ln(3) = 1.0986122886681
exp(2) = 7.3890560989306
abs(-e) = 2.718281828459
floor(e) = 2
ceil(e) = 3
pow(e, 2) = 7.3890560989306
</pre>

=={{header|XPL0}}==
<lang XPL0>include c:\cxpl\codes; \intrinsic 'code' declarations

func real Power(X, Y); \X raised to the Y power
real X, Y;
return Exp(Y*Ln(X));

real E, Pi;
[Format(4, 16); \places shown before and after .
E:= Exp(1.0);
RlOut(0, E); CrLf(0);
RlOut(0, Ln(E)); CrLf(0);
CrLf(0);
Pi:= ATan2(0.0, -1.0); \Pi is also a defined constant
RlOut(0, Pi); CrLf(0);
RlOut(0, Cos(Pi)); CrLf(0);
CrLf(0);
RlOut(0, Sqrt(2.0)); CrLf(0); \Sqrt is a call to an intrinsic
RlOut(0, Log(100.0)); CrLf(0);
RlOut(0, Ln(Exp(123.456789))); CrLf(0);
CrLf(0);
RlOut(0, abs(-1234.5)); CrLf(0); \abs works for both reals & ints
CrLf(0);
RlOut(0, float(fix(1.999-0.5))); CrLf(0); \floor rounds toward -infinity
RlOut(0, float(fix(1.001+0.5))); CrLf(0); \ceiling rounds toward +infinity
RlOut(0, Power(sqrt(2.0), 4.0)); CrLf(0); \sqrt is an inline function and
] \ can be used for both reals & ints</lang>

{{out}}
<pre>
2.7182818284590500
1.0000000000000000

3.1415926535897900
-1.0000000000000000

1.4142135623731000
2.0000000000000000
123.4567890000000000

1234.5000000000000000

1.0000000000000000
2.0000000000000000
4.0000000000000000
</pre>

=={{header|zkl}}==
<lang zkl>(0.0).e // Euler's number, a property of all floats
(0.0).e.pi // pi, yep, all floats
(2.0).sqrt() // square root
(2.0).log() // natural (base e) logarithm
(2.0).log10() // log base 10
(0.0).e.pow(x) // e^x
(-10.0).abs() // absolute value, both floats and ints
x.pow(y) // x raised to the y power
x.ceil() // ceiling
x.floor() // floor</lang>

{{omit from|GUISS}}
{{omit from|M4}}
{{omit from|ML/I}}